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A method is presented for the construction of asymptotic formulas for the 

large eigenvalues and the corresponding eigenfunctions of boundary value 
problems for partial differential equations. It is an adaptation to bounded 
domains of the method previously devised to deduce the corrected Bohr-Som- 

merfeld quantum conditions. 
When applied to the reduced wave equation in various domains for which the 

exact solutions are known, it yields precisely the asymptotic forms of those 

solutions. In addition it has been applied to an arbitrary convex plane domain 
for which the exact solutions are not known. Two types of solutions have been 
found, called the “whispering gallery” and “bouncing ball” modes. Applica- 
tions have also been made to the Schrijdinger equation. 

1. INTRODUCTION 

Recently a corrected form of the Bohr-Sommerfeld quantum conditions has 
been derived from the Schrodinger equation of quantum mechanics (1). The 
derivation is based upon an analysis of the “classical limit” of the Schrodinger 
wave function. The corrected conditions contain the appropriate quantum num- 
bers, which are usually integral or half-integral, but may be of some other form. 
Furthermore, the corrected conditions are applicable to nonseparable systems, 
for which no such conditions were previously available. Therefore these conditions 
can be used to determine the energy levels of nonseparable systems. Of course, 
they are also applicable to separable systems, for which they yield the usual 
results. 

It is clear from the derivation that these quantum conditions are not limited 
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to problems of quantum mechanics but are applicable to a large class of eigen- 
value problems. By means of them the eigenvalues can be computed. In addition, 
asymptotic expressions for the eigenfunctions can be obtained by the method 
used to derive the quantum conditions. In this paper we illustrate the method 
by applying it to the relatively simple eigenvalue problem associated with the 
wave equa,tion in a bounded domain. This problem corresponds to a variety of 
physical problems: the quantum-mechanical motion of a free particle in a box, 
the motion of sound waves in a room, the vibration of a membrane, etc. 

Our analysis begins with the demonstration that, with slight modification, 
the previous derivation of the corrected quantum conditions can be applied to 
bounded domains. The new quantum conditions derived in this way depend 
upon the boundary conditions at the boundaries of the domain. These conditions 
are then a,pplied to circular, elliptical, rectangular, equilateral, triangular, and 
spherical d.omains. Since the eigenvalue problem can be solved for these domains, 
the present results can be compared with the exact solutions. We find, in every 
case, that the method yields precisely the asymptotic expression for the exact 
eigenvalues and the asymptotic form of the exact eigenfunctions. In this way, 
we obtain new derivations of the asymptotic forms of the Bessel, Mathieu and 
associated Legendre functions. Some of the results concerning Mathieu functions 
appear to be new. Closely related derivations have been given by Landauer (9, 
3). His procedure utilizes separation of variables, which is not necessary in our 
method. 

We also consider a two-dimensional domain with an arbitrary smooth convex 
curve as its boundary. This is an example of a nonseparable problem. For it, we 
find two sets of eigenvalues and their associated eigenfunctions. The eigenfunc- 
tions of one set are asymptotically zero except in a thin layer near the boundary. 
We call these solutions the “whispering gallery” modes because they explain 
the whispering gallery phenomenon of acoustics. The eigenfunctions of the other 
set are asymptotically zero except in a thin strip around the minimum diameter 
of the domain. These solutions might be called the “bouncing ball” modes be- 
cause they correspond to the motion of a ball bouncing back and forth between 
opposite sides of the domain. 

In the last section we discuss the application of our method to the Schrodinger 
equation for a particle in a spherically symmetric potential. Finally, we indicate 
how to use the method for an asymmetric potential. 

2. FORMULATION OF THE METHOD 

Let us consider a solution u of the reduced wave equation 

(A + k*)u = 0. (1) 

This solution is assumed to be defined in a bounded three-dimensional domain 
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D on the boundary B of which it satisfies a homogeneous boundary condition. 
For definiteness we will first consider the vanishing of the normal derivative 

au/av = 0 on B. (2) 

As is well known, Eqs. (1) and (2) have a nontrivial solution only if k has one 
of a special set of values called the eigenvalues of the problem. We propose to 
determine the asymptotic form of the eigenfunction ‘1~ for large values of the 
eigenvalue k. We will also determine the large eigenvalues asymptotically. This 
problem is essentially a special case of that treated in Ref. 1. However in that 
reference only unbounded domains were considered. The present extension of 
the results of that paper to bounded domains is also valid for more general equa- 
tions, but for simplicity we will only consider the reduced wave equation. 

Our analysis is based upon the assumption that asymptotically for large values 
of k, u is of the form 

(3) 

The Sj and Aj are functions of position, and N is an integer. Each term in the 
sum is called a wave. Its phase is Sj and its amplitude is Aj . 

We further assume that each term in (3) satisfies (1) asymptotically. Upon 
inserting (3) into (1) and equating to zero the coefficients of k2 and k we obtain 
for each j, omitting the subscripts, 

(VS)” = 1 (4) 

2vS.vA + AAS = 0. (5) 

Equation (4) is the eiconal equation of geometrical optics, the solution of 
which can be expressed by means of certain straight lines. These straight lines, 
which are the characteristics of (4)) are the rays of geometrical optics. They 
are the orthogonal trajectories of the surfaces S = constant, which are called 
wavefronts or surfaces of constant phase. If t denotes arc length along a ray 
then (4) implies that along the ray S is given by 

s(t) = so f t. (6) 

Here So is the value of S at the point from which t is measured. The ambiguity 
of sign in (6) can be resolved by measuring t positively in the direction in which 
S increases. 

In (5) the only derivative of A which occurs is the directional derivative along 
a ray. If we denote this by dA/dt, then (5) can be rewritten in the form 

2$AAS=O. 
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The solution of (7) is 

A(t) = A0 exp -i l’ AS dt ) = A&$‘. (8) 

The second form of the solution is given in (5). Here A0 is the value of A at 
the point t = 0 on the ray, G(t) is the Gaussian curvature of the wavefront S = 
constant at the point t and G(0) is the corresponding curvature at t = 0. The 
expression (8) for A can be rewritten in the form 

1 
l/2 

A(t) = A,, PlPZ 

bl + t)(Pz + 0 * 
(9) 

In (9) ~1 and ~2 denote the principal radii of curvature of the wavefront at t = 
0. Equation (9) can be interpreted as expressing conservation (say, of energy 
or of probability) within a narrow tube of rays. 

Let us now apply the boundary condition (2) to the solution (3). Upon in- 
serting (3) into (2) and equating to zero the coefficient of k we obtain 

on B. (10) 

We now assume that at every point on the boundary the terms in (lo), for which 
aS,/av # 0, vanish in pairs. By this we mean that for each nonvanishing term, 
say the jth, there is another term, say the j’th, with j f j, such that 

asj ikS. 

-Fve 

aSi’ ‘Aj + - e ikSi!A, = 0 

dV 
1’ on B. (11) 

Physically this assumption corresponds to the hypothesis that each wave or ray 
which hits the boundary gives rise to a reflected wave or ray. The waves for 
which as,/& = 0 are propagating parallel to the boundary and do not give 
rise to reflected waves. Since (11) holds for a range of values of k, it follows that 

sj = SjJ on B. (12) 

From (12) and (4) it follows that (aSj/av)2 = (&Q/av)” on B. Therefore 

on B. (13) 

If the positive sign applies in (13) then it follows that Sj = Sif , not only on 
the boundary but throughout the entire domain D. It also follows from (11) 
that A j =: -A jr on B. This fact and (9) then show that A j = --Air throughout 
D. Then the sum of the two terms Aieiksi and AjTeiksj’ is identically zero through- 
out D. Such trivial pairs of terms will be omitted from (1). Therefore, we may 
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conclude that the minus sign applies in (13). Then from (11) it follows that 
Aj = Ajf on B. Thus we have 

asi - dSj~ -- 
av av on B, (14) 

Aj = Aj, on B. (15) 

Physically, (14) together with ( 12) implies the law of reflection for the reflected 
ray. The second conclusion asserts that at the boundary, the amplitude of the 
reflected wave equals that of the incident wave. 

