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A method is presented for the construction of asymptotic formulas for the
large eigenvalues and the corresponding eigenfunctions of boundary value
problems for partial differential equations. It is an adaptation to bounded
domains of the method previously devised to deduce the corrected Bohr-Som-
merfeld quantum conditions.

When applied to the reduced wave equation in various domains for which the
exact solutions are known, it yields precisely the asymptotic forms of those
solutions. In addition it has been applied to an arbitrary convex plane domain
for which the exact solutions are not known. Two types of solutions have been
found, called the “whispering gallery’’ and ‘‘bouncing ball’’ modes. Applica-
tions have also been made to the Schrodinger equation.

1. INTRODUCTION

Recently a corrected form of the Bohr-Sommerfeld quantum conditions has
been derived from the Schrédinger equation of quantum mechanies (7). The
derivation is based upon an analysis of the “classical limit” of the Schrédinger
wave function. The corrected conditions contain the appropriate quantum num-
bers, which are usually integral or half-integral, but may be of some other form.
Furthermore, the corrected conditions are applicable to nonseparable systems,
for which no such conditions were previously available. Therefore these conditions
can be used to determine the energy levels of nonseparable systems. Of course,
they are also applicable to separable systems, for which they yield the usual
results.

It is clear from the derivation that these quantum conditions are not limited

* This paper is based upon a report with the same title, Research Report No. CX-38,
Inst. of Math. Sci., N.Y.U., Feb. 1959. This research was sponsored by the Geophysics
Research Directorate of the Air Force Cambridge Research Center, Air Research and De-
velopement Command, under Contract AF 19(604)4555.
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to problems of quantum mechanics but are applicable to a large class of eigen-
value problems. By means of them the eigenvalues can be computed. In addition,
asymptotic expressions for the eigenfunctions can be obtained by the method
used to derive the quantum conditions. In this paper we illustrate the method
by applying it to the relatively simple eigenvalue problem associated with the
wave equation in a bounded domain. This problem corresponds to a variety of
physical problems: the quantum-mechanical motion of a free particle in a box,
the motion of sound waves in a room, the vibration of a membrane, ete.

Our analysis begins with the demonstration that, with slight modification,
the previous derivation of the corrected quantum conditions can be applied to
bounded domains. The new quantum conditions derived in this way depend
upon the boundary conditions at the boundaries of the domain. These conditions
are then applied to cireular, elliptical, rectangular, equilateral, triangular, and
spherical domains. Since the eigenvalue problem can be solved for these domains,
the present results can be compared with the exact solutions. We find, in every
case, that the method yields precisely the asymptotic expression for the exact
eigenvalues and the asymptotic form of the exact eigenfunctions. In this way,
we obtain new derivations of the asymptotic forms of the Bessel, Mathieu and
associated Legendre functions. Some of the results concerning Mathieu functions
appear to be new. Closely related derivations have been given by Landauer (2,
3). His procedure utilizes separation of variables, which is not necessary in our
method.

We also consider a two-dimensional domain with an arbitrary smooth convex
curve as its boundary. This is an example of a nonseparable problem. For it, we
find two sets of eigenvalues and their associated eigenfunctions. The eigenfunc-
tions of one set are asymptotically zero except in a thin layer near the boundary.
We call these solutions the ‘“whispering gallery” modes because they explain
the whispering gallery phenomenon of acoustics. The eigenfunctions of the other
set are asymptotically zero except in a thin strip around the minimum diameter
of the domain. These solutions might be called the ‘“bouncing ball” modes be-
cause they correspond to the motion of a ball bouncing back and forth between
opposite sides of the domain.

In the last section we discuss the application of our method to the Schrodinger
equation for a particle in a spherically symmetric potential. Finally, we indicate
how to use the method for an asymmetric potential.

2. FORMULATION OF THE METHOD

Let us consider a solution u of the reduced wave equation
(A + EHu = 0. (1)

This solution is assumed to be defined in a bounded three-dimensional domain



26 KELLER AND RUBINOW

D on the boundary B of which it satisfies a homogeneous boundary condition.
For definiteness we will first consider the vanishing of the normal derivative

du/dv = 0 on B. (2)

As is well known, Eqgs. (1) and (2) have a nontrivial solution only if £ has one
of a special set of values called the eigenvalues of the problem. We propose to
determine the asymptotic form of the eigenfunction u for large values of the
eigenvalue k. We will also determine the large eigenvalues asymptotically. This
problem is essentially a special case of that treated in Ref. 1. However in that
reference only unbounded domains were considered. The present extension of
the results of that paper to bounded domains is also valid for more general equa-
tions, but for simplicity we will only consider the reduced wave equation.
Our analysis is based upon the assumption that asymptotically for large values

of k, u is of the form
N . 1
w=2 e [a,+0(1)] 3)

The S, and A ; are functions of position, and N is an integer. Each term in the
sum is called a wave. Its phase is S; and its amplitude is 4 ; .

We further assume that each term in (3) satisfies (1) asymptotically. Upon
inserting (3) into (1) and equating to zero the coefficients of k* and & we obtain
for each 7, omitting the subseripts,

(V8)* =1 (4)
2VS-VA + A4S = 0. (5)

Equation (4) is the eiconal equation of geometrical optics, the solution of
which can be expressed by means of certain straight lines. These straight lines,
which are the characteristics of (4), are the rays of geometrical optics. They
are the orthogonal trajectories of the surfaces S = constant, which are called
wavefronts or surfaces of constant phase. If ¢ denotes arc length along a ray
then (4) implies that along the ray S is given by

S() = So =+ t. (6)

Here S, is the value of S at the point from which ¢ is measured. The ambiguity
of sign in (6) can be resolved by measuring ¢ positively in the direction in which
S increases.

In (5) the only derivative of A which occurs is the directional derivative along
a ray. If we denote this by d4/dt, then (5) can be rewritten in the form

Il

2%+Am=o. 0
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The solution of (7) is

A(D) = Ao exp(—-% fot AS dt) - 4 [éi%]m. (8)

The second form of the solution is given in (5). Here A, is the value of A at
the point ¢ = 0 on the ray, G(¢) is the Gaussian curvature of the wavefront S =
constant at the point ¢ and G(0) is the corresponding curvature at ¢t = 0. The
expression (8) for A can be rewritten in the form

1/2
p1p2
a0 = [ )
In (9) p1 and p. denote the principal radii of curvature of the wavefront at t =
0. Equation (9) can be interpreted as expressing conservation (say, of energy
or of probability) within a narrow tube of rays.

Let us now apply the boundary condition (2) to the solution (3). Upon in-
serting (3) into (2) and equating to zero the coefficient of ¥ we obtain

1% .
j; (?a_-li] eszjAj — 0 on B- (10)

We now assume that at every point on the boundary the terms in (10}, for which
88;/dv # 0, vanish in pairs. By this we mean that for each nonvanishing term,
say the jth, there is another term, say the j’th, with j/ » j, such that

a5,

>, e*Siq; + 955 e"ksf'Aj, =0 on B. (11)

N
dv
Physically this assumption corresponds to the hypothesis that each wave or ray
which hits the boundary gives rise to a reflected wave or ray. The waves for
which 9.8;/9» = 0 are propagating parallel to the boundary and do not give
rise to reflected waves. Since (11) holds for a range of values of k, it follows that

Sj = Sj' on B. (12)
From (12) and (4) it follows that (38,/3v)* = (3S,./d»)" on B. Therefore

as; a8,
5”— = -+ W on B. (13)
If the positive sign applies in (13) then it follows that S; = 8, not only on
the boundary but throughout the entire domain D. It also follows from (11)
that A; = — A4, on B. This fact and (9) then show that A; = — A throughout
D. Then the sum of the twoterms A ™" and A ;™" is identically zero through-
out D. Such trivial pairs of terms will be omitted from (1). Therefore, we may
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conclude that the minus sign applies in (13). Then from (11) it follows that
A; = Ay on B. Thus we have

as; __ 08y
—é; = “5‘ on B, (14:)
A;= A, on B. (15)

Physically, (14) together with (12) implies the law of reflection for the reflected
ray. The second conclusion asserts that at the boundary, the amplitude of the
reflected wave equals that of the incident wave.

If the boundary condition (2) is replaced by

u=20 on B, (16)

an exactly similar analysis shows that (12) and (14) still hold, but (15) is re-
placed by

A;j= —A;y on B. (17)

The preceding result (9) for the amplitude 4 ; of any wave fails by becoming
infinite at the two points ¢ = —p, and { = —p, on each ray. These points are
centers of curvature of the wavefront corresponding to ¢ = 0. The locus of these
points for a particular wavefront is called the caustic surface corresponding to
that wavefront. The caustic surface is also the envelope of the rays which are
normal to the wavefront. It generally consists of two sheets, corresponding to
the two centers of curvature on each ray. Points at which the two sheets touch
are called focal points. Thus we see that our results are not valid at a caustic.

We now assume that each wave which converges to a caustic gives rise to
another wave which diverges from the caustic. The rays of the diverging wave
are assumed to be the continuations of those of the converging wave and the
phase along these rays is assumed to be the continuation of the phase on the
converging rays. (See Fig. 1.) These two assumptions ean also be described by
stating that the phase S; of the diverging wave equals the phase S; of the con-
verging wave at the caustic. It is known that at a regular point (i.e., not a focal
point) of a caustic the amplitude A ;» of the diverging wave is equal to the am-
plitude A; of the converging wave multiplied by the factor ¢ . At a focal
point the factor is ¢ ™" since a focal point corresponds to a double point of the
caustic. These facts are all indicated by (9).

On the basis of the preceding assumptions we see that by following a ray of
any wave in the direction of increasing {, we come to a caustic or a boundary.
In either case, the ray continues as a ray of another wave. A sequence of waves
is encountered in this manner. Since there are, by assumption, only a finite
number N of waves in the solution, one of the waves in this sequence must recur.
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Therefore a ray orthogonal to a given wavefront is ultimately orthogonal to this
same wavefront again. (See Fig. 2.) But the value of S continually increases as
a ray is traversed in the positive direction. Therefore, at the second point of
intersection of the wavefront and the ray, the value of S; is greater than its
initial value by the length of the ray between intersections. Since S; is constant
on a wavefront, S; must therefore be multiple valued. The corresponding am-
plitude 4 ; may also be multiple valued.

Since the solution % must be single valued we must require each wave to be
single valued. If 8S; denotes the difference between two of the values of S; then
the single-valuedness condition may be written as

kBS]-:21m,~+i610gA,- j= 1,"',N. (18)

Here n; is an integer.

Fie. 1. Rays of a wave converging on a caustic C and the resulting diverging rays. The
dashed lines are the converging and diverging wavefronts.

F1G. 2. A ray orthogonal to a particular wavefront, indicated by the dashed line, is
shown orthogonal to it again after three reflections from the boundary.
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In order to examine the consequences of (18) it is convenient to think of the
various multiple-valued functions S; as branches of a single function S. To repre-
sent this function S it is helpful to introduce a certain covering space, i.e., a
certain multi-sheeted space analogous to the Riemann surfaces of function
theory. However, it is not necessary to have one sheet for each branch of S. It
suffices to have one sheet for each of the N distinct branches of VS. The various
sheets are replicas of the domain D which may be bounded internally by causties.
The sheets corresponding to VS;, and VS;, are joined together along that part
of the caustic or boundary where 8;, = 8§;, . These are just the places where the
wave Jji gives rise to the wave j, by reflection or by passing through a caustic.
Now the function S may be thought of as being defined on this covering space.
It is not single-valued on this space, but its different branches on any sheet differ
from each other only by additive constants. We also consider the A; to be
branches of a function A which is also defined on this space. We assume that
the number of different branches of VA is the same as the number of different
branches of VS, which is consistent with (5).

In terms of this covering space the expression 68;(P), at any point P, can be
represented by the line integral

8S(P) = jévs-dd. (19)

In (19) 6S(P) is represented as an integral along some closed curve on the cov-
ering space, starting and ending at P. The vector dé is the vector element of
arc length along this curve. Equation (19) follows from the fact that vS-dé is
just the derivative of S along the curve. The subscript j is omitted in (19) since
the same equation holds for all values of 7 and therefore for the function S. Now
the condition (18) can be rewritten as

kjéVS-dd= 2rn + 8 log A. (20)

Equation (20) must hold for every closed curve on the covering space, with an
appropriate integer n in each case, since every such curve corresponds to some
3S;.