If the boundary condition (2) is replaced by 

u=o on B, (16) 

an exactly similar analysis shows that (12) and (14) still hold, but (15) is re- 
placed by 

Aj = -Aj, on B. (17) 

The preceding result (9) for the amplitude A j of any wave fails by becoming 
infinite at the two points t = -pl and t = -pz on each ray. These points are 
centers of curvature of the wavefront corresponding to t = 0. The locus of these 
points for a particular wavefront is called the caustic surface corresponding to 
that wavefront. The caustic surface is also the envelope of the rays which are 
normal to the wavefront. It generally consists of two sheets, corresponding to 
the two centers of curvature on each ray. Points at which the two sheets touch 
are called focal points. Thus we see that our results are not valid at a caustic. 

We now assume that each wave which converges to a caustic gives rise to 
another wave which diverges from the caustic. The rays of the diverging wave 
are assumed to be the continuations of those of the converging wave and the 
phase along these rays is assumed to be the continuation of the phase on the 
converging rays. (See Fig. 1.) These two assumptions can also be described by 
stating that the phase Sit of the diverging wave equals the phase Sj of the con- 
verging wave at the caustic. It is known that at a regular point (i.e., not a focal 
point) of a caustic the amplitude Ait of the diverging wave is equal to the am- 
plitude Aj of the converging wave multiplied by the factor e--i*‘2. At a focal 
point the factor is e-“” since a focal point corresponds to a double point of the 
caustic. These facts are all indicated by (9). 

On the basis of the preceding assumptions we see that by following a ray of 
any wave in the direction of increasing 1, we come to a caustic or a boundary. 
In either case, the ray continues as a ray of another wave. A sequence of waves 
is encountered in this manner. Since there are, by assumption, only a finite 
number N of waves in the solution, one of the waves in this sequence must recur. 
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Therefore a ray orthogonal to a given wavefront is ultimately orthogonal to this 
same wavefront again. (See Fig. 2.) But the value of S continually increases as 
a ray is traversed in the positive direction. Therefore, at the second point of 
intersection of the wavefront and the ray, the value of Sj is greater than its 
initial value by the length of the ray between intersections. Since Sj is constant 
on a wavefront, Sj must therefore be multiple valued. The corresponding am- 
plitude A,i may also be multiple valued. 

Since the solution u must be single valued we must require each wave to be 
single valued. If 6Xj denotes the difference between two of the values of Sj then 
the single,-valuedness condition may be written as 

kSSj = 2mj + i6 log Aj j = 1, ***,N. (18) 

Here nj is an integer. 

FIG. 1. Rays of a wave converging on a caustic C and the resulting diverging rays. The 
dashed lines are the converging and diverging wavefronts. 

FIG. 2. A ray orthogonal to a particular wavefront, indicated by the dashed line, is 
shown orthogonal to it again after three reflections from the boundary. 
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In order to examine the consequences of (18) it is convenient to think of the 
various multiple-valued functions Sj as branches of a single function S. To repre- 
sent this function S it is helpful to introduce a certain covering space, i.e., a 
certain multi-sheeted space analogous to the Riemann surfaces of function 
theory. However, it is not necessary to have one sheet for each branch of S. It 
suffices to have one sheet for each of the N distinct branches of VS. The various 
sheets are replicas of the domain D which may be bounded internally by caustics. 
The sheets corresponding to VSj, and VSj, are joined together along that part 
of the caustic or boundary where Sj, = Sj, . These are just the places where the 
wave j, gives rise to the wave j, by reflection or by passing through a caustic. 
Now the function S may be thought of as being defined on this covering space. 
It is not single-valued on this space, but its different branches on any sheet differ 
from each other only by additive constants. We also consider the Aj to be 
branches of a function A which is also defined on this space. We assume that 
the number of different branches of VA is the same as the number of different 
branches of VS, which is consistent with (5). 

In terms of this covering space the expression SSj(P), at any point P, can be 
represented by the line integral 

&s(P) = 
f 

vs.dd. (19) 

In (19) SS( P) is represented as an integral along some closed curve on the cov- 
ering space, starting and ending at P. The vector dd is the vector element of 
arc length along this curve. Equation (19) follows from the fact that VS.dd is 
just the derivative of S along the curve. The subscript j is omitted in (19) since 
the same equation holds for all values of j and therefore for the function S. Now 
the condition (18) can be rewritten as 

k VS.dd = 2?m + ia log A. (20) 

Equation (20) must hold for every closed curve on the covering space, with an 
appropriate integer n in each case, since every such curve corresponds to some 
6Sj s 

Equation (20) will hold for every curve if it holds for each curve in the basis 
of the fundamental group of the covering space since every closed curve is a 
linear combination of basis curves with integer coefficients. Therefore, there are 
a finite number of conditions (20)) say Q of them, one for each independent closed 
curve on the covering space, and each condition contains an integer n. The con- 
dition (20) can be made more explicit by noting that the phase of A is retarded 
by r/2 each time the curve passes through a caustic, so log A changes by -ia/2. 
If m’ denotes the number of times a closed curve touches a caustic, and if the 
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only change in log A is that associated with the regular points of the caustics, 
then (20) becomes 

ii if au/au = 0 on B. (21) 

For the boundary condition (16) we see from (17) that A also changes phase 
by --a each time the curve touches the boundary. If b is the number of times 
the closed curve touches the boundary, (20) becomes 

k ! VS.&i = 2?r 
( 

n+$+i 
) 

if u = 0 on B. (22) 

3. UTILIZATION OF THE METHOD 

To use the foregoing method to solve an eigenvalue problem we must first 
find in the domain D, for some integer N, a set of N normal congruences’ of 
rays which are closed under reflection. This does not mean that each ray is 
closed, but that each congruence gives rise to another congruence of the set 
under reflection or passage through a caustic. Next we must consider the cover- 
ing space associated with this set of N congruences, and determine q, the number 
of independent closed curves on it. Then we must imbed the set of N congruences 
of rays in a q - 1 parameter family of sets of N congruences, each of which is 
also closed under reflection. Finally, we must impose the q conditions (21) or 
(22) from which lc and the q - 1 parameters can be determined. In this way the 
eigenvalue k is found. 

To determine the phase of the eigenfunction we may arbitrarily assign some 
value So to some wavefront (i.e., surface orthogonal to a congruence of rays) 
and then determine S by means of (6). To obtain the amplitude we must find 
a function A0 defined on some wavefront such that when the value of A is com- 
puted from it by means of (9) and (15) or (17), it returns to the value A0 (ex- 
cept for a phase factor) after a ray is traversed which returns to the original 
wavefront. 

An alternative procedure, not employing rays, is possible if a q - 1 parameter 
family of phase functions S can be found. These functions must satisfy the eiconal 
equation (4) and the conditions (12) and (14) on B, and the basis of the funda- 
mental group of the covering space of OS must contain q curves. Then the q 
conditions (21) or (22) determine k and the q - 1 parameters. The amplitude 
is then determined as before. 

4. THE CIRCLE 

As a first example, let us consider the case in which the domain D is a circle 
of radius o. To find a set of N normal congruences of rays, let us consider any 

1 A normal congruence of rays is a family of rays orthogonal to any surface. 
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ray and the successive rays it generates by reflection at the boundary. (See Fig. 
3.) It can be seen that all these rays are tangent to a concentric circle, of radius 
uo , say. This suggests that we choose as rays all the tangents to the circle of 
radius a0 , oriented so that they travel in the counter clockwise direction. Then 
the circle of radius uo is a caustic of these rays. Therefore we consider all those 
rays traveling inward from the outer boundary to the caustic as one normal 
congruence, and all those traveling outward from the caustic to the boundary 
as a second congruence. (See Fig. 4.) 

Each of these normal congruences fills out the annular region uo 5 r 5 a. 
Furthermore an inward traveling ray goes into an outward travelling ray at the 
caustic and an outward ray reflects into an inward ray at the boundary. There- 
fore, N = 2 and the covering space consists of two replicas of the annular region 
joined together at their edges. Topologically, this covering space is a torus. Since 
there are only two linearly independent closed curves on the torus, q = 2, and 

FIG. 3. A ray inside a circular region, and some of the rays which arise from it after 
several reflections. All of these rays are tangent to a concentric circle of radius a0 

FIG. 4. Two congruences of rays in a circular domain. One consists of the outward di- 
rected, counterclockwise traveling tangents to the concentric circle of radius a~ . This 
circle is the caustic of these rays. The other consists of the corresponding inward directed 
tangents. Each congruence fills out the annular region between the caustic and the bound- 
ary. 
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we require a one-parameter family of pairs of normal congruences. If we permit 
a0 to vary between zero and a we obtain such a family. 

Let us now impose the condition (21) on two linearly independent closed 
curves on the torus. First we choose the circle of radius a0 . Since this is a caustic, 
the unit vector VS is tangential to it and therefore the line integral in (21) is 
just the length 27~~0. This path does not cross the caustic, as can be seen by 
enlarging it slightly, and therefore for it m’ = 0. Thus (21) becomes, with m 
in place of n, 

k-21rao = 27i-m m = 0, 1, 2, . . . . (23) 

For the second curve we choose that shown in Fig. 5. This consists of two rays’ 
each of length (a” - a~~)~‘~, and an arc of the caustic of length 2ao cos-‘(ao/a)~ 
Since this crosses the caustic once, m’ = 1. Upon evaluating the integral in (21) 7 
taking proper account of directions, (21) becomes 

2k[(a2 - aoy2 - a0 cos-“(so/a)] = 2*(n + x/4) n = 0, 1,2, ---. (24) 

We now find from (23) that uo = m/k. When we use this in (24) we obtain the 
following equation for the eigenvalue k in the case au/& = 0 on B: 

[( ii~a)~ - m2]1’2 - m cos? ($=2f(n+k) n,m = O,l, +a*. (25) 

If u = 0 on B we must use (22) instead of (21). The first closed curve, the 
caustic, does not touch the boundary, so for it b = 0 and therefore (22) yields 
(23). The second closed curve touches the boundary once so for it b = 1. In 
this case (22) yields (24) with the term g on the right side replaced by 94. 

FIG. 5. A closed curve on the toroidal covering space associated with the two ray con- 
gruences of Fig. 4. This curve consists of a ray from the caustic to the boundary lying on 

one sheet, a reflected ray from the boundary to the caustic on the other sheet, and an arc 
of the caustic between the two points of tangency. 
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TABLE I 
COMPARISON OF ASYMPTOTIC AND EXACT EIQENVALUES FOR A CIRCULAR 

REGION OF RADIUS a* 

.I 
3nn Fractional 3mn Fractional 

m n 
Approx. Exact 

error 
Approx. Exact error 

0 1 2.356 2.405 0.0204 3.927 
2 5.498 5.520 0.0040 7.069 
3 8.639 8.654 0.0017 10.210 
4 11.781 11.792 0.0009 13.352 

1 1 3.795 3.832 0.0097 2.115 
2 6.997 7.016 0.0027 5.405 
3 10.161 10.173 0.0012 8.581 
4 13.311 13.324 0.0010 11.739 

2 1 5.101 5.136 0.0068 3.300 
2 8.401 8.417 0.0019 6.771 
3 11.609 11.620 0.0010 10.010 
4 14.788 14.796 0.0005 13.200 

3 1 6.346 6.380 0.0053 4.439 
2 9.745 9.761 0.0016 8.076 
3 13.005 13.015 0.0008 11.384 
4 16.216 16.223 0.0004 14.614 

3.832 -0.0248 
7.016 -0.0076 

10.173 -0.0036 
13.324 -0.0021 
1.841 -0.1488 
5.331 -0.0139 
8.536 -0.0053 

11.706 -0.0028 
3.054 -0.0806 
6.706 -0.0097 
9.969 -0.0041 

13.170 -0.0023 
4.201 -0.0567 
8.015 -0.0076 

11.346 -0.0033 
- - 

8 In the third and sixth columns are shown the values of ka computed from (26) and (25), 
respectively, for the values of m and n listed in the first two columns. These results are 
labeled “approx.” In the fourth and seventh columns are shown the values of j,, and&, , 
the corresponding exact eigenvalues. These are the nth zeroes of the mth Bessel function 
or of its derivative, respectively. The differences between the exact and approximate eigen- 
values, divided by the exact eigenvalues, are listed in the fifth and eighth columns. 

When a0 is eliminated from (24) by means of (23)) the following equation for 
the eigenvalue k results in this case of u = 0 on B. 

[( lcay - m21”2 - m cos-l @-)=7r(n+i) n,m=O,l, .... (26) 

In Table I the values of ka determined from (25) and (26) are shown for 
various values of m and n. The exact values, obtained by solving the problems 
exactly, are also shown for comparison. The agreement between the two sets of 
values is surprisingly good, considering that only small values of m and n, and 
therefore of lea, are tabulated-although the theory is based on ka being large. 
For large values of n and m the exact equations for the eigenvalues coincide pre- 
cisely with (25) and (26)) as we shall show. 

Equations (25) and (26) can be solved explicitly in the limiting case in which 
m << ka and the opposite case in which m M ka. In the former case (25) and 
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(26) become, respectively, 

ka = a(*+;+:)+ .a. du/dv on H, (27 I 

ka = s(n+g+i)+ ..a u = OonB. (2%) 

In this case the radius of the caustic a0 = (m/ka)a is nearly zero. 
In the opposite case we introduce the small quantity E defined by 

m/ka = 1 - t. (29) 

When (29) is used in (25) and (26) simple equations for 6 result. Once e is 
found (29) yields for La the results 

ka = m i- s 

ka=m+F 

au/av = 0 on B, (30) 

u = OonB. (31) 

In this case the caustic nearly coincides with the boundary since from (23) and 
(29), a0 = a(1 - E). As we shall see, the solution u is practically zero except 
in the region between the caustic and the boundary. The existence of this type 
of eigenfunction of a circular domain was first discovered by Rayleigh (4) in 
order to explain the “whispering gallery” phenomenon of acoustics. In Section 
7 we shall obtain the corresponding eigenfunctions for more general domains. 