Equation (20) will hold for every curve if it holds for each curve in the basis
of the fundamental group of the covering space since every closed curve is a
linear combination of basis curves with integer coefficients. Therefore, there are
a finite number of conditions (20), say ¢ of them, one for each independent closed
curve on the covering space, and each condition contains an integer n. The con-
dition (20) can be made more explicit by noting that the phase of 4 is retarded
by #/2 each time the curve passes through a caustic, so log A changes by —in/2.
If m’ denotes the number of times a closed curve touches a caustic, and if the
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only change in log A is that associated with the regular points of the caustics,
then (20) becomes

r
k ?g vS-dg = 2r <n + %—) if du/dv = Oon B. (21)

For the boundary condition (16) we see from (17) that A also changes phase
by —= each time the curve touches the boundary. If b is the number of times
the closed curve touches the boundary, (20) becomes

k%VS-dd=27r<n+%+—g> ifu=0o0nB. (22)

3. UTILIZATION OF THE METHOD

To use the foregoing method to solve an eigenvalue problem we must first
find in the domain D, for some integer N, a set of N normal congruences' of
rays which are closed under reflection. This does not mean that each ray is
closed, but that each congruence gives rise to another congruence of the set
under reflection or passage through a caustic. Next we must consider the cover-
ing space associated with this set of N congruences, and determine ¢, the number
of independent closed curves on it. Then we must imbed the set of N congruences
of rays in a ¢ — 1 parameter family of sets of N congruences, each of which is
also closed under reflection. Finally, we must impose the ¢ conditions (21) or
(22) from which k and the ¢ — 1 parameters can be determined. In this way the
eigenvalue k is found.

To determine the phase of the eigenfunction we may arbitrarily assign some
value Sp to some wavefront (i.e., surface orthogonal to a congruence of rays)
and then determine S by means of (6). To obtain the amplitude we must find
a function 4, defined on some wavefront such that when the value of A is com-
puted from it by means of (9) and (15) or (17), it returns to the value 4, (ex-
cept for a phase factor) after a ray is traversed which returns to the original
wavefront.

An alternative procedure, not employing rays, is possible if a ¢ — 1 parameter
family of phase functions S can be found. These functions must satisfy the eiconal
equation (4) and the conditions (12) and (14) on B, and the basis of the funda-
mental group of the covering space of VS must contain g curves. Then the g
conditions (21) or (22) determine k and the ¢ — 1 parameters. The amplitude
is then determined as before.

4. THE CIRCLE

As a first example, let us consider the case in which the domain D is a circle
of radius a. To find a set of N normal congruences of rays, let us consider any

1 A normal congruence of rays is a family of rays orthogonal to any surface.



32 KELLER AND RUBINOW

ray and the successive rays it generates by reflection at the boundary. (See Fig.
3.) It can be seen that all these rays are tangent to a concentric circle, of radius
a0, say. This suggests that we choose as rays all the tangents to the circle of
radius @, oriented so that they travel in the counter clockwise direction. Then
the circle of radius ag is a caustic of these rays. Therefore we consider all those
rays traveling inward from the outer boundary to the caustic as one normal
congruence, and all those traveling outward from the caustic to the boundary
as a second congruence. (See Fig. 4.)

Bach of these normal congruences fills out the annular region ¢y £ r < a.
Furthermore an inward traveling ray goes into an outward travelling ray at the
caustic and an outward ray reflects into an inward ray at the boundary. There-
fore, N = 2 and the covering space consists of two replicas of the annular region
joined together at their edges. Topologically, this covering space is a torus. Since
there are only two linearly independent closed curves on the torus, ¢ = 2, and

F1c. 3. A ray inside a circular region, and some of the rays which arise from it after
several reflections. All of these rays are tangent to a concentrie circle of radius a, .

F1c. 4. Two congruences of rays in a circular domain. One consists of the outward di-
rected, counterclockwise traveling tangents to the concentric cirele of radius ao. This
circle is the caustic of these rays. The other consists of the corresponding inward directed
tangents. Each congruence fills out the annular region between the caustic and the bound-
ary.
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we require a one-parameter family of pairs of normal congruences. If we permit
aq to vary between zero and a we obtain such a family.

Let us now impose the condition (21) on two linearly independent closed
curves on the torus. First we choose the circle of radius a, . Since this is a caustie,
the unit vector VS is tangential to it and therefore the line integral in (21) is
just the length 27a, . This path does not cross the caustic, as can be seen by
enlarging it slightly, and therefore for it m’ = 0. Thus (21) becomes, with m
in place of n,

k-2xa, = 2m m=20,1,2, ---. (23)

For the second curve we choose that shown in Fig. 5. This consists of two rays’
each of length (a® — ar’)"?, and an arc of the caustic of length 2a, cos™(ae/a):
Since this crosses the caustic once, m’ = 1. Upon evaluating the integral in (21),
taking proper account of directions, (21) becomes

2%[(a® — a’)* — agcos M(ao/a)] = 2r(n +Y4) w=0,1,2, ---. (24)

We now find from (23) that a0 = m/k. When we use this in (24) we obtain the
following equation for the eigenvalue k in the case du/d» = 0 on B:

[(ka)® — m"* — m cos™ (1”—) = (n + 1) nm =01, ---. (25)
ka 4

If w = 0 on B we must use (22) instead of (21). The first closed curve, the

caustic, does not touch the boundary, so for it b = 0 and therefore (22) yields

(23). The second closed curve touches the boundary once so for it b = 1. In

this case (22) yields (24) with the term 14 on the right side replaced by 34.

F1a. 5. A closed curve on the toroidal covering space associated with the two ray con-
gruences of Fig. 4. This curve consists of a ray from the caustic to the boundary lying on
one sheet, a reflected ray from the boundary to the caustic on the other sheet, and an arc
of the caustic between the two points of tangency.
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TABLE I

COMPARISON OF AsSYMPTOTIC AND ExacT EiGENVALUES FOR A CIRCULAR
Region oF Rapius a*

4

m n Jmn Fractional Jmn Fractional
Approx. Exact error Approx. Exact error

0 1 2.356 2.405 0.0204 3.927 3.832 —0.0248
2 5.498 5.520 0.0040 7.069 7.016 —0.0076
3 8.639 8.654 0.0017 10.210 10.173 —0.0036
4 11.781 11.792 0.0009 13.352 13.324 —0.0021

1 1 3.795 3.832 0.0097 2.115 1.841 —0.1488
2 6.997 7.016 0.0027 5.405 5.331 —0.0139
3 10.161 10.173 0.0012 8.581 8.536 —0.0053
4 13.311 13.324 0.0010 11.739 11.706 —0.0028

2 1 5.101 5.136 0.0068 3.300 3.054 —0.0806
2 8.401 8.417 0.0019 6.771 6.706 —0.0097
3 11.609 11.620 0.0010 10.010 9.969 —0.0041
4 14.788 14.796 0.0005 13.200 13.170 —0.0023

3 1 6.346 6.380 0.0053 4.439 4.201 —0.0567
2 9.745 9.761 0.0016 8.076 8.015 —0.0076
3 13.005 13.015 0.0008 11.384 11.346 —0.0033
4 16.216 16.223 0.0004 14.614 — —

» In the third and sixth columns are shown the values of ka computed from (26) and (25),
respectively, for the values of m and n listed in the first two columns. These results are
labeled ‘“‘approx.”” In the fourth and seventh columns are shown the values of jm» and s ,
the corresponding exact eigenvalues. These are the nth zeroes of the mth Bessel function
or of its derivative, respectively. The differences between the exact and approximate eigen-
values, divided by the exact eigenvalues, are listed in the fifth and eighth columns.

When a, is eliminated from (24) by means of (23), the following equation for
the eigenvalue k results in this case of u = 0 on B.

[(ka)® — m' 1" — m cos™" <7_n~> =7 (n + §) nm=0,1..--. (26)
ka 4

In Table I the values of ka determined from (25) and (26) are shown for
various values of m and n. The exact values, obtained by solving the problems
exactly, are also shown for comparison. The agreement between the two sets of
values is surprisingly good, considering that only small values of m and », and
therefore of ka, are tabulated—although the theory is based on ka being large.
For large values of n and m the exact equations for the eigenvalues coincide pre-
cisely with (25) and (26), as we shall show.

Equations (25) and (26) can be solved explicitly in the limiting case in which
m <K ka and the opposite case in which m & ka. In the former case (25) and
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(26) become, respectively,

ka = r(n—{——gb-{-i)%- du/dvon B, (27)
ka=w(n+g+2>+--- w=0o0onB. (25)

In this case the radius of the caustic @y = (m/ka)a is nearly zero.
In the opposite case we introduce the small quantity e defined by

mika = 1 — e (29)

When (29) is used in (25) and (26) simple equations for ¢ result. Once ¢ is
found (29) yields for ka the results

m1/3 1 2/8

ka = m + 5 [37r (n + ;>] + .- du/ov = 0on B, (30)
mt? 3\

ka=m+§ [31(7»—}—4)] + .- w=0o0nB (31)

In this case the caustic nearly coincides with the boundary since from (23) and
(29), ap = a{l — €). As we shall see, the solution u is practically zero except
in the region between the caustic and the boundary. The existence of this type
of eigenfunction of a circular domain was first discovered by Rayleigh (4) in
order to explain the “whispering gallery’”’ phenomenon of acousties. In Section
7 we shall obtain the corresponding eigenfunctions for more general domains.

Let us now determine the phase S of the eigenfunction w. Since the unit vector
VS is tangent to the caustic, on it S is just equal to arc length ¢ along the caustic
from some point, say from ¢ = 0. To evaluate S at a point (7,6) with r > a; we
use (6) taking { = (r* — a,")"” to be the distance from (r,0) to the caustic and
Sy = o1 = aoff — cos ‘(ao/r)] to be the value of S at the point where the ray
through (7,0) leaves the caustic (see Fig. 6). Thus (6) yields

Si(r,8) = ap [0 ~ cos™" (‘—?)] + (P — )" (32)

We obtain another value S.(7,8) if we consider the inward traveling ray through
(r,8) (see Fig. 6). In this case the length of the ray from the caustic to the
boundary and back to (r,8) may be employed, and this is just ¢ = 2(a” — as’)""* —
(+** — a,")""%. The value of S at the point where the ray leaves the caustic is

oo () - ()]
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Fia. 6. The two ray paths from the caustic to the point (r,8). One ray leaves the caustic
at o1 = ao{8 — cos™1(ao/7)] and travels a distance {3 = (r2 — a?)22 to the point. The other
ray leaves the caustic at o2 = aolf + cos(ao/r) — 2 cos™ (a/a)], is reflected from the bound-
ary and reaches the same point on the second sheet after traversing a distance {y =
2(a® — a?)12 = (12 — a2,

With these values inserted, (6) becomes

S(r8) = ao| 6 + cos™ ((—?) — 2 cos* (Z_")] + 2(a® — a)™"*

~ (1 ~ a)"? (33)

= gg| 6 + cos™* <‘}_0)] — (= a4 Zn (n -+ 1)
L. T k 4

The second form of 8, is obtained by using (24) so it applies if du/d» = 0 on
B;in case = 0 on B the final ¥4 should be replaced by 34.

To determine the amplitude A (r,0) we use (9). Since we are considering a
two-dimensional case p; is infinite and (9) becomes

o 1/2
NN o0

If we let the point on the ray from which ¢ is measured tend to the caustic then
o1 tends to zero and A, becomes infinite but, as (34) shows, the product Aep'"*
has a finite limit. If we denote this limit by 4 (o) then (34) may be written
simply as

A r
A= ,_%;_) (35)
On an outgoing ray (35) becomes
14
A4(rg) = A (36)

(r2 = gl
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To obtain As(r,8), the value of 4 on an incoming ray, we again use (35) which
yields

!

Ao
(7-2 —_— 002)1/4'

The function 44 in (37) is equal to A, in (36) on corresponding rays, according
to (15), if du/d» = 0 on B. Equations (36) and (37) show that, upon traversing
a closed path, the function A(r,8) will return to its original value, except for a
phase factor, provided that A is taken to be a constant.