Let us now determine the phase S of the eigenfunction u. Since the unit vector 
OS is tangent to the caustic, on it S is just equal to arc length u along the caustic 
from some point, say from 0 = 0. To evaluate S at a point (r,0) with T > a0 we 
use (6) taking t = ( r2 - at)1’2 to be the distance from (r,0) to the caustic and 
so = CT1 = a.o[B - cos-‘(so/r)] to be the value of S at the point where the ray 
through (r,e) leaves the caustic (see Fig. 6). Thus (6) yields 

S,(r,6> = a0 [e - cos-l (T)] + (r2 - a~~)~‘~. (32) 

We obtain another value Sz(r,e) if we consider the inward traveling ray through 
(r,0) (see Fig. 6). In this case the length of the ray from the caustic to the 
boundary and back to (r,0) may be employed, and this is just t = 2(a2 - at)1’2 - 
(r2 - at)“2. The value of S at the point where the ray leaves the caustic is 

So = LT* = ao[e - (2 cos-'(:) - cos-'@))I 
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8=0 

FIG. 6. The two ray paths from the caustic to the point (r,e). One ray leaves the caustic 
at VI = a&? - cos-l(ao/r)] and travels a distance tl = (9 - a$)lJe to the point. The other 
ray leaves the caustic at ~2 = a& + cos-l(ao/r) - 2 cos-l(a~/a)], is reflected from the bound- 
ary and reaches the same point on the second sheet after traversing a distance 12 = 
2(a2 - &p)l/Z - (T2 - ao2)‘i2. 

With these values inserted, (6) becomes 

S,(r,e> = a0 0 + cos [ -l(g - 2cos-f;)] + 2(&- uo2Y2 

- (2 - 2 l/2 a0 > (33) 

= uo[e + cos-l(g] - (r2 - &y2 + f (n + ;). 
The second form of SZ is obtained by using (24) so it applies if au/& = 0 on 
B; in case u = 0 on B the final f/4 should be replaced by x. 

To determine the amplitude A (r,0) we use (9). Since we are considering a 
two-dimensional case p2 is infinite and (9) becomes 

(34) 

If we let the point on the ray from which t is measured tend to the caustic then 
p1 tends to zero and AO becomes infinite but, as (34) shows, the product Aopl”’ 
has a finite limit. If we denote this limit by A<(a) then (34) may be written 
simply as 

On an outgoing ray (35) becomes 
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To obtain A2(r,0), the value of A on an incoming ray, we again use (35) which 
yields 

The function Ad in (37) is equal to Ao’ in (36) on corresponding rays, according 
to (15), if &L/&J = 0 on B. Equations (36) and (37) show that, upon traversing 
a closed path, the function A (r,B) will return to its original value, except for a 
phase factor, provided that Ao’ is taken to be a constant. 

Now that k, S1 , Sz , Al , and A2 have been found, we can combine them in 
(3) to yield the eigenfunction u. If we set Ad = CZ-‘~‘~/Z?‘* we obtain 

u = [(/by - my’* cos 
i 
[(k?y - ?rLzll’* -1 m ?r 

- m cos G - 4 } 
&am0 

(38) 
I%/& = 0 on B. 

Proceeding similarly for the case u = 0 on B, we find from (17) that A) = -Al . 
This minus sign and the extra s in lcSz cancel to yield the same result (38) for 
U. These results both hold for 

r > a0 = m/k. (39) 

In order to obtain u for r < a0 we must consider the complex or imaginary 
rays (6) .2 These rays are complex straight lines which are tangent to the caustic. 
The ray through a point (r,6) with T < a0 is thus a complex line through that 
point tangent to the caustic. In Ref. 5 these rays are examined and the two val- 
ues of the function S are determined by means of them. They are given by 

S(r,e> = a08 F i[&cosh-l(T) - (a,’ - r2)lip] r 5 ao. (40) 

It should be noticed that (40) can also be obtained from (32) by analytic con- 
tinuation, merely by permitting r to be less than a0 . The corresponding expres- 
sion for A can be obtained similarly from (36). It is 

The choice of the branch of the radical in (41) is based on considerations similar 
to those of Section 2. We now observe that the wave for which the upper sign is 
chosen in (40) decreases with increasing distance from the caustic while the 

2 Several signs are misprinted in Ref. 5. On p. 47 in eq. (29) the sign of i?r/Z should be plus. 
In (30) the signs of all terms in the exponent except imka0 should be changed. On page 48 in 
(31) the sign before H(2) should be plus. 
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other wave increases. We therefore assume that the increasing term .must be 
omitted. Then (3) yields for either boundary condition, when T < a0 , 

u(r,e) = ; [d - (kr)2]-“4 exp im6 - m cash-’ 2 
0 

+ [m2 - (kr)2]1/2}. 

Equation (42) shows that for large m, u is exponentially small inside the caustic 
r = a0 . Thus the solution differs from zero only in the annular region between 
the caustic and the boundary. 

If, from the beginning, we had considered the clockwise-traveling rays, all our 
results would have been the same with 0 replaced by - 8. 

The exact eigenfunctions of (1) for the circle are 

u = CJ,(kr)ei”’ m = 0, fl, *2, ..a. (43) 

Here C is a constant and Ic is determined by either of the conditions 

Jm’(ka) = 0 au/au = 0 on B, (44) 

J,(ku) = 0 u = 0 on B. (45) 

If the dominant term of the Debye asymptotic expansion of Jm(kr) for kr > m 
is used in (44) and (45) these equations become exactly (25) and (26), respec- 
tively. When the same expansion is used in (43)) it becomes (38) provided that 
we set C = (7r/2)“‘. If the corresponding form of the Debye expansion of J,(kr) 
for kr < m is used in (43) it coincides with (42) when the same value of C is 
used. These comparisons show that the foregoing results are all asymptotically 
correct. In particular we note that our geometrical method yields the Debye 
expansion of the Bessel function, aside from a constant factor. 

Since the present problem is separable, all our results could have been ob- 
tained by applying the usual WKB method to the ordinary differential equations 
resulting from separation. AIternatively, the eiconal equation could have been 
solved by separation into the sum of a function of r and a function of 8. The 
parameter a0 could then have been introduced by requiring S to vanish at 0 = 0, 
r = a0 . There are four such solutions 

s(r,e) = fr(sin 7 - 7 cos T) f a08 r > UO. (46) 

Here r is defined by 

7 = cos-l $? 0 
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For T < uo the solution S becomes 

S(r,e) = fir(sinh 7 - 7 cash 7) f a08 r < ao. (48) 

Now r is defined by 

7 = cosh-1 ?’ 
0 r 

r < ao. (49) 

The corresponding 0 independent solutions of (5) for A (r,e) are the same as 
those found before. By using these solutions, all of our results could have been 
derived. Of course, these considerations apply only to separable problems, 
whereas the previous method is not restricted to such cases. 

5. THE ELLIPSE 

As a second example let us consider a plane domain D bounded by an ellipse 
with foci on the x axis at x = *c/2. In elliptic coordinates the equation of the 
ellipse is p = I& (see Fig. 7). The elliptic coordinates p and B are related to 
Cartesian coordinates by 

x = ; cash /.L cos 0, (50) 

y = isinhpsine. (51) 

The curves CL = constant and 0 = constant are respectively confocal ellipses 
and hyperbolas. 

If we consider a ray tangent to the ellipse ~1 = po, 0 < p. < R. , then all the 
rays resulting from it by successive reflection at the boundary are also tangent 

const. 

FIGI. 7. The elliptic coordinate system. The lines p = constant are confocal ellipses and 
the lines 0 = constant are arms of confocal hyperbolas. The ellipse p = RO is the boundary 
of the domain. 
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FIG. 8. Two congruences of rays in an elliptic domain. One consists of the outward di- 
rected, counterclockwise traveling tangents to the caustic, a confocal ellipse p = ho The 
other consists of the corresponding inward directed tangents. Each congruence fills out the 

annular region between the caustic and the boundary. 

to the same ellipse. This suggests that we consider all the counter-clockwise 
directed tangents to the ellipse P = PO as rays. As before we consider separately 
the inward and outward traveling rays and thus obtain two normal congruences 
of rays, each filling out the annulus PO S P $ Ro (see Fig. 8). Then N = 2 and 
the two annular regions are joined together at their edges to yield a covering 
space which is again topologically a torus. Therefore we may apply (21) or (22) 
to two independent closed curves on this torus and obtain two equations for J?J 
and ~0. 

We choose as the first curve the caustic p = ~0 itself and then (21) or (22) 
becomes 

4kicoshpoE[i,sechpo) = 23-m m = O,l, em.. (52) 

In (52) m has been used instead of the n of (21) or (22) ; the m’ in those equa- 
tions is zero. The elliptic integral of the second kind in (52) is defined by 

E(z,K) = S,z (1 - x2 sin2 t)l” 0%. (53) 

As the second curve we choose the path of Fig. 9. This consists in part of the 

Fro. 9. A closed curve on the toroidal covering space associated with the two ray con- 
gruences of Fig. 8. This curve consists of a ray from the caustic to the boundary lying on 

one sheet, a reflected ray from the boundary to the caustic on the other sheet, and an arc 
of the caustic between the two points of tangency. 
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two tangents from the point p = Ro , 0 = 0 on the boundary, to the caustic at 
P = PO, 

e = fCOS-l 

The path is completed by an arc of the caustic. It is a property of the ellipse 
that the length of such a path is independent of the point on the boundary from 
which the tangents are drawn. A straightforward calculation of the length of 
this path yields the value of the integral in (21). Then (21) becomes 

2k 4 sinh Ro( 1 - cash* PO sech* Ro)~‘* - g coshuo[E(i,sechpo) 

-R(sin-‘[s],sechrco)]} = 27r(n+a). (55) 

For the case u = 0 on B, (22) yields (55) with an additional ?r on the right side. 
The first term in the brackets on the left side of (55) is the length of a ray from 
the boundary to the point of tangency; the remaining terms give the length of 
the caustic from 8 = 0 to one of the points of tangency determined by (54). 

Equations (52) and (55) determine one eigenvalue k and the corresponding 
value of the parameter ~0 for each pair of integers m and n. Upon using (52) to 
simplify (55) and then taking the ratio of the simplified (55) to (52) we obtain 
the following equation for PO 

sinhRo(sech’po - sech*Ro)“*+E(sin-‘[s],seehp~) 

E(T/~, sech PO> (55') 

= 1 + 2(n + l/4) 
m ' 

The left side of (55’) increases monotonically as cl0 decreases from R. to 0. Thus 
(55’) has a solution for ~0 provided that the right side lies between the extreme 
values of the function on the left. This occurs only when m and n satisfy the in- 
equalities 

+ E (sin-‘(sech Ro),l) - 1 - i. 1 (55") 

When (55”) is satisfied, (55’) can be solved for p. and then Ic can be found 
from (52). In this way we have calculated a table of eigenvalues of an elliptic 
domain for which cash Ro = 2. The values of kc/2, rather than those of k itself, 
are shown in Table II for values of m from 1 to 10. The range of n for each value 
of m is given by (55”). The eigenvalues determined in this way lie to the lower 
left of the heavy zig-zag line in the table. The table also includes the eigenvalues 
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TABLE II 
EIQENVALUES @c/2),, AND (ke/2):, FOR AN ELLIPTIC DOMAIN OF ECCENTRICITY cash R. = 2 

WITH BOUNDARY CONDITIONS u = 0, AND &u/an = 0, RESPECTIVELY” 

(&%nn 

m n=O 1 2 3 4 

1 .1.127 

2 1.774 

; ~~~il,~ 

9 5.861 8.188 10.139 11.968 13.714 

10 6,427 8.872 10.796 12.647 14.425 

(W/26, 

m 

1 

2 

3 

4 

5 

6 

7 

8 
9 

10 

n=O 1 2 3 4 

2.356 3.229 4.121 5.019 5.919 

2.709 3.927 4.792 5.677 6.569 
3.380 5.498 6.358 7.238 8.126 

4.029 8.802 
4.663 10.367 

5.323 11.063 
5.902 12.632 

6.510 8.542 10.388 12.142 13.352 

7.115 9.186 11.065 12.850 14.923 

7.716 9.827 11.733 13.545 15.286 

a The entries below the heavy zig-zag lines correspond to solutions with elliptic caustics 
and were computed from (52) and (55). Those above the lines correspond to solutions with 
hyperbolic caustics and were computed from (90) and (91). For the boundary condition 
ZL = 0, R. is replaced byn + >s in (55) and (91). The eigenvalues (kc/2)=,, and (kc/2)1, ap- 

proximate the (n + 1)st zeroes of Je, or Jo, and of Je,,,’ or Jo,‘, respectively. 

of the same domain when the eigenfunction, rather than its normal derivative, 
vanishes on the boundary. In this case (55’) and (55”) still hold provided the 
x is changed to 3/4 on the right side of each. No comparison is made with the 
exact eigenvalues because they do not appear to have been tabulated. 

Equations (52) and (55) can be simplified and solved explicitly in various 
limiting cases. The first is that in which sech R o , the eccentricity of the bounding 
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ellipse, and sech ~0, the eccentricity of the caustic, are small. In this case we 
have 

E(~,sech,,)=~[I-~sech2ro+ . ..I. (56) 

.(sin-‘(~~,sech~o) = sin-‘taJ-e 

.[&-l(~)-~o~l-~o+ . ..I. (57) 

By using (56) we find that (52) becomes 

kc 

z 
cash ~0 = m 1 + a sech2 PO + * . . 1 . 

We now solve (58) for cash ~0 by iteration and obtain 

kc 
;z coshpo = rn[l+i(Ey+ . ..I. (59) 

Next we use (56), (57), and (59) in (55). In doing so we also eliminate c by 
the relation c cash Ro = 2a where 2a is the major axis of the boundary ellipse. 
In this way we obtain the following equation for the eigenvalue k: 

i( 
1 -- a sech2 Ro + * * * 

>( 

l/2 
lea 1 - g2 - i sech2 RO + - * * 

> 

-,cos-1(,>+[(~-~2~z+(l-&~1’2] (60) 

sech’ RO 
.T+ . ..} = ++g. 

To solve (60) we assume that 1 - m”/k”a” >> sech2 R. , Then (60) becomes 

m 
[ (ka)’ - m211” - m cos-l L 

0 
- ‘!?l?$E! [(j&)2 - m2]“2 + . . . 

(61) 

Equation (61) coincides with (25), the eigenvalue equation for the circle, if 
the eccentricity sech Ro is zero. Now (61) is valid for ellipses of small eccentricity 
provided that sech2 RO << m2/k2a2 and that sech2 RO << 1 - m2/lc2a2. Therefore 
it will yield eigenvalues differing from those of the circle by small eccentricity 
corrections. 
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If m << ka, (61) can be solved with the result 

ka = T(n+;+3(1 +Ep)+ *.-. 

In this case, the major axis of the caustic c cash PO is equal to (m/ka)2a and is 
thus small compared to the major axis of the boundary ellipse. 

On the other hand, if m is nearly equal to ka we define E as in (29) and then 
(61) becomes an equation for e. Once it is solved, (29) yields for k the result 

ka = m+$[37r(n+~)~3+~seeh2Ro+ a-*. (63) 

In this case the caustic is very close to the bounding ellipse. The result (63) 
holds if the third term on the right side of (63) is small compared to the second 
term but large compared to the next omitted term, which is proportional to m-l 
times the square of the second term. These conditions can be fulfilled only if 
sech Ro << 1 and therefore only if m is large. 