Now that &k, S;, Sz, 4:, and A. have been found, we can combine them in
(3) to yield the eigenfunction u. If we set Ay = ¢ "*/2k"* we obtain

Az(rﬂ) = (37)

u = [(kr)® — m" cos{[(kr)Z — m"? — m cos™ %: - ;—r} e

du/dv = 0 on B.

(38)

Proceeding similarly for the case v = 0 on B, we find from (17) that 4, = —A; .
This minus sign and the extra = in kS, cancel to yield the same result (38) for
. These results both hold for

r > ag = m/k. (39)

In order to obtain u for r < a; we must consider the complex or imaginary
rays (5). These rays are complex straight lines which are tangent to the caustic.
The ray through a point (r,6) with » < @, is thus a complex line through that
point tangent to the caustic. In Ref. 5 these rays are examined and the two val-
ues of the function S are determined by means of them. They are given by

S(r8) = aP F i[a@ cosh™ (%) — (a0’ — 7"2)”2] r<a. (40)

It should be noticed that (40) can also be obtained from (32) by analytic con-
tinuation, merely by permitting r to be less than a, . The corresponding expres-
sion for A can be obtained similarly from (36). It is

7 * L3
Ao €+"/

A(rg) = o =Py

(41)
The choice of the branch of the radical in (41) is based on considerations similar
to those of Section 2. We now observe that the wave for which the upper sign is
chosen in (40) decreases with increasing distance from the caustic while the

2 Several signs are misprinted in Ref. 5. On p. 47 in eq. (29) the sign of 4=/2 should be plus.
In (30) the signs of all terms in the exponent except imkad should be changed. On page 48 in
(31) the sign before H® should be plus.
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other wave increases. We therefore assume that the increasing term must be
omitted. Then (3) yields for either boundary condition, when r < ay,

u(rg) = %[m2 — (kr)q ™ exp{ime ~ m cosh™ (%;) .

)

Equation (42) shows that for large m, « is exponentially small inside the caustic
r = @ . Thus the solution differs from zero only in the annular region between
the caustic and the boundary.

If, from the beginning, we had considered the clockwise-traveling rays, all our
results would have been the same with 6 replaced by —é.

The exact eigenfunctions of (1) for the circle are

U= CJn(kr)e™ m =0, £1,£2, ---. (43)

Here C is a constant and k is determined by either of the conditions
Jw'(ka) =0 du/dv = Oon B, (44)
Jm(ka) =0 % = Qon B. (45)

If the dominant term of the Debye asymptotic expansion of J,.(kr) for kr > m
is used in (44) and (45) these equations become exactly (25) and (26), respec-
tively. When the same expansion is used in (43), it becomes (38) provided that
we set C = (w/2)""%. If the corresponding form of the Debye expansion of J ,(kr)
for kr < m is used in (43) it coincides with (42) when the same value of C is
used. These comparisons show that the foregoing results are all asymptotically
correct. In particular we note that our geometrical method yields the Debye
expansion of the Bessel function, aside from a constant factor.

Since the present problem is separable, all our results could have been ob-
tained by applying the usual WKB method to the ordinary differential equations
resulting from separation. Alternatively, the eiconal equation could have been
solved by separation into the sum of a function of r and a function of 6. The
parameter ao could then have been introduced by requiring S to vanish at 8 = 0,
r = ag. There are four such solutions

S(r,0) = #£r(sin 7 — 7 cos 1) =+ a¢d r>an. (46)
Here r is defined by

T = cos - (%) r> a. (47)
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For r < ao the solution S becomes
8(r,0) = Zir(sinh + — 7 cosh 7) =+ a4 r<a. (48)
Now 7 is defined by

7 = cosh™ (%) r<a. (49)
The corresponding 6 independent solutions of (5) for A(r,0) are the same as
those found before. By using these solutions, all of our results could have been
derived. Of course, these considerations apply only to separable problems,
whereas the previous method is not restricted to such cases.

5. THE ELLIPSE
As a second example let us consider a plane domain D bounded by an ellipse
with foci on the x axis at &+ = =¢/2. In elliptic coordinates the equation of the
ellipse is u = R, (see Fig. 7). The elliptic coordinates u and ¢ are related to
Cartesian coordinates by

xz = _ cosh u cos @, (50)

¢

2

= % sinh 4 sin 4. (51)

The curves p = constant and # = constant are respectively confocal ellipses
and hyperbolas.

If we consider a ray tangent to the ellipse u = ps, 0 < po < Ry, then all the

rays resulting from it by successive reflection at the boundary are also tangent

8 = const,

k=R,

F1g. 7. The elliptic coordinate system. The lines u = constant are confocal ellipses and
the lines # = constant are arms of confocal hyperbolas. The ellipse p = R, is the boundary
of the domain.
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F1a. 8. Two congruences of rays in an elliptic domain. One consists of the outward di-
rected, counterclockwise traveling tangents to the caustic, a confocal ellipse u = uo . The
other consists of the corresponding inward directed tangents. Each congruence fills out the
annular region between the caustic and the boundary.

to the same ellipse. This suggests that we consider all the counter-clockwise
directed tangents to the ellipse 4 = po as rays. As before we consider separately
the inward and outward traveling rays and thus obtain two normal congruences
of rays, each filling out the annulus gy £ u < R, (see Fig. 8). Then N = 2 and
the two annular regions are joined together at their edges to yield a covering
space which is again topologically a torus. Therefore we may apply (21) or (22)
to two independent closed curves on this torus and obtain two equations for k
and uo .

We choose as the first curve the caustic u = o itself and then (21) or (22)
becomes

4k%coshu0E (12’, sech yo) = 2mm m=01-.--. (52)

In (52) m has been used instead of the n of (21) or (22); the m’ in those equa-
tions is zero. The elliptic integral of the second kind in (52) is defined by

E(zx) = f T = 2 sin® )" dr. (53)

As the second curve we choose the path of Fig. 9. This consists in part of the

F16. 9. A closed curve on the toroidal covering space associated with the two ray con-
gruences of Fig. 8. This curve consists of a ray from the caustic to the boundary lying on
one sheet, a reflected ray from the boundary to the caustic on the other sheet, and an are
of the caustic between the two points of tangency.
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two tangents from the point u = Ry, & = 0 on the boundary, to the caustic at
® = Mo,

__ 1 COSh Mo
8 = +cos (cosh Ro>' (54)

The path is completed by an arc of the caustic. It is a property of the ellipse
that the length of such a path is independent of the point on the boundary from
which the tangents are drawn. A straightforward calculation of the length of
this path yields the value of the integral in (21). Then (21) becomes

2k {% sinh Ro(1 — cosh® p sech® Rp)'* — % cosh ug [E (72—'., sech ﬂo)

. _1| cosh wo _ 1
— E (sm l:cosh R0:|’ sech yg)]} = 2 (n + ;).

For the case u = 0 on B, (22) yields (55) with an additional « on the right side.
The first term in the brackets on the left side of (55) is the length of a ray from
the boundary to the point of tangency; the remaining terms give the length of
the caustic from 8 = 0 to one of the points of tangency determined by (54).

Equations (52) and (55) determine one eigenvalue k and the corresponding
value of the parameter u, for each pair of integers m and n. Upon using (52) to
simplify (55) and then taking the ratio of the simplified (55) to (52) we obtain
the following equation for ug

(55)

sinh R, (sech® yg — sech® Ry)'* + E (sin"1 [%}}i;}o] , sech MO)

E(x/2, sech u) (55")
2(n + 1/4)
Tn 2

=1+

The left side of (55’) increases monotonically as o decreases from R, to 0. Thus
(55’) has a solution for po provided that the right side lies between the extreme
values of the function on the left. This occurs only when m and n satisfy the in-
equalities

0 + E (sin™" (sech Ry),1) — I:I — i

IIA

m [sinh2 Ro

n s —
= 2 Lcosh Ry
When (55”) is satisfied, (55’) can be solved for u, and then k can be found
from (52). In this way we have calculated a table of eigenvalues of an elliptic
domain for which cosh By = 2. The values of kc/2, rather than those of & itself,
are shown in Table II for values of m from 1 to 10. The range of n for each value
of m is given by (55”). The eigenvalues determined in this way lie to the lower
left of the heavy zig-zag line in the table. The table also includes the eigenvalues

(55”)
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TABLE II

!
E1GENVALUES (k¢/2)mn AND (kc/2)mn FOR AN BELLIPTIC DOMAIN OF ECCENTRICITY cosh By = 2
wiTH BouNDARY CoONDITIONS u# = 0, AND du/dn = 0, RESPECTIVELY?

K¢/ D

m n=20 1 2 3 4

1 1.127 2.787 3.674 4.560 5.468
2 1.774 4.355 5.933 6.123 7.018
3 2.372 4.283 5.924 6.798 7.681
4 2.967 4.969 7.494 8.362 9.244
5 3.557 5.633 7.420 9.063 9.929
6 4.137 6.286 8.127 10.632 11.497
7 4.713 6.927 8.807 10.573 12.205
8 5.287 7.561 9.478 11.276 13.773
9 5.861 8.188 10.139 11.968 13.714
10 6.427 8.872 10.796 12.647 14.425

(ke)/2mn

m n=0 1 2 3 4

1 2356 3.220 4.121 5.010 5.919
2 2.700 3.927 4.792 5.677 6.569
3 3.380 5.408 6.358 7.238 8.126
4 4.029 5.856 7.069 7.926 8.802
5 4.663 6.549 8.630 9.494 10.367
6 5.323 7.224 9.001 10.210 11.063
7 5.902 7.886 9.702 11.781 12.632
8 6.510 8.542 10.388 12.142 13.352
9 7.115 9.186 11.065 12.850 14.923
10 7.716 9.827 11.733 13.545 15.286

» The entries below the heavy zig-zag lines correspond to solutions with elliptic caustics
and were computed from (52) and (55). Those above the lines correspond to solutions with
hyperbolic caustics and were computed from (90) and (91). For the boundary condition
u = 0, n is replaced by » + 14 in (55) and (91). The eigenvalues (k¢/2)m. and (Icc/2):rm ap-
proximate the (n + 1)st zeroes of Jem or Jo. and of Jen' or Jon', respectively.

of the same domain when the eigenfunction, rather than its normal derivative,
vanishes on the boundary. In this case (55’) and (55”) still hold provided the
14 is changed to 34 on the right side of each. No comparison is made with the
exact eigenvalues because they do not appear to have been tabulated.
Equations (52) and (55) can be simplified and solved explicitly in various
limiting cases. The first is that in which sech Ry , the eccentricity of the bounding
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ellipse, and sech ug, the eccentricity of the caustic, are small. In this case we
have

1
E’(g,sech Mo) =%[1—-1sech2 o + ], (56)
. 1 { cosh ug _ . -1 cosh uo) _ sech® g

E (Sm (cOsh Rg) , sech #o> = s (cosh R 4 (57)

-[sin_l <cosh ,u,o) __cosh o /‘/1 _coshu , :I

cosh R, cosh R, cosh R, )

By using (56) we find that (52) becomes

Igcoshuo=m[l+isech2yo+ ] (58)

We now solve (58) for cosh yo by iteration and obtain

ke 1{keY '
§coshug = ml:l—i—@(irn) + :l (59)

Next we use (56), (57), and (59) in (55). In doing so we also eliminate ¢ by
the relation ¢ cosh By = 2a where 2a is the major axis of the boundary ellipse.
In this way we obtain the following equation for the eigenvalue k:

! sech’ B 1= leatr "
ka 1—-§sec I R ~ g 35 ot ¢

m o fm m2 1/2 m2 —1/2
e (@0 (-] @

sech’ Ry _ 1
— —l—---}—'lr(n-i—;).

To solve (60) we assume that 1 — m’/k’a® > sech® Ry. Then (60) becomes

2 oz __ -1 ﬁ __sectho 2 21l/2
[(ka) m’] m cos (ka) i [(ka) m’" + 61)

=a(n + ¥4).

Equation (61) coincides with (25), the eigenvalue equation for the ecircle, if
the eccentricity sech Ry is zero. Now (61) is valid for ellipses of small eccentricity
provided that sech® Ry < m’/k’a’ and that sech® Ry < 1 — m’/k’a’. Therefore
it will yield eigenvalues differing from those of the circle by small eccentricity
corrections.
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If m < ka, (61) can be solved with the result

_ m , 1 sech® Ry
ka—r<n+2—+;>(l+ 1 )—i— (62)

In this case, the major axis of the caustic ¢ cosh yg is equal to (m/ka)2a and is
thus small compared to the major axis of the boundary ellipse.

On the other hand, if m is nearly equal to ka we define € as in (29) and then
(61) becomes an equation for e. Once it is solved, (29) yields for k the result

1/3 2/3
fca=m+m7[3r<n+%)] +Z—1.sech2R0+--~. (63)
In this case the caustic is very close to the bounding ellipse. The result (63)
holds if the third term on the right side of (63) is small compared to the second
term but large compared to the next omitted term, which is proportional to m™
times the square of the second term. These conditions can be fulfilled only if
sech Ry << 1 and therefore only if m is large.

Another case in which (52) and (55) can be solved approximately is that in
which pg is nearly zero, when the caustic practically coincides with the inter-
focal line. In this case, with the aid of expansions of the elliptic integrals (6)
(52) becomes

2
Icc=mr+icc%°10guo+---. (64)
Before expanding (55) it is convenient to first eliminate E(x/2, sech uo) by

means of (52). Then, upon expanding the resulting equation for small uo, we
obtain

kc cosh Ry = 27 (n + 2@ + i) + 0(w). (65)
The last equation yields for the eigenvalue
m 1
kc=21r<n+2— +(I)sechRo+---. (66)
Now (64) becomes the following equation for ug

uo' log o = 2 — cosh By 4 ---.

1
4
In order that (66) and (67) be valid, the values of n and m must be such that
o , determined by (67), is small. This requires that #n and m be related by

n+;’-‘+ (67)

n=;ﬁ(coshRu—1)—i+---. (68)
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For the boundary condition v = 0 on B, the results (60)—(67) hold when
n + 14 is replaced by n + 34. :

Now that we have seen how to determine o and the eigenvalue k, let us con-
struct the phase function S and the amplitude A of the eigenfunctions. Since
VS is tangent to the caustic, S is equal to arc length along the caustic from some
point on it, say from § = 0. Then we may construct S at any point P outside
the caustic by using (6) with S; equal to the value of S at the point of tangency
of the tangent from the caustic to P and ¢ equal to the length of this tangent.
If ¢ denotes the value of 8 at the point of tangeney, then S, and ¢ are given by

t = < {(cosh ucos 8 — cosh ugcos’)? + (sinh usin @ — sinh o sin 6')*}*  (69)

c
2
6’
S() = % (COSh2 Mo — 0082 0)1/2 db. (70)
0

By the use of an addition formula for elliptic integrals it may be shown (7)
that ¢ can also be written in the form

“ [}
t = % {f (cosh® p — cosh? o) du + j; (cosh? gy — cos? 6)Y2 d } . 7D
' 4

The upper sign in (71) applies if 8 > 6 and the lower sign applies if § < ¢'.
For the outgoing rays we will denote the S function by S, . Then 6 > 6 and
(69), (70) yield for S; = So - ¢ the result, when u > uo,

m [}
Sy = g{f (cosh® p — cosh® wo)*” du + f (cosh® o — cos’ )2 dp } (72)
Bo 0

For the incoming rays we denote S by S;. Then 8 < ¢’ and we obtain for S; =
So — t the result, when u > po,

m ]
S, = fj_f (cosh? u — cosh® uo)* du + f (cosh® go — cos® 9)*? d@} . (73)
2 \L By 9

To determine the amplitude functions A4;(u,8) and A.(x,8), we make use of
(35) which shows that A, and A, are proportional to 2. By using the expression
(69) for ¢ it is possible to show (7) that

£ = (sinh po cosh o) *(cosh® po — cos’ 6)
- (cosh® p — cosh’ wo) (cosh® p sin® 8" + sinh’ ug cos® ¢'). (74)
Consequently, (35) may be written in the form
A(p,8) = Bi(6")(cosh® wo — cos® 8)™*(cosh’ p — cosh® wo) ™%, (75)

As(p,0) = Ba(6”)(cosh® o — cos’ ) *(cosh® p — cosh® po) ™% (76)
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In (75) and (76), 6 and 6” denote the points of tangency with the caustic of
the outgoing and incoming rays through the point (x,8). Since the outgoing rays
are the continuations past the caustic of the incoming rays, it follows from the
discussion following (17) that Bi(6') = ¢ "*By(6’). Furthermore for points on
the boundary, (15) shows that By(8”) = B;(#). These two relations may be
combined to yield

| B(6') | = | Bo(68”) | (77)

Absolute values are used in (77) because the phase variation of the amplitude
has already been taken into account in the consideration of the single-valuedness
condition. In (77) 6” is related to ¢ by the condition that both ¢ and 6” denote
points of tangency of rays from a common point on the boundary. The simplest
solution of the functional Eq. (77) is B: = constant. Therefore we choose

By(8') = Y5e™". (78)

Let us now collect our results for the eigenfunction ». We must insert the
amplitudes given by (75) and (76), and the phases given by (72) and (73) into
the expression (3) for u. Since S, was computed by following a ray backward
from the caustic, the relation B; = ¢ “’B, appropriate to the caustic must also
be used. In this way we obtain for u > po the result

w(ud) = (cosh® o — cos® 8)™"* (cosh® u — cosh? po)™*

ke fo : 2 \1/2 ]
exp I:zf . (cosh® g — cos” 0)"* do (79)

ke [* 2 2 \1/2 T
-cos| = [ (cosh®u — cosh® uo)*du — = |.
2 Jup 4

To obtain an expression for % inside the caustic, where p < wo, we must rede-
termine S and A by utilizing imaginary rays as described in Ref. 5. By the
method of that reference we obtain instead of (79) the following result, which
is valid for p < po :

u(uf) = % (cosh® wy — cos® 8)*(cosh® uo — cosh® )"

]
-exp [z%c f (cosh® gy — cos® §)*? do] (80)
1}

ke [*° 2 2 \172
exp | — ’ (cosh® g — cosh® u)"* du |.

The integrals in (79) and (80) are expressed in terms of standard elliptic inte-
grals by Hqs. (A8), (A35) and (A38) of the Appendix.



EIGENVALUE PROBLEMS 47

-8, 8
m+6, 2m-6,
I I
IO v

F1G. 10. The four ray congruences with hyperbolic caustics in an elliptiec region. The
caustics are the four hyperbolicarms ¢ = 8o , 7 — 8y, 7 + 65,27 — 65 .

For the boundary condition » = 0 on B, exactly the same results, (79) and
(80), are obtained for u.

The preceding construction began with the consideration of a ray tangent to
the ellipse u = po < Ry and the observation that all the rays resulting from it
by successive reflection are tangent to the same ellipse. However if we had chosen
a ray which crosses the line segment joining the focal points of the bounding
ellipse, this ray would not have been tangent to any confocal ellipse. But it
would be tangent to a confocal hyperbola, and all the rays resulting from it by
successive reflections would also be tangent to the same hyperbola. Therefore
we may obtain additional normal congruences of rays by considering all the
tangents to a confocal hyperbola 8 = 6, (see Fig. 10). Then we can construct
additional eigenfunctions by proceeding with these rays just as we did with
the other rays. However, rather than repeat that analysis, we will obtain these
solutions by the alternative method, described in Section 3, which is based upon
the phase functions S. To apply that method we must obtain a family of phase
functions depending upon a number of parameters. For this purpose we must
consider the eiconal equation (4).

In elliptic coordinates (4) becomes

2 2 2
(g-f) + (Z—f) = ch (cosh® u — cos’ 6). (81)
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This equation can be solved by separation of variables if we set
S = U(u) + T(6). (82)
The resulting equations for U and T are
(U +v* — f;cosh2 k=0, (83)

2

(T = v* + Z—COSZG = 0. (84)

In these equations the constant b’ is the separation constant. The case of the
elliptic caustics, considered previously, can be shown to correspond to the case
b > /4. Therefore we now suppose that b < ¢’/4 and define 6, by

2
b= 461- cos’ 6 . (85)

When (85) is used in (83) and (84), the only solutions of these equations are
found to be the following, within additive constants.

Ro
I
¢ [}
T(9) = ii (cos’ 0y — cos’0)'*de 6, <60 < 7 — 6o,
[}
o (87)
= :i:?z—cf (cos® 8 — cos® 6y)"* df 0<0<6,.
L1

By using (86) and (87) in (82) with the various choices of sign, we can con-
struet four phase functions S;. In the region 6p < 6 £ & — 8, they are

Ro
Si(uf) = —83(uf) = écf (GOShz,u — cos’ 00)1/2 du
m
0 (88)
¢ 2 __ 2 o\1/2
+2f00 (cos’® 8y — cos’ 6)'* db

Ep
Sy(u8) = —8u(up) = gf (cosh® u — cos® 6)" du
P
o (89)
—f% [o (cos® 8o — cos® 6)" dp.
0
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In the region v 4 6 < 6 = — 6, we find by continuity that

27

Ro
f (cosh® u — cos® 6,)" du
u

Siud) = —Sulud) = —5
Ro 2r—-8g (88’)
+ 2 %f (cosh® 4 — cos® 6)% du + gf (cos® 8y — cos® 6)' de,
0 ]
Ro
Sao(pf) = —8Si(uf) = —%f (cosh? u — cos® )" du
’ (89")

Rg 2x—f
+ 2% [ (cosh® u — cos® 6)* du — —;/9 (cos’ 8y — cos’ 8)2 dg.
v Q

From these equations we see that S; = Syand S; = Syat 8 = Gand 6 = 27 —
f,.Also Sy = Ssand S; = S;at u = Ryfor 6y £ 8 £ 7 — 6. Now we consider
four replicas of theregion 0 S u S Ry, S0 S a7 — b, 7+ 6 < 6 < 27 —
6o , and define a function 8 which is equal to S; on replica 7. We join the edges
of these replicas in such a way that VS is continuous at the caustics and that S
is continuous at the boundary u = R, 6p £ 0 < 7 — 6. Thus sheet one is joined
to sheet two and sheet three to sheet four at 6 = 6y, # — 6o, m 4+ 6 and 27 —
8, . At p = R, sheet one is joined to sheet four and sheet two to sheet three. The
resulting surface, on which VS is single valued, is topologically a torus. Since
there are two independent closed curves on the torus, and since we have a one
parameter () family of S functions, we can impose the two conditions (21)
or (22) to determine k and 6, .

As the first curve to be used in (21) or (22) we choose one having u = con-
stant and on which 8 increases from 6, to 7 — 6, on sheet one and then decreases
from ® — 6 to 8 on sheet two. For the second curve we set § = 6, and let
decrease from Ry to 0 and then increase from 0 to R, on sheet one, along 6 =
27 — 6, . Then on sheet four we follow the same path in the reverse direction.
The first curve crosses two caustics so for it m’ = 2. The second does not cross
any caustic so for it m’ = 0. When (21) is applied to these two curves, with S
given by (88) and (89), the results are easily seen to be

{2
4%[ (cos’ 6, — cos’ 6)? do = 21r<m + %) m=0,1,---, (90)
8

0
ke [Fo 2 2 212 _ —
45 (cosh® u — cos @) du = 27n n=12---. (91)
0

In (90) we have denoted the integer n of (21) by m. Equations (90) and (91)
determine the eigenvalue & and the constant 6, for each pair of integers m and
.
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The integrals in (90) and (91) can be expressed in terms of elliptic integrals
as is shown in (A15) and (A26). The elliptic integral B in these equations is
defined below (A12). When (90) and (91) are expressed in terms of B, the ratio
of these two equations yields the following equation for 6 :

sec 6 sinh R (sec® 8, — sech® Ry)*® 4+ B (sin™* (sech Ry), cos 6)
B(7/2, cos 6)

(91)
n
SltaTn
As 8 increases from 0 to w/2, the left side of (91’) increases monotonieally from
its minimum to infinity. Therefore (91’) has a solution for 8; only when the
right side exceeds the minimum of the left side. This occurs only if m and n
satisfy the inequality

. 2
n = (m + %) [i—?sih% + B (sin *(sech Ry), 1) — 1]. (91”)

When (91”) is satisfied, (91’) can be solved for 6, and then % can be deter-
mined from (90). This is the way in which we calculated the eigenvalues which
are shown to the upper right of the zig-zag line in Table II. The values of n
shown in the table are not the values which were used in (91’) to calculate the
eigenvalues. The calculations were made with the first few values of n satisfying
(91”). Then the eigenvalues were entered in the table immediately following the
largest eigenvalue determined, for the same m, from solutions with elliptic caus-
tics. This is not unexpected since there is no necessary relation between the
integers n in (90) and in (55).