Another case in which (52) and (55) can be solved approximately is that in 
which p. is nearly zero, when the caustic practically coincides with the inter- 
focal line. In this case, with the aid of expansions of the elliptic integrals (6) 
(52) becomes 

kc = m?r + kc $ log p. + - - - . (64) 

Before expanding (55) it is convenient to first eliminate E(7r/2, sech po) by 
means of (52). Then, upon expanding the resulting equation for small ~0 , we 
obtain 

kceoshRo=2++;+;)+0($). 

The last equation yields for the eigenvalue 

kc = 2r(n+z+a),echRo+ *-a. 

Now (64) becomes the following equation for ~0 

/lo” log PO = 2 - 
m 

cash Ro + . . . . 
(67) 

In order that (66) and (67) be valid, the values of n and m must be such that 
cl0 , determined by (67), is small. This requires that n and m be related by 
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For the boundary condition u = 0 on B, the results (60)-(67) hold when 
72 + x is replaced by n + g. 

Now that we have seen how to determine p0 and the eigenvalue k, let us con- 
struct the phase function S and the amplitude A of the eigenfunctions. Since 
OS is tangent to the caustic, S is equal to arc length along the caustic from some 
point on it, say from 0 = 0. Then we may construct S at any point P outside 
the causti.c by using (6) with So equal to the value of S at the point of tangency 
of the tangent from the caustic to P and t equal to the length of this tangent. 
If 8’ denotes the value of 8 at the point of tangency, then So and t are given by 

t = i {(coshpcos0 - coshpocosf3’)2+ (sinhpsine - sinhpasin8’)2}1’2 (69) 

so = ; s,1’ (cosh2 /.Q - cos2 e)“” de. (70) 

By the use of an addition formula for elliptic integrals it may be shown (?‘) 
that t can also be written in the form 

t=f 
is 

’ (Gosh2 /i - cash’ /.~o)*‘~ (71) 
PO 

dct f s,T (Gosh’ PO - cos” 0)“” de } . 

The upper sign in (71) applies if 0 > 8’ and the lower sign applies if 0 < 0’. 
For the outgoing rays we will denote the S function by S, . Then e > 0’ and 

(69)) (70) yield for S1 = SO + t the result, when P > 10 , 

Sl = f 
i 

1’ ( cosh2 P - cosh2 &“’ dp + l’ ( cosh2 Po - cos” 0)“” de } . (72) 
PO 

For the incoming rays we denote S by X2 . Then 0 < 0’ and we obtain for S2 = 
So - t the result, when EL > ILO, 

s2 = f { -1’ ( cosh2 P - Gosh’ &li2 dp + f,’ (Gosh2 Po - cos’ c))“’ de} . (73) 
PO 

To determine the amplitude functions Al(p,e) and A2(p,e), we m&e use of 
(35) which shows that A, and A2 are proportional to t-1’2. By using the expression 
(69) for ;t it is possible to show (7) that 

t” = (sinh cc0 cash &2(cosh2 p. - cos” 0) 

* (cosh2 IJ - Gosh2 po) (cosh2 p. sin2 0’ + sinh2 cl0 COS" e’). 
(74) 

Consequently, (35) may be written in the form 

A,(/.@) = Bl(0’)(cosh2 p. - cos” e)-““(cash” /L - cosh2 /J~)-“~, (75) 

A&e) = &(e”) (cosh2 /JO - cos” e)-““(Cosh2 /J - cosh2 Po)-1’4. (76) 
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In (75) and (76), 0’ and 0” denote the points of tangency with the caustic of 
the outgoing and incoming rays through the point (~~0). Since the outgoing rays 
are the continuations past the caustic of the incoming rays, it follows from the 
discussion following (17) that &(0’) = eeiniZ B2( t9’). Furthermore for points on 
the boundary, (15) shows that &(e”) = &(e’). These two relations may be 
combined to yield 

I B2(e’) I = I B2(e”) I. (77) 

Absolute values are used in (77) because the phase variation of the amplitude 
has already been taken into account in the consideration of the single-valuedness 
condition. In (77) 0” is related to 0’ by the condition that both 8’ and t9” denote 
points of tangency of rays from a common point on the boundary. The simplest 
solution of the functional Eq. (77) is Bz = constant. Therefore we choose 

B,( 0’) = >&p4. (78) 

Let us now collect our results for the eigenfunction U. We must insert the 
amplitudes given by (75) and (76)) and the phases given by (72) and (73) into 
the expression (3) for U. Since Ss was computed by following a ray backward 
from the caustic, the relation B1 = eCir’2 B2 appropriate to the caustic must also 
be used. In this way we obtain for P > PO the result 

&,e) = ( cosh2 Po - COST e)-l14 ( cosh2 P - cosh2 Po)-1i4 

Po - COST e)“” de] 

( cosh2 /A - cosh2 /J~)~‘~ d/.t - ;] . 

(79) 

To obtain an expression for u inside the caustic, where p < ~0 , we must rede- 
termine S and A by utilizing imaginary rays as described in Ref. 5. By the 
method of that reference we obtain instead of (79) the following result, which 
is valid for P < PO : 

t&e> = ; (cosh2 /Jo - cos2 0)-1’4(cosh2 po - cosh2 /J)-~‘~ 

p. - cos2 e)“2 do 1 
(cosh2 /.Q - cosh2 /J)~‘~ d,.‘ 1 , 

(80) 

The integrals in (79) and (80) are expressed in terms of standard elliptic inte- 
grals by Eqs. (A8), (A35) and (A38) of the Appendix. 
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III lx 
FIG. 10. The four ray congruences with hyperbolic caustics in an elliptic region. The 

caustics are the four hyperbolic arms B = 60 , ?r - 80 , ?r + Bo , ‘2~ - 00 . 

For the boundary condition u = 0 on B, exactly the same results, (79) and 
(SO), are obtained for u. 

The preceding construction began with the consideration of a ray tangent to 
the ellipse P = ~0 < Ro and the observation that all the rays resulting from it 
by successive reflection are tangent to the same ellipse. However if we had chosen 
a ray which crosses the line segment joining the focal points of the bounding 
ellipse, this ray would not have been tangent to any confocal ellipse. But it 
would be tangent to a confocal hyperbola, and all the rays resulting from it by 
successive reflections would also be tangent to the same hyperbola. Therefore 
we may obtain additional normal congruences of rays by considering all the 
tangents to a confocal hyperbola 0 = 00 (see Fig. 10). Then we can construct 
additional eigenfunctions by proceeding with these rays just as we did with 
the other rays. However, rather than repeat that analysis, we will obtain these 
solutions by the alternative method, described in Section 3, which is based upon 
the phase functions S. To apply that method we must obtain a family of phase 
functions depending upon a number of parameters. For this purpose we must 
consider the eiconal equation (4). 

In elliptic coordinates (4) becomes 

($>‘+ ($>’ = ; (coshzP - cos’e). (81) 
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This equation can be solved by separation of variables if we set 

s = U(P) + T(e). (82) 

The resulting equations for U and T are 

2 

(U’)’ + b2 - ; Gosh2 P = 0, 

2 

( T’)2 - b2 + ; cos’ e = 0. 

In these equations the constant b2 is the separation constant. The case of the 
elliptic caustics, considered previously, can be shown to correspond to the case 
b2 > ~‘14. Therefore we now suppose that b2 < c2/4 and define 00 by 

When (85) is used in (83) and (84)) the only solutions of these equations are 
found to be the following, within additive constants. 

U(/A) = &; J,” (cosh2 /J - cos” e,,)1’2 & 

T(e) = *f S,I (~0s~ e. - ~0s~ e)“” de e. 5 e 5 ?r - eo, 
0 

. e 

s 

(87) 
= *; (120~~ e - ~05~ eo)1/2 de ose 5 eo. 