Equations (90) and (91) for k and 6 can be simplified and solved approxi-
mately if 8 is nearly equal to w/2. In this case, by making use of expansions of
the elliptic integrals (6), we can simplify these equations to

kc[cos20o+écos400+ ~--:|=4(m+%), (92)

ke [sinh Ro — cos’ 6, (‘toa,n_1 & — Z) + ] = nr. (93)

These equations yield
ke = —o— + (4m + 2) I:tan_l e — I:l + .-, (94)

" sinh R, sinh R, 4
cos® G, = 4mn:- 2 sinh Ry + ---. (95)

These results are valid only if n and m are such that the right side of (95) is
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small. The result (94) fork can be rewritten in terms of b = (¢/2) sinh Ry, the
semiminor axis of the bounding ellipse, in the form

k2 = nr+ (4m + 2) I:tarf1 e — z:l 4+ e (96)
If only the first term on the right is retained, this equation requires the wave-
length A = 2#/k to be equal to 4b/n. Thus an integral number of half wavelengths
must fit into the minor axis. This is to be expected for a wave which is bounecing
back and forth between two parallel surfaces a distance 2b apart. This is the case
here since the rays are confined to a narrow strip around the minor axis.
It is also possible to solve Eqs. (90) and (91) approximately for k and 6
when 6, is nearly equal to zero. By again making use of the expansions of elliptic
integrals (6, 8) we may reduce these equations to the simpler forms

1., 4 1 B 1
kc{l—ism 00<logsin00+§)+-~}—1r<m+§>, 97)
sin® 00< 4 1 cosh Ry + 1)

5 U e "2 o =) Ty =™ (98)

Now we can combine these equations to obtain

ke {cosh Ry —1+4

1
_ 1 T(n + m + 5) . 3
kccosh Ry == (n + m+ Q) + 2 oosh By sin 6y (99)
cosh Ry + 1
'[1 + log cosh By — 1:| T
1 2 = — ———————————————— . s
sin” g <log S0 0, + Q) =2i1 — cosh Ry + . (100)

L (n-}-m-i-é)

To first order in sin’ 8, the result for the eigenvalue k may be written in terms
of the semimajor axis of the ellipse a = (¢/2)cosh Ry as

k-2a = x(n + m + 14) + O(sin’ 6,). (101)

For (99)~(101) to be valid, n and m must be such that sin® 6 as determined by
(100) is small, This requires-that n and m be related by

n = (cosh Ry — 1)(m + 14) + ... (102)

The rays in this case fill up the entire ellipse except for two thin strips which
extend along the major axis from the foci to the boundary. In the case of the
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elliptic caustics with uo ~ 0, the rays fill up the entire ellipse except for a thin
strip surrounding the interfocal line.

Now that & and 6, have been determined, let us determine the amplitudes A
by using (5). When any one of the four functions S; given by (88) and (89)
is inserted into (5), the same equation is obtained for 4;, namely

2 (cos® 6y — cos’ 6)** %% + 2 (cosh® p — cos’ 6p)'* ==

+ Al(cos’ 8 — cos’8) ™ sin 6 cos 8 (103)

+ (cosh® u — cos’ 6,)* sinh & cosh u) = 0.

This equation can be solved by separation of variables if we set A = B(6)D(u).
The separated equations are

2B’/B + sin 6 cos 8 (cos’ 6o — cos’6) ™" = g, (104)
2D'/D — sinh u cosh p(cosh® u — cos’ 6)) ™ = —B. (105)

In these equations 8 is the separation constant. The solutions of (104) and (105)
are

&
B:(8) = B, (cos’ 8y — cos’ §)* exp[g f (cos’ 6y — cos’ 6) ™ do], (106)

R»
Di() = D, (cosh® u — cos® )™ expl:gf (cosh® u — cos® 8y) ™" du:l. (107)

The four solutions for A4; are thus found to be

Aup) = A/ (cos’ 8, — cos’ 8) ™ (cosh® p — cos” ) ~*
g 2 2, \—1/2 8 2 2 o\ —1i2
exp| 5 (cosh® u — cos” 6y) "“du |exp 5 (cos“ 8 — cos“ )" du |.

We find that the A; differ from each other only by the constant factors A..
From (15) it follows that A, = A4 and 4y’ = A;’. Now from the relation be-
tween the A’s at a caustic, it follows that |4, | = |4 | = |4 | = |4/ |
For simplicity, we will set | 4/ | = 4.

To determine the constant 8 in (108) we could employ the method explained
in Section 3. However, instead we will make use of the following simpler method
which is convenient in separable problems such as the present one. This method,
based upon flux conservation, was given by Landauer (2, 3). In the present case
conservation requires that the total flux carried by the outgoing wave across
any eurve g = constant must be independent of p:

(108)

y{Af(y,ﬂ)VS,--n do = constant. (109)
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In (109) n denotes the unit normal to the curve u = constant and de denotes
the element of arc length along this curve. Upon using (108) for A; and (88)
for S;, we find from (109)

') 27
—% (D;")? exp[ﬂf (cosh® u — cos® )2 dy,]f B2(6) d6 = constant. (110)
0

From (110) we see at once that 8 = 0. Therefore (108) becomes
Aip,8) = A/(cos 8, — cos’ 8)™* (cosh® p — cos® ;)% (111)

We must now determine the phases of the A,/. To do so we examine the four
normal congruences of rays and see how they match up at the boundary and
on the caustics. This examination shows that the A’ must satisfy the relations
Ay = Ay, A = A/, AY = ¢ 7?4 and A = ¢ Ay, If we now set 4y =
14¢"™"* we have

Af = A = Y AY = A = e (112)

We may now combine our results to find u. Using (3) for u, with the S; given
by (88) and (89) and the 4, given by (111) and (112), we obtain for 6, < 6 <
T — 00

u(up) = (cos’ 6y — cos’ 6)* (cosh® u — cos® 6)~*

ke [®0 2 2, \12
-cos | — (cosh® 1 — cos” 6,)"* du

2 Ju (113)
ke s 2 2 A\1/2 T
-cos| = | (cos" 8y — cos“8)""de — = |.
2 Jo, 4
By making use of (91), this result may be rewritten in the form
u(ud) = (cos’ 6 — cos’ 8)* (cosh® u — cos® 6,)~/*
ke f a 2 2, \1/2 nw
oS [E i (cosh® p — cos’ 6,)* du - (114)
ke s 2 2 \1/2 ™
ccos| — [ (cos" 8y — cos” 0)"“do — = |.
2 Joy 4

For 4 in the interval —6y < # < 8, we can construct ¥ by making use of imagi-
nary rays. Since this construction is the same as in the previous cases, we will
just state the result, which is

u(p,g) = % (cos’ 8 — cos’ 6p)"V*(cosh® u — cos® 6,)~*

F
- COS [kch (cosh® u — cos® 6)* du — ’%r:l (115)
0

ke [ 2 2 o \12
exp | —5 | (cos” 0 — cos” 8,)"*dg|.
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We have now completed the determination of the eigenvalues and eigenfune-
tions for the elliptic domain by the present method. For comparison, let us now
examine the exact eigenfunctions for this domain. In the notation of Morse and
Feshbach (9), which is also explained in the Appendix, these eigenfunctions are

il

U

CeJe, (lfzf , cosh p,> Sen (_kz_c , COS 0) , (116)

u = CoJon, <Ii26~ , cosh u) So,, (l%c , COS 0) . (117)
In these equations, Ce and Co are constants, Se,, and So,, are the even and odd
Mathieu functions, respectively, and Je,, , Jo, are the radial even and odd Ma-
thieu functions of the first kind. For each integer m the eigenvalue k is de-
termined by the boundary condition (2) which yields

Je, (%c,cosh Ro> =0 for (116),3—1: = Oon B, (118)
’ ke ou
Jo,, 5 ,ecosh By) =0 for (117),5 =QonB. (119)

The asymptotic forms of (116)-(119) for ke¢/2 large can be obtained by
utilizing the asymptotic formulas for the S and J functions, which are derived
in the Appendix. If we use (A6) for Se, and (A30), (A33) for Je, with A =
L4ke, (116) becomes

—1/4 —1/4

u ~ Cede sinh u, (cosh® wo — cos® 8)™* (cosh® uy — cosh® u)

ke f" ) 2 gy :I
cos [5 | (cosh” wo — cos™ )" df (120)

m
-cosh I:%f (cosh® o — cosh2u)”2du:|, 0= u<u.
0

Ko
u ~ Cede sinh u exp [% f (cosh? o — cosh® )" du:|
1]

- (cosh® uy — cos® 8)™* (cosh® u — cosh® ue)™*
/]
.e08 [IEZE f (cosh® uy — cos® §)* d0:| (121)
1]

B
-cos [kz_cf (cosh® u — cosh® wo)"?du — Z]’ w< u=R.
Bo

‘The constant ue in (120) and (121) is related to ke/2 and to m by (A9)

™

ke cosh uoF <§ , sech p.o) = mn m=20,1,2-.-. (122)
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From (A33) and (A35), the boundary condition (118) becomes

. cosh® uo \'/* T
ke [smh Ry <1 - m) — cosh g ( F 5 sech uo

.1 cosh _ 1 _ L
— E (sm cosh By’ sech uo)}:l = (n + Z) 2. n=20,1,2, .

The eigenvalue equations (122) and (123) coineide precisely with (52) and (55).
If we consider (117) and use (A7) for So, and (A31), (A34) for Jo,, we
obtain

(123)

2
u ~ Codo <k_2c> (sinh uo) *(cosh® g — cos® 8)™*(cosh® py — cosh® u)~*
. [ke [° 2 2 \1/2
‘sinf (cosh” uo — cos 9)""* do (124)
0

.| ke [* 2 2 12
-sinh 3 (cosh” oy — cosh® )" du
0

AT 1 ke [*° 2 2 \1/2
u ~ Codg (k—c> (sinh po)™ exp[—2— fo (cosh® uy — cosh® u)Y dp,]

- (cosh® ug — cos® 6)™* (cosh® u — cosh® wo)

6 (125)
.sin[@ f (cosh® gy — cos® §)2 d0:|
2 Jo

m

-coslil—cgf (cosh® p — cosh® uo)"* du — 7—r:| o < u £ Ry,
2 Ju, 4

The boundary condition (119) again yields (123). Thus, uo and k are determined

by (122) and (123), as for the case of solution (116).

The asymptotic form of the sum of the two solutions, (115) and (116), is given
by (120) plus (124) for 0 £ u < po, and by (121) plus (125) forue < u £ R, .
These can be made to coincide with (80) and (79), respectively, provided Ce
and Co are chosen such that

o »
Cede sinh po expl:%c f (cosh® g — cosh® p)Y* dy] =1 (126)
0

2 By

Codo(sinh uo)™* <I%) exp[% f (cosh® u — cosh® u)** d,u.:l = 4. (127)

0 :

In addition, the exponentially small terms in (120) and (124) must be neg-
lected. With this same choice of constants, the difference between the asymptotic
forms of the two solutions also coincides with (79) and (80) with 8 replaced by
— 6. Thus in the case of the elliptic caustic, the two solutions given by our method,
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corresponding to clockwise and counterclockwise traveling rays, respectively,
coincide precisely with the asymptotic forms of the exact solutions. It is to be
noted that each eigenvalue is doubly degenerate within the accuracy of our re-
sults.