00 

By using (86) and (87) in (82) with the various choices of sign, we can con- 
struct four phase functions Si . In the region e. 5 0 $ ?r - e. they are 

s,(,,e) = -s&,e> = z lRo (cosh2 P - cos2 00)“2 dp 
(88) 

COS” e. - COS’ e)“” de 

s2(p,e) = -,g&,e) = f lRo (cosh2 P - COS” eo)li2 dp 

s 

(89) c -- ? 
2 00 

COS” e. - COS” e)“” de. 
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In the region ?r + 6, s 0 5 2?r - 00 we fmd by continuity that 

S,(p,e) == -s&e> = -; s,” (cosh2 /.J - cos” e,)‘12 db 

+ 2 i lRo (cosh2 y - COST 0,,)1’2 dcl + i [2r-eo (CO$ e,, - COST ~9)“~ de, 

( 88’) 

s,(,,e> == -S&e) = -; jRo (cosh2 /l - cos” e,)‘j2 dp 
Ir 

+ 2 ; .I” (cosh2 p - ~0s” eo)l12 dfi - J! s 

2x-eo ( 89’) 

2 e 
(~0s~ e. - COS” e) ‘I2 de . 

From these equations we see that S1 = S2 and Ss = Sq at tl = & and 0 = 2~ - 
B. . Also X1 = S4 and Sz = S3 at I.L = R. for B. 5 0 5 ?r - B. . Now we consider 
four replkas of the region 0 5 IJ s Ro , eoses?r-eo,?r+eo<e<2?r- 
eo, and define a function S which is equal to Si on replica i. We join the edges 
of these replicas in such a way that VS is continuous at the caustics and that S 
is continuous at the boundary p = R, 00 5 8 5 s - B. . Thus sheet one is joined 
to sheet two and sheet three to sheet four at 8 = e. , ?r - B. , ?r + e. and 2~ - 
B. . At P = RO sheet one is joined to sheet four and sheet two to sheet three. The 
resulting surface, on which OS is single valued, is topologically a torus. Since 
there are two independent closed curves on the torus, and since we have a one 
parameter (00) family of S functions, we can impose the two conditions (21) 
or (22) to determine k and 00 . 

As the first curve to be used in (21) or (22) we choose one having ~1 = con- 
stant and on which 0 increases from 00 to ?r - e. on sheet one and then decreases 
from ?r -- e,, to & on sheet two. For the second curve we set 9 = e1 and let p 
decrease from Ro to 0 and then increase from 0 to R. on sheet one, along e = 
2* - 0r . Then on sheet four we follow the same path in the reverse direction. 
The first curve crosses two caustics so for it m’ = 2. The second does not cross 
any caustic so for it m’ = 0. When (21) is applied to these two curves, with S 
given by (88) and (89)) the results are easily seen to be 

r’2 
4 & 2 s (~0s” e. - ~0s” e)“” de = 2~ ( m + a ) m = 0, 1, -.. , (90) 

80 

4k 
s 2 0 

R” (cosh2 p - cos2 eo)1’2 dp = 2~n 12 = 1,2,-m*. (91) 

In (90) we have denoted the integer n of (21) by m. Equations (90) and (91) 
determine the eigenvalue lc and the constant f& for each pair of integers m and 
n. 
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The integrals in (90) and (91) can be expressed in terms of elliptic integrals 
as is shown in (A15) and (A26). The elliptic integral B in these equations is 
defined below (A12). When (90) and (91) are expressed in terms of B, the ratio 
of these two equations yields the following equation for e. : 
set O. sinh R. (set” B. - sech2 Ro)1’2 + B (sin-’ (sech Ro), cos eo) 

B (7r/2, cos e,) 
(91’) 

As 0, increases from 0 to n/2, the left side of (91’) increases monotonically from 
its minimum to infinity. Therefore (91’) has a solution for 00 only when the 
right side exceeds the minimum of the left side. This occurs only if m and n 
satisfy the inequality 

n2(rn+3[:= + B (sin?(sech Ro), 1) - 1 1 . (91”) 

When (91”) is satisfied, (91’) can be solved for 00 and then k can be deter- 
mined from (90). This is the way in which we calculated the eigenvalues which 
are shown to the upper right of the zig-zag Iine in Table II. The values of n 
shown in the table are not the values which were used in (91’) to calculate the 
eigenvalues. The calculations were made with the first few values of n satisfying 
(91”). Then the eigenvalues were entered in the table immediately following the 
largest eigenvalue determined, for the same m, from solutions with elliptic caus- 
tics. This is not unexpected since there is no necessary relation between the 
integers n in (90) and in (55). 

Equations (90) and (91) for k and 00 can be simplified and solved approxi- 
mately if 80 is nearly equal to ?r/2. In this case, by making use of expansions of 
the elliptic integrals (S) , we can simplify these equations to 

kc COS” e. + i ~0s~ e. + - . .]=4(m+i), 

- cos” e. tan? eRo - f 
) 1 

+ . . . = n7r. 

These equations *yield 

kc = _12?r 
smh R. 

+ (4m + 2) 
sinh R. 

tan-l eRo - 2 1 + . . . , 

GOSH e. = 4* sinh R. + . . . . 
n?r 

These results are valid only if n and m are such that the right side of (95) is 
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small. The result (94) for k can be rewritten in terms of b = (c/2) sinh Ro , the 
semiminor axis of the bounding ellipse, in the form 

k.2b = n?r + (4m + 2) 
[ 

tan-‘eRo - : 1 + .... (96) 
If only t,he first term on the right is retained, this equation requires the wave- 
length x = 2a/k to be equal to 4b/n. Thus an integral number of half wavelengths 
must fit into the minor axis. This is to be expected for a wave which is bouncing 
back and forth between two parallel surfaces a distance 2b apart. This is the case 
here since the rays are confined to a narrow strip around the minor axis. 

It is also possible to solve Eqs. (90) and (91) approximately for k and 00 
when & i.s nearly equal to zero. By again making use of the expansions of elliptic 
integrals (6, 8) we may reduce these equations to the simpler forms 

kc 

Now we can combine these equations to obtain 

(99) 
cash Ro + 1 
cash Ro - 1 1 + **a, 

sin2 00 log A0 + ; = 2 1 - cash Ro 1 + *-a. (100) 
To first order in sin” 00, the result for the eigenvalue k may be written in terms 
of the semimajor axis of the ellipse a = (c/2)cosh Ro as 

k-2a = ?r(n + m + x) + O(sin2 0,). (101) 

For (99)-( 101) to be valid, n and m must be such that sin2 00 as determined by 
(100) is small. This requires-that n and m be related by 

n = (cash Ro - l)(m + $5) + se.. (102) 

The rays in this case fill up the entire ellipse except for two thin strips which 
extend along the major axis from the foci to the boundary. In the case of the 
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elliptic caustics with ~0 - 0, the rays fill up the entire ellipse except for a thin 
strip surrounding the interfocal line. 

Now that Ic and 80 have been determined, let us determine the amplitudes A; 
by using (5). When any one of the four functions S; given by (88) and (89) 
is inserted into (5), the same equation is obtained for A; , namely 

2 ( co~2 e. - COS” e> l/2 aA --$ + 2 (cash’ p - c02 eo) 112 aA z 

+ A[( cos2 e. - COS” e)-“’ sin e cos e 
(103) 

+ (cosh2 p - cos’ eo)-li2 sinh p cash ~1 = 0. 

This equation can be solved by separation of variables if we set A = B( e)D(p). 
The separated equations are 

2B’/B + sin e cos e (~0s~ e. - c0s2e)-’ = p, (104) 

ZD’/D - sinh /I cash p(cosh2 ~1 - cos2 eo)-’ = -p. (105) 

In these equations fl is the separation constant. The solutions of (104) and (105) 
are 

&(e) = Bi’ (~0s~ e. - COS” e)-l’* 

D&) = Di’ (cosh2 p - cos2 f?o)-“* 

COS” e. - COS” e)-‘I” de 1 , (106) 

- cos” eo)-“” dp . 1 (107) 

The four solutions for Ai are thus found to be 

&he> = Ai’ ( COS” e. - COS” e)-l/* (cosh2 P - COS” OJ1’* 

’ (cosh2 JL - COS” eo)-1i2 dp] exp[g Je (cos” e. - cos” e)-lJ2 dP] . 
(108) 

We find that the Ai differ from each other only by the constant factors Ai’. 
From (15) it follows that A< = Aql and Az’ = As’. Now from the relation be- 
tween the A’s at a caustic, it follows that 1 Ai ( = ) Ai 1 = ) Atl 1 = 1 Al I. 
For simplicity, we will set ] A;’ 1 = x. 

To determine the constant @ in (108) we could employ the method explained 
in Section 3. However, instead we will make use of the following simpler method 
which is convenient in separable problems such as the present one. This method, 
based upon flux conservation, was given by Landauer (W, 3). In the present case 
conservation requires that the total flux carried by the outgoing wave across 
any curve CL = constant must be independent of I.L: 

f 
Ai2(p,e)vSi-n da = constant. (109) 
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In (109) n denotes the unit normal to the curve p = constant and da denotes 
the element of arc length along this curve. Upon using (108) for Ai and (88) 
for 8; , we find from (109) 

-% (pi’)“’ exp[p/’ (cosh2 p - co8 00)~~‘~ dp] S,2z B:(O) d0 = constant. (110) 

From (110) we see at once that /3 = 0. Therefore (108) becomes 

A&O) = Ai’(cos” B,, - cos” O)-1’4 (cosh2 Jo - co8 ~9~)-~‘~. (111) 
We must now determine the phases of the Ai’. To do so we examine the four 

normal congruences of rays and see how they match up at the boundary and 
on the caustics. This examination shows that the A’ must satisfy the relations 
Agl = Aa’ , A,’ = Al, A,’ = eMiut2Az’ and Aql = eFir”Ai. If we now set Ai = 

Pie ir’4 we have 
A: = &’ = xe-i*‘4, AZ’ = Ag’ = tie ir/4 . (112) 

We may now combine our results to find u. Using (3) for u, with the Si given 
by (88) and (89) and the A; given by (111) and (112), we obtain for & < 0 < 
r - e. 

u( M,e> = (~052 e. - COS” e)-‘14 (c0sh2 p - COS” eJ114 

R” (cosh2 /A - cos2 eo)l12 dp 1 
COS” e)“” de 

By making use of (91), this result may be rewritten in the form 

t&e) = (COST e. - COST e)-1’4 ( cosh2 P - COST eo)-1/4 

. cos g op (cosh2 p - COST eoY2 dp - 71 
[ 1 

. cam f 
[ 1 

’ ( COS” e. - COS” e)‘j2 de 
00 

- n- 1 4 * 

d 
4J’ 

(113) 

(114) 

For 0 in the interval -B. < 0 < 00 , we can construct u by making use of imagi- 
nary rays. Since this construction is the same as in the previous cases, we will 
just state the result, which is 

(115) 

u(p,e) = i ( COS” e - ~0s~ eo)-“‘(cosh2 P - COS” eo)-1’4 

(cosh2 p - COS” eo)1’2 dp - 71 

(~08~ 8 - ~0s~ eo)l12 do 1 . 
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We have now completed the determination of the eigenvalues and eigenfunc- 
tions for the elliptic domain by the present method. For comparison, let us now 
examine the exact eigenfunctions for this domain. In the notation of Morse and 
Feshbach (9), which is also explained in the Appendix, these eigenfunctions are 

u = CeJe, ($oshp)Se~($cos0), 

u = GoJo, ($cosh+So~(;,cosB). (117) 

In these equations, Ce and Co are constants, Se, and So, are the even and odd 
Mathieu functions, respectively, and Je, , Jo, are the radial even and odd Ma- 
thieu functions of the first kind. For each integer m the eigenvalue 7c is de- 
termined by the boundary condition (2) which yields 

.le,‘(~,cosh&-,) = 0 

Jo,‘(;,coshR,) = 0 

for (llS),$ = 0 onB, (118) 

for (117),: = 0 on B. (119) 

The asymptotic forms of (116)-(119) for kc/2 large can be obtained by 
utilizing the asymptotic formulas for the S and J functions, which are derived 
in the Appendix. If we use (A6) for Se, and (A30), (A33) for Je, with h = 
skc, (116) becomes 

u - CeAe sinh ~0 (cosh2 p. - cos’ 19)~~‘~ (cosh2 p. - cash’ P)-“~ 

. cos /.to - co2 L9y2 de 1 (120) 

.cosh $ o’ (cash’ po - cosh2 p)1’2d,] , 
[J 

0 5 P < MO. 

u - CeAe sinh PO exp (cosh2 PO - cosh2 ~1)~‘~ dp 1 
. ( cosh2 /.Q - cos2 0)-l’* ( cosh2 p - cosh2 ~o)-l’~ 

m = 0,1,2, *em. (122) 



EIGENVALUE PROBLEMS 55 

From (A33) and (A35), the boundary condition (118) becomes 

kc 
[ ( 

sinh Ro 1 - &)“’ - cash p. k (E , sech p,,) 
0 

- E 
e-1 cash po 

sin a , 
0 

sechpo)}] = (,+:)2r 12 = 0,1,2, . . . . (123) 

The eigenvalue equations (122) and ( 123) coincide precisely with (52) and (55). 
If we consider (117) and use (A7) for So,,, and (A31), (A34) for Jo,, we 

obtain 

2 2 
u - CoAo - 

0 kc 
(sinh po)-‘(cosh2 PO - cos’ 8)-1’4( cash’ p. - cosh2 ~)-l’~ 

*sin /do - cos2 ep2 de 1 
. sinh 

[J 
g oP ( cosh2 PO - cosh2 p)1’2 dP] , 

2 2 
ZL-COAO 6 

0 
(cosh2 ~0 - cosh2 &l/2 dP 1 

. bosh2 ko - cos” e)-1’4 (co&’ b - cosh2 clo)-1’4 

*sin 
[J 

; 0e (cash’ cl0 - cos2 e)“” de] 

(cosh2 /L - cosh2 /.L~)~‘~ dcr - f] PO < p S Ro. 

(124) 

(125) 

The boundary condition (119) again yields (123). Thus, p. and k are determined 
by (122) and (123)) as for the case of solution (116). 

The asymptotic form of the sum of the two solutions, (115) and (116), is given 
by (120) plus (124) for 0 S cc < PO, and by (121) plus (125) for p. < ,J 6 R. . 
These can be made to coincide with (80) and (79), respectively, provided Cc 
and Co a.re chosen such that 

PO (cosh2 /.L,, - cosh2 /J)“’ dp 1 L 1 (1%) 

CoAo( sinh po)-’ (ky-p[: r (cosh2po - coshzr)l’ldr] = +i. (127) 

In addition, the exponentially small terms in (120) and (124) must be neg- 
lected. With this same choice of constants, the difference between the asymptotic 
forms of the two solutions also coincides with (79) and (SO) with 0 replaced by 
- 8. Thus in the case of the elliptic caustic, the two solutions given by our method, 
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corresponding to clockwise and counterclockwise traveling rays, respectively, 
coincide precisely with the asymptotic forms