Now let us expand (116) again, using (A10) or (A13) for Se, and (A24) for
Jen . This yields

u ~ CeAe sin 6o(cos’ 8 — cos’ 8,) "* (cosh® u — cos® 6)™*

ke [°
.cosh[:_z_fo (cos2 6 — cos’ 90)1/2 da] (128)

»
-cos[%cf (cosh® u — cos’ 6,)"* dp.] , 0=6<6.
0

u ~ Cede sin 8,(cos” 8, — cos’ 8)™* (cosh® u — cos’ ) *

ke [% 2 2 N2

exp| 5 (cos” 8 — cos” 8y) " db
0

(129)

']
-cos[’gE (cos® 8 — cos’ 6)"* do — 1r/4:|
o

m
-cosl:k—zc/ (cosh® & — cos” 6,)"? du:I, 6 < 0 < w/2
0

For other values of # the asymptotic form of % can be found from (128) and
(129) by the evenness and periodicity of the Se function.
The constant 6y in (128) and (129) is related to ke¢/2 and m by (A20), which
is
ke cos® 8o B(w/2, cos 6) = (m + )« m=20,1,---. (130)
The boundary condition (118) is, from (A24) and (A26),
ke{sinh Ro(1 — cos® 6y sech® Ro)"* — cos® 6[B(x/2, cos )

- (131)
— B(sin™ (sech Ry), cos 8,)]} = 2n'x n =12 ..

The equations (130) and (131) which determine 6, and the eigenvalue & coin-
cide with (90) and (91) when in (91) we set n = 2n'. When n is even, the
asymptotic forms of the solution given by (128) and (129) coincide with (115)
and (114), respectively, provided we choose Ce such that

0o
CeAe sin 6, exp l:%c (cos® § — cos’ 6)"? do] = (=1)""? n even. (132)
Jo

In obtaining (132), the exponentially small term in (128) was neglected.
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The solution (117) becomes, when (All) and (Al4) are used for So. and
(A25) for Jo, ,

2
u ~ CoAo <E2é) (sin 6,) " (cos’ @ — cos® 6) * (cosh® u — cos® 6,)*
. kc s 2 2 1/2
-sinh 3 (cos” 8 — cos 6,)"" dé (133)
0

°
.sinl:%cf (cosh® u — cos’ 6)"* dp], 0<0<6,.
0

2
u ~ CoAo (k%) (sin 86) " (cos® o — cos® 6)™* (cosh® p — cos® 6,)

kC %o 2 2 1/2
‘exp| (cos® 6 — cos 6)'" do
1]
) (134)
-cos[’g (cos’ 8, — cos’ 8)* do — r/4:|
6o
. kc # 2 2 1/2
sin| = (cosh® u — cos 6y) " du B <0< w/2
0

The constant 8 is still given by (130). The boundary condition (119) now be-
comes, with the aid of (A25) and (A26), the same as (131) with 2»’ 4+ 1 in
place of 2n/ on the right side. This equation coincides with (91) when in (91)
we set n = 2n' 4+ 1. When n is odd, the asymptotic forms (133) and (134) of
the solution coincide with (115) and (114), respectively, if we neglect the ex-
ponentially small terms and choose for Co the value given by

A -1 ke % 2 2 . \1/2
CoAo | =) (sin 6)" exp| = (cos® 8 — cos 6)"'" db
ke 2 Jo

(n-1/2
= (=1)"V72 n odd.
6. THE RECTANGLE AND EQUILATERAL TRIANGLE

(135)

Let, the domain D be a rectangle. If we consider a ray which makes an angle
a # 0, m/2 with one of the sides, we find that it and all the rays which arise from
it by successive reflections are of one of four types. All the rays of each type are
parallel to each other. This suggests that we introduce four normal congruences
of rays, each consisting of all lines parallel to one of these four directions. One
of these directions makes the angle « with one of the sides, and the other three
directions are determined by the law of reflection. Thus we have a one parameter
family of sets of normal congrueneces, a being the parameter. To each congruence
we assign a replica of the domain D (Fig. 11) and from these replicas we construct
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F1a. 11. Four replicas of the rectangular domain and four congruences of rays

the covering space by matching edges in accordance with the law of reflection.
Thus when a ray of congruence I hits side b, a ray of congruence II is produced.
Therefore side I b must be joined to side II b. Likewise I ¢ must be joined to
IV c. Proceeding in this way, we find that the resulting covering space is topo-
logically a torus: replica pairs (I, II) and (III, IV) each join at edges b and d
while pairs (I, IV) and (II, III) each join at edges a and c. (See Fig. 12).
When we apply (21) to two nonequivalent paths on this space, we obtain
equations for the eigenvalues and the corresponding values of the parameter a.

Fi1c. 12. The covering space for the rays in the rectangular domain is equivalent to that
obtained by joining together at their edges these two annular regions. Each annulus is ob-
tained by joining together two replicas of the rectangular domain.
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Fic. 13. (A) A ray which makes the angle « with side a of an equilateral triangle yields,
upon successive reflections, rays having just six different directions. (B) The six replicas
of the equilateral triangle I appropriately joined at their edges. One ray congruence cor-
responds to each triangle. The directions of these congruences are indicated by the sample
ray shown. The covering space is obtained by joining the edge pairs (Ia,1Va), (I1le,VIe),
(Ib,IIIb), and (IVb,VIb). This space is topologically a torus.

The four phase funections are then found to be linear functions of the coordinates
z and ¥, and the four amplitudes are found to be equal and constant. The result-
ing eigenfunctions, as well as the eigenvalues, are the exact solutions in this case.
The special casesa = 0; and &« = x/2 correspond to solutions consisting of
just two normal congruences each, and each covering space is topologically a
cylinder. There is just one independent closed path on this space, and when (21)
is applied to it, it yields an equation for k, since « is already known. Again the
exact solution of the problem is obtained. Since the calculations are simple and
similar to those already presented, and since the results are well known, there is
no point in describing this example any further.

Now let us consider a domain D which is an equilateral triangle. If we follow
a ray which makes the angle a with one of the sides, we find that successive re-
flections generate rays which have only six different directions® (See Fig. 13A.)
This suggests that we introduce six normal congruences of rays, each consisting
of all the lines parallel to one of these six directions. When we join the edges of
the six corresponding replicas in accordance with the law of reflection, we again
obtain g torus for the covering space. (See Fig. 13B.) Application of (21) to two
paths on this space yields equations for & and a. The six phase functions are

% This may be seen by covering the plane with successive reflections of the original tri-
angle. A ray plus its successive refleetions is then just a straight line in the plane. There are
only five kinds of differently oriented triangles in the plane which cannot be obtained from
the original triangle by a translation, but which require an additional reflection and/or
rotation. The six ray segments in the six essentially nonequivalent triangles give rise to
the six different ray directions when they are brought back to the original triangle.
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again found to be linear in z and y, and the six amplitudes are equal and con-
stant. As for the rectangle, the eigenfunctions and eigenvalues constructed by
this method are the exact solutions of the problem. For the same reasons given
above, it is unnecessary to describe these results any further.

7. AN ARBITRARY CONVEX REGION

Let us now consider a convex plane domain D bounded by a smooth closed
curve B. Let us suppose that within D we can find a one parameter family of
smooth closed curves C'(«) depending upon a parameter & and having the fol-
lowing property: Any tangent to C' goes into another tangent to C' upon reflection
at the boundary B. Then we can consider all the outward and counterclockwise
directed tangents to C as a normal congruence of rays, and the inward counter-
clockwise directed tangents as another normal congruence. The outward travel-
ing rays go info the inward traveling ones upon reflection at B, and the inward
travelling rays go into the outward traveling ones at C, which is a caustic for
both congruences. The annular region between C and B is doubly covered by
rays, and the corresponding covering space for VS is the torus obtained by join-
ing two replicas of this annulus at their edges. Since there are two independent
closed paths on the torus, and we have a one parameter family of curves C(a),
and therefore of congruences of rays, we can apply (21) to each of two independ-
ent curves. The two resulting equations will determine the eigenvalues k and the
corresponding values of the parameter «.

As one of the two paths we choose the caustic C. For this path m’ = 0, and if
L denotes the length of C, then (21) becomes, with m in place of n,

kL = 27m m=1,2 ---. (136)

For the other path we choose a ray from C to B, together with the corresponding
reflected ray from B to C, and the shorter arc of C between the two points of
tangency of these two rays. (See Fig. 9.) Let o denote the length of this arc and
i, and ¢, the lengths of the rays. For this path m’ = 1 so (21) becomes

The length of this path, & 4 ¢t — o, is independent of the particular rays con-
sidered (10).*

The preceding considerations are similar to those we employed in the cases
of the circular and elliptical domains. In those cases the curves C'(«) were con-
centric circles and confocal ellipses, respectively. For an arbitrary convex do-

¢ This fact enables us to draw B by a string construction once C is given (Ref. 10, pp.
453, 458) . For this purpose we require a closed loop of string of length ¢; 4+ ¢; + L — & which
we wrap around C and draw out taut. Then the string consists of two tangents to C and
the longer arc of C. The point at which the tangents meet lies on B. If we place a pencil
point at this place and move it around C, we can draw B.
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main no method is known for finding the curves C'(a). In fact, there is some doubt
about whether any such curves exist for nonelliptical domains (10). Neverthe-
less if we assume that they do exist, we can determine approximately those which
lie close to the boundary B. This construction is essentially that given by
Birkhoff (71) in connection with the “billiard-ball problem”, which is mathe-
matically equivalent to that of finding normal congruences of rays.

Let 7 denote arclength along B, let a(7) denote the radius of curvature of B,
and let p(7) denote the distance from B to € along the normal to B. We must
determine p(7) in such a way that C has the properties described above. When
C is sufficiently close to B, the radius of curvature of C at any point is nearly
equal to that of B at the corresponding point. Then we find that & ~ & ~ (2ap)"?
and ¢ & 2a¢ tan"'(#;/a). The constancy of & + f» — o now yields

2(2ap)"? — 20 tan"(2p/a)'? = 4a. (138)

This is the equation of the curve C'(a) since, for each value of the constant a,
it determines the function p(7). Upon solving for p(7), we obtain

o(7) = %a'?(7). (139)

Now that the curves C'(a) have been determined, we can apply (136) and
(137) to determine k and «. Upon making use of (138), (137) yields at once

ka = w(n + 1) n=20,1,---. (140)
To apply (136) we must compute L which is given by

L bog — pd 2/3 Lo —2/3
= T = Lo—a a (T) dT+ ctc. (141)
0 0

a

Here L, is the length of B. When this value of L and the above value of « are
used in (136), it yields

2/8 pLo
2rm = kL, — k'* I:r (n + 1>] f a (1) dr
4 0 (142)

+ ...’m= 1,2’ PP
After solving for k, we find

1/3 2/3 Lg
= ) T ) e o

If only the first term in this expression for k is retained, then this condition re-
quires that A = Ly/m, where A = 2x/k is the wavelength of the wave motion.
The eigenfunctions whose eigenvalues have just been found are practically
zero everywhere inside the caustic C'(a). This could be seen by utilizing complex
rays to construct them. They would be found to decay exponentially with & and
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with distance from the caustic. Therefore these eigenfunctions are essentially
different from zero only in the thin strip between C and B. Consequently they
account for the “whispering gallery’” phenomenon of acoustics in which a per-
son who speaks near the wall of a convex room ean be heard across the room near
the wall, but not in the interior of the room. Therefore we call these solutions the
whispering gallery modes (see Fig. 14). They generalize the corresponding results
for a circular room (see Section 4) and for an elliptic room (see Section 6). Me-
chanically these solutions describe a particle sliding along the wall, or bouncing
along it and always staying very close to it. Although we could now construct
the eigenfunctions in the thin strip near the boundary, we will not do so.
Another set of eigenfunctions can be found for a convex domain. These are
analogous to those solutions for the ellipse which have hyperbolic caustics. Me-
chanically they describe a particle bouncing back and forth between two points
on the wall, along a diameter which is perpendicular to the boundary at both its
ends. In order that such a motion be stable, the diameter must be the minimum
diameter of the domain. The eigenfunctions differ essentially from zero only in
a thin strip around this diameter, and the strip is bounded by two eaustic curves
Cy and C» (see Fig. 15). To find these solutions we must find a one-parameter

A

Fie. 14. The “whispering gallery’’ modes of an arbitrary convex region are essentially
different from zero only in the shaded thin strip lying next to the boundary.

Fia. 15. The “bouncing ball”’ modes of an arbitrary convex region are essentially differ-
ent from zero only in the shaded thin strip surrounding the minimum diameter of the do-
main.
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set of pairs of curves C1(a) and Csy(a), such that every tangent to C; goes into a
tangent to C, after one or more reflections at B, and vice-versa. Then we can
define four normal congruences of rays. These rays are the tangents, or rather
half-tangents, to C; and C,. In general, it is necessary to extend C; and C; out-
side of D and to include as rays the tangents to these extensions. One congruence
consists of the half-tangents which terminate on C, or C; and are directed from
one side of the domain to the other—say upward. Another congruence consists
of the half-tangents whieh originate on C; orC, and arealso directed upward. The
other two congruences consist of the corresponding downward directed half-
tangents (see Fig. 10). Corresponding to these four congruences of rays, we
consider four replicas of the “curvilinear rectangle’” bounded by B, C;, and C,.
Upon joining their edges appropriately we obtain a torus. Then the two condi-
tions (21) yield equations for k and «. Rather than carry out this construction,
we will just state the leading term in the result for the eigenvalue. It depends only
upon the length L; of the minimum diameter of D, and is

k=7r_ﬁ+ n=1,2,"'. (144)
L,

8. THE SPHERE

Let us now take for D the interior of the three-dimensional sphere of radius a.
If we consider a ray which is tangent to some concentric sphere of radius ao,
then all the rays which arise from it by successive reflection will be tangent to
the same sphere. Furthermore all these rays lie in the plane containing the origi-
nal ray and the center. This suggests that we introduce normal congruences of
rays as follows. We choose a radius a0, an angle 6; and a line through the center
of the sphere, which we will call the polar axis. We consider any plane through
the center whose normal makes the angle (7/2) — 6 with the axis. In this plane
we consider four congruences of rays, the four sets of half-tangents to the circle
r = ap in which the plane intersects the sphere of radius a; . These tangents may
travel either inward or outward and clockwise or counterclockwise. Since two
such planes pass through any point whose 6 coordinate satisfies 8y < 6 < 7 — 6,
there are eight rays through each such point, provided ay < r < a. Thus we have
defined eight normal congruences of rays which depend upon the two parameters
ao and 0, , as well as upon the choice of the polar axis. The sphere r = ay and
the cones § = 6, and § = m — 6 are the caustic surfaces of all these congruences.

Each congruence fills out the region ay £ r = a, 6 S 0 =7 — Ghand 0 £ ¢ <
2r. When we match up the eight replicas of this region to obtain the covering
space, we find that it consists of two disjoint parts. The replicas belonging to the
four congruences of rays which travel in the direction of increasing ¢ combine to
form one space, and the four replicas associated with the direction of decreasing
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¢ form another. Each of these spaces is topologically equivalent to the (Cartesian)
product of a torus and a circle. Consequently there are three nonequivalent closed
paths on either of these spaces. We may choose one of them to be the circle
formed by the intersection of the sphere r = ao with the cone § = 8, . The other
two may be chosen in one of the planes introduced before, just as the two paths
were chosen in the case of the circular domain (see Fig. 5). When (21) is applied
to these three paths on either space, it yields

kE(2mao sin 6,) = 27m m=20,1,2-.-., (145)
k[2(a* — a)"® — 2a0 cos(as/a)] = 2x(n + 14) n=0,1,2---, (146)
k(2rao) = 2014+ 1) 1=0,1,2---. (147)

These three equations determine the eigenvalue &k and the two parameters ag
and 8, . From (145) and (147) we see that |m | < L

To determine the eight functions S; we proceed as in the previous examples,
and first determine them on the caustic » = a@o. Then by using (6) we will find
them at points off the caustic. From the way in which the ray congruences were
constructed, it follows that on the caustic r = ao, S; varies as arc length along
any great circle which lies in a plane making the angle (7/2) — 8, with the axis.
Therefore along the equator (8 = »/2), 8; = +asp sin 6, provided that S; = 0
at (a0, v/2, 0). The choice of sign depends upon whether S; corresponds to rays
travelling in the direction of increasing or decreasing values of ¢. To find S; at
any point P; which is on the sphere r = a4 but is not on the equator, we consider
the two great circles through P, lying in planes of the type described above. We
determine the value of S; at the point where either great circle cuts the equator
and add or subtract to it the distance along the great circle from the equator to
P, (see Fig. 16). In this way we obtain four possible values which are

S{(P1) = +as ¢ sinfy £ ap Iicos_1 cosb _ sin 6y cos™" cot 6 ] (148)
cos by cot B
The two choices of sign in (148) are independent.
To find 8; at a point P = (r,0,¢) where ay £ r £ a, we use (6). There are
two rays from the caustic to P, and they both have the length ¢t = (+* — a)".
By considering the location of the point of tangeney of the ray, we find from (6)

that
Si(P) = Si(P) = [(*" — a)® — cos(ao/r)]. (149)
Here P; = (aq, 8,¢) is the projection of P onto the caustic. The last term in (149)
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F1c. 16. The spherical angles necessary to determine the eiconal for a spherical domain
are given by the relations cos v = cos 8 sec §; and cos 8¢ = tan 6 cot 6.

accounts for the difference between S; at Py and at the point of tangency. When
(148) is inserted into (149) we obtain the eight functions S; which are given by

Si(r8,0) = Zaop sin o = ao [cos_1 €086 _ in gy cos™ cot § ]
cos o cot 6,

(150)
+ [(** — a)"* — cos™'(ao/r)].

To determine the amplitudes A ; we consider the tube of rays belonging to any
one congruence and tangent to the caustic » = o in the strip bounded by the
circles 6 and 8 + d@. For simplicity we assume, rather than deduce, that the 4;
are independent of ¢. Upon applying (8) or (9), or the equivalent flux conserva-
tion requirement, to such a tube, we obtain

A, = AN — ag’) V(sin® 6 — sin® 6,) 7% (151)

From the conditions (17) at r = a and from the relation between the 4, at the
caustic, we see that the constants must be equal in magnitude in those four of
(151) which correspond to increasing ¢. Pairwise, their phases are either equal
or differ by —ir/2, according as the corresponding replicas of the domain join
at the boundary or at the caustic. The same remarks apply to the four A; which
correspond to decreasing ¢.

Upon choosing the value for the constant in (151) appropriately, and insert-
ing the four S; from (150) and the corresponding A; from (151) into (3), we
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obtain for v in the range ap < r £ @, 6o < 8 < 7 — 6, the result

2 —1/4 2 —1/4 .
w=r"" l:k2r2 sin® § — 1>2 et
1
- COS [ - ( })2]”2 ( 1) cos " ———l i 2 -
2 2 kr 4
() (5
-¢cos <l -+ §> cos % T
(ERE

m cot 8 T

—1
— m COS 2 M= |
[(+5) -]

In writing (152) we have introduced m from (145). The sign in '™ depends
upon whether we choose the four waves which travel in the direction of increasing
or decreasing ¢. By using complex rays. corresponding expressions for u can be
obtained in the rest of the sphere.

The exact eigenfunctions for this problem are

u = ,(kr)P/"(cos 8)e*™. (153)

If the appropriate asymptotic forms of the spherical Bessel function j,(kr) and
the associated Legendre functions P;"(cos 8) are inserted into (153), the result
coincides exactly with (152) within a numerical factor. The asymptotic form of
the eigenvalue equation j;'(ka) = 0 is identical with (146) when a, is eliminated
from (146) by means of (147).

Some of the calculations and results of this section are the same as those
previously given by Landauer (2, 3). However, he did not consider the eigen-
value problem in a bounded domain but instead considered waves in an un-
bounded region. Consequently, his construction is somewhat more arbitrary
than ours. He relied upon separation of variables to characterize a particular
solution. One of his results is the asymptotic formula referred to above for
P;"(cos 8), which can also be obtained from the differential equation for this
function, but which apparently had not previously been given.

9. SPHERICALLY SYMMETRIC POTENTIALS

As a final illustration of our method, let us consider the Schrodinger equation
for a particle in a spherically symmetric attractive potential V(r). We shall
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write this equation in the form
A 4+ B (rk)u = 0. (154)
Here the index of refraction n(rk) is defined by
n’(rk) = —1 — KV (r). (155)

We wish to determine the energy levels —k* and the corresponding eigenfunctions
u for large values of k. The domain is now all of space. This problem is exactly
of the type considered in Ref. 7. There it was shown that all the procedures which
we have been using are applicable to this problem provided we replace the
straight line rays by the trajectories of a particle of mass m and energy #k*/2m
in the potential #V /2m. We must still find normal congruences of such trajec-
tories, determine the covering space, ete. But now the phase function S, which is
the Hamilton-Jacobi function, satisfies the equation (VS)* = n*(r). Thus
| VS| = n(r), and this must be taken into account in applying (21).

In order to define normal congruences of rays we assume that V(r) is of such
a form that bounded trajectories exist for some range of energies k°. Then for
each k in this range a bounded trajectory will lie between two spheres, a; < r £ a.
Each trajectory is a plane curve, due to the symmetry of V. Therefore we may
apply exactly the same considerations as we did in the preceding section to de-
fine eight normal congruences of rays which depend upon ay , 8 , and k. The radius
a of the outer sphere is determined by @ and k. The covering space is the same
as before. We may choose the same paths as before in applying (21), but we must
use trajectories instead of straight lines in the second path. Then (21) yields

kn(ao)2wao sin 6y = 27m, m=0,1,---, (156)
a 2711/2
2k [ n(r) [1 + 7‘2((}1)] dr — 2kam{ag)m = 2= <n + l),
L dr 2 (157)
n=01"---
kn(ao)2wae = 2n(l + 14), l=10,1,---. (158)

In (157) the final 14 occurs on the right side because the path is tangent to the
inner and outer spheres, both of which are caustics. The angle v is the polar
angle in the plane of the trajectory. The 7 on the left side occurs because it is
the angular separation between points at which r = gy and r = a on a given
trajectory. These equations determine k, a0, and 8, . As before, (156) and (158)
show that |m| < l. To simplify the integral in (157) we use the fact that
dv/dr = £ am(a))[F’n’(r) — ain’(a0)] 2. Then (157) becomes

k f [R*(r) — r 2agn®(a)?dr = = (n + %), n=0,1---. (159)
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To determine the S; we proceed as in the preceding problem. It follows that
the angular dependence of the S; is the same as before. When the correct varia-
tion of S; along a trajectory is included, we obtain

S(P) = S.(P) & [ () — rain*(an)]” dr. (160)

To obtain the amplitudes A; we also proceed as before, noting that the flux is
proportional to (VS Y*A 7 multiplied by the cross-sectional area of a tube of rays.
Then instead of (151) we obtain

A= AP0 — an’(ao)] 7 (sin® @ — sin® o)V (161)

The constants in this equation are found as before. When the four S; and A;
corresponding to trajectories travelling in the direction of increasing values of
¢ are inserted into (3), we obtain for w in the range ao < r < @, 8, < 0 < 7 — 6
the result

u = 10 (r) — a’n’(ae) 7 [sin® 8 — m*(1 + Lg) AR

-cos{fr W (r) — rPagn’(ao)]? dr — 7r/4}

(l + %) cos 8 (162)

[
- COS (l + %) cos* A% NiE
[(l +) - ”‘]
4 m cot § T
— m CO0Ss 1 2 721 — |-
[(+3) -] }

The negative sign in (162) results if the waves corresponding to decreasing values
of ¢ are used. By using imaginary trajectories similar expressions for « can be
obtained in the other regions of the sphere.

The exact eigensolutions of (154) are of the form

u = filrk)P;™(cos 6)eX™. (163)

W

When the appropriate asymptotic forms of fi(r,k) and P;"(cos 6), obtainable
by the WKB method, are inserted into (163), the result coincides with (162).
The asymptotic form of the equation for the eigenvalue coincides with (159).

10. CONCLUSION

We have presented a method for finding the asymptotic solutions of eigenvalue
problems for certain partial differential equations. This method replaces the
problem of solving the partial differential equation by that of finding families of
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solutions of certain ordinary differential equations. In the case of the Schrodinger
equation, the ordinary equations are the classical equations of motion. For the
reduced wave equation, they are the ray equations of geometrical optics. To ob-
tain complete results, complex solutions of these ordinary equations must also
be employved. In the two cases just referred to, this introduces ‘“imaginary me-
chanics” and “imaginary optics”, respectively. In all the examples treated here
which could be solved by other methods, our method gave the same result as the
asymptotic form of the other result. This is a partial verification of our method.
We have also treated the arbitrary convex two-dimensional region, for which no
other method of solution is known, and obtained the “whispering gallery’’ and
“bouncing ball” modes for it. Let us now consider possible additional applica-
tions of our method.

First let us consider the reduced wave equation in a three-dimentional convex
domain. To obtain the analogs of the bouncing ball modes for it, we again con-
sider a minimum diameter of the domain. We can find eigenfunctions which are
essentially different from zero only in a narrow tube around this diameter. For
them the eigenvalues are again given by (144). To obtain the “whispering gal-
lery”’ modes we consider on the boundary the closed geodesic of minimum length
Ly . Again we can find eigenfunctions which are essentially different from zero
only in a narrow tube around this geodesic. The corresponding eigenvalues are
k=2m/Le+ - .

To obtain solutions of the Schrodinger equation for an arbitrary potential,
we begin with a one parameter family of stable periodic classical oribts depending
upon the energy k’. The two cases referred to above are special instances of this
procedure in which all the orbits coincide. Then all trajectories of energy °
which pass near the periodic one of the same energy with nearly the same di-
rection will remain near it. Therefore for each k¥ we can construet normal con-
gruences of such trajectories, each of which will fill up a narrow tube around the
stable orbit, By means of them we can construct eigenfunctions which are es-
sentially different from zero only within such a tube. The first terms of the corre-
sponding eigenvalues are then determined by the condition that a half-integral
number of wavelengths must fit around the original orbit. In applying this con-
dition, the optical length or change in “action” around the path must be used.
Then the condition on % is just (21) with m’ = 0. The integral in (21) is the
optical length L(k) of the motion in the stable orbit with energy %°. Thus the re-
sult for k& becomes kL(k) = 2am.

The reason why a stable orbit was required in this eonstruction is that only
when the orbit is stable will all nearby and nearly parallel trajectories stay near
it. If the criginal periodic orbit is not stable, the nearby trajectories will not stay
near it. From these facts it follows that only the stable classical motions can be
approximated arbitrarily closely for all time by quantum mechanical wave mo-
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tions. This remark, which also applies to nonperiodic motions, accounts for
macroscopic manifestations of quantum mechanical effects, such as the limitation
of the number of bounces of one ping-pong ball on top of another (see Ref. 12).
In such cases the classical motion is unstable, so that the quantum mechanical
fluctuations are capable of changing it.

We could apply our method to problems without stable orbits and to other
problems if we could determine the classical trajectories. In the neighborhood of
a stable orbit they can be found by perturbation methods, using the stable orbit
as the starting point. The difficulty in finding the classical trajectories in general
seems to be the main limitation on the use of our method.

APPENDIX I. ASYMPTOTIC FORMULAS FOR MATHIEU FUNCTIONS

The Mathieu functions Se,(h, cos 8) and So.(h, cos 6) are solutions of the
equation

8” 4+ (b — K cos’ 8)S = 0. (A1)

They satisfy the following conditions
Se(h1) =1, Se'(hl) =0, (A2)
So(h,1) = 0, So'(h,1) = 1. (A3)

It follows from these conditions that Se is an even funection of 6 and So an odd
funetion. The constant b in (Al) is determined by the condition that the solu-
tion Se or So be periodic in ¢ with period 2«. In each case this condition deter-
mines a countable set of values of b which we denote by ben.(h) and bo.,(h),
respectively, where m is a non-negative integer. If b = h* we define o by the
equation

b"* = h cosh po. (A4)
If b < i* we define 6, by the equation
b = h cos 6, . (A5)

We now seek asymptotic formulas for Se and So valid for h large. We will
also permit b to become large by assuming that b is given by (A4) or (A5) with
uo or 0y fixed. In the first case, b = A’, when (A4) holds, (A1) has no turning
point for any real value of 8. Therefore the usual WKB method is immediately
applicable and yields

Se(h, cos 6) ~ (sinh o) (cosh® o — cos” )™

[/
.cos[hf (cosh® g — cos® §)* d()], (46)
0
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So(h, cos 8) ~ k™" (sinh u) ™ (cosh® o — cos® )™
-sin [h foo (cosh® wo — cos’ 6)** da].
The integral in (A6) and (A7) is given by

9
f (cosh® uo — cos’8)*d8 = cosh m{E(% ,sech ,uo) — E(g — 6, sech uq) :| (A8)
0

(A7)

The constant uo , which now plays the role of b, is determined by the requirement
that the solution Se or So be periodic in 8 with period 2. Applying this condition
to (A6) or (A7) leads to the condition

T
é ’
Thus we see that for each value of the integer m, one value of u, is determined
by (A9). Within the accuracy of (A6) and (A7) the same values of ug are found
for both Se and So. It is customary to label the solutions Se, and So, with the
value of the integer m.

In the second case, b < h’, when (A5) applies, (Al) has turning points at
9 = +6+ 2mjand 6 = +(x — 6) + 2#j where j is any integer. Let us first
consider the asymptotic form of Se and So in the interval 0 £ 6 < 8. In this
range the WKB method yields

Se(h, cos ) ~ (sin 60)"* (cos’ 6 — cos” 6o)™'*
[/

-cosh [h f (cos’ 6 — cos® 6,)'* d0:| .
0

So(h, cos ) ~ b~ (sin 80) ™ (cos’ § — cos® o)

4h cosh uoE( sech ﬂo) =m2r m=0,1,---. (A9)

(A10)

e (Al11)
-sinh [h f (cos’ 6 — cos’ 6)"* dﬂ:l .
Q

The integral in (A10) and (All) can be expressed in terms of the elliptic in-
tegral B(z,k) as

]
f (cos® @ — cos’ )% do
0

. (A12)
= sin’ 6B (sin—1 [:]Lo:l , §in 00> , 0=60=6,.

in @
Here B and F, the elliptic integral of the first kind, are defined by

B(zk) = f (1 — K sin®¢) ™ cos’ ¢ dp = kT E(zk) — k(1 — B)F(z k),
Q

Fzk) = fo (1 — K sin® )™ do.
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Now we apply the WKB connection formulas to obtain the asymptotic formu-
las in the range 6 < 6 < m — 6o . In this way we obtain

Se(h, cos ) ~ (sin 8,)"* (cos’ 6y — cos’ 6)

o
‘explihf (cos’ 6 — cos” 65)"* da:l (A13)
0

']
.cos[hf (cos® 8y — cos® 6)"* do — I:I ,
00 4

—1/4

—-1/4

So(h, cos 8) ~ K (sin 60)™* (cos’ 6, — cos’ §)

fo
-expl:h/ (cos’ 8 — cos’ 6)"* do] (A14)

0

8
-cos|:h (cos’ 8, — cos’ 6)"* do — g:l )

b9

The last integral in (A13) and (Al14) is given by

0
f (cos’ 8, — cos” 6)"* do

0

’ (A15)

= cos’ 6| B (E,cos 00> — B sin_1|:00S 6 , COS by ]
2 cos Oy

Let us now impose the condition that Se and So be périodic in 8 with period
2«. This condition will determine the possible values of 8,. To apply this con-
dition it is not necessary to obtain the asymptotic formulas for Se and So in the
interval # — 6, £ 6 = =. In fact the formulas for the interval 0 < 6 £ »/2
suffice for this purpose. This is so because the periodic solutions are either even
or odd about the value 8 = /2, as follows from (1)—(3). Therefore the periodicity
conditions reduce to

Se(h,0) = 0, or Se’(h,0) = 0, (A16)
So(h0) = 0, or So’(h,0) = 0. (A17)

The vanishing of either Se or So yields the same equation, namely

’

hcoszooB(;—r,coseg)—%r:(2m'+1)7§r m =0,1,---. (Al8)

The vanishing of either Se’ or So’ yields the equation

!

= 2m m =0,1,2, ---, (A19)

h cos® 6,B (%r , COS 00> —

Ny

T
4
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Both (A18) and (A19) can be written as the single equation
hcoszli(;B<7—2r,coso9o>=<m—|—%)1§r m=20,1,2 ---. (A20)

This completes our derivation of the asymptotic formulas for Se and So.
We will now consider the solutions Je(h, cosh p) and Jo(h, cosh ) of the
modified Mathieu equation

J” — (b — K cosh® p)J = 0. (A21)

In terms of certain constants Ae and Ao, to be defined later, the initial conditions
can be expressed as
Je(h,1) = Ae, Je'(h,1) = 0, (A22)
Jo(h,1) = 0, Jo'(h,1) = Ao. (A23)

As before, we express b by (A4) or (A5). In the second case (A5), Eq. (A21) has
no turning point. Therefore, for large A, the WKB method yields the following
asymptotic formulas

Je(h, cosh ) ~ Ae(sin 8)"* (cosh® u — cos’ 6)

-COS —h fou (cosh® 4 — cos® 6)"° dy— , (424)
Jo(h, cosh u) ~ Aoh™ (sin g)* (cosh;y — cos? )" )
.sin _h j;u (cosh® u — cos® 6,)"? du.— . (A25)
The integral in (A24) and (A25) is given by
fo“ (cosh® 4 — cos® 6)"? du = sinh u(1 — cos® 6 sech® u)?
(A26)

— cos’ 6 [B (g, cos 00) — B (sin*(sech u), cos 00)].

For large values of g, (A24) and (A25) simplify. If, in addition, cos 6, satisfies
(A20), as in the case of product solutions of the reduced wave equation, (A24)
and (A25) become

Je(h, cosh p)

~ [Ae(h sin 60)"*](h cosh u)™* cosI:h sinh p — (m + %) ul

2], (A27)
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Jo(h, cosh )

(A28)

~ [Ao(h sin 6,)""*|(h cosh u) ™2 sin[h sinh g — (m + %) gJ .
The constants Ae and Ao are defined so that
Ae(h sin 6,)"" = Ao(h sin 6,)™* = 1. (A29)

Next, let us consider the case in which b is given by (A4). Then (A21) has
turning points at g = =y, . First we apply the WKB method when u is in the
interval 0 £ u < pg to obtain

Je(h, cosh u) ~ Ae(sinh u)"*

n (A30)
-(cosh® uy — cosh® u)~* cosh[h fo (cosh® uo — cosh® u)"* du:l,
Jo(h, cosh ) ~ Aoh™" (sinh o) ™*
s (A31)
-(cosh® yp — cosh® )™ sinh[h /0 (cosh® o — cosh® )" du:|.
The integral in (A30) and (A31) is given by
®
fo (cosh® uy — cosh® u)"* du = cosh wo [sinh u(tanh® gy — tanh® x)?
(A32)

2 . =1 tanhu
+ tanh” uD <sm tanh o’ tanh [.L())].
Here D is defined by
Dzk) = f (1 — K sin®¢) ™ sin® ¢ dp = K°Fz ) —k Bz ).
0

Now by applying the WKB connection formulas we obtain, for g > uo, the
formulas

Je(h, cosh p) ~ Ae(sinh )"

B0
(cosh? & — cosh? u)™* exp l:h fo (cosh® uy — cosh® )" du:] (A33)
m
-cos[h[ (cosh® u — cosh® w)? dp — E]’
#o 4
Jo(h, cosh u) ~ Aok *(sinh uo)"*

Ho
-(cosh® u — cosh® yo)™* exp[h ﬁ (cosh® o — cosh® u)"* d,u:I (A34)

m
'cos[hf (cosh® u — cosh® uo)"* du — 17;]
o
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The last integral in (A33) and (A34) is given by

# 2 2 1/2 COSh2 2
f (cosh? u — cosh® 49)"? du = sinh g (1 el
Ko cosh? u

— cosh uo |:E (z—r, sech #o) —F <sin_l cosh ”0, sech wo ) |.
2 cosh u
As before, if u is large and if pq satisfies (A9), the asymptotic formulas (A33) and
(A34) both simplify to

(A35)

J(h, cosh p) ~ (h cosh w) cos[h sinh u — (m + %) g:l A(36)

In (A36) we have utilized the definitions of Ae and Ao, which yield the relations

Mo

Ae(h sinh o) exp l:h f (cosh® uo — cosh® x)"* d,u:l .
0

(A37)

Bo
= Ao(h sinh u) ™" exp [h fo (cosh” uy — cosh® u)"* d,;] =1
For completeness, we include the following integral:
Ho
(cosh® ug — cosh® u)"* du = cosh o l:tanh2 poD <32-r , tanh y,o)
»
(A38)

. - h .
— tanh® poD (sm ! s:rlllh :0 , tanh uo) — sinh p(tanh’ 4 — tanh’ u)”z] .
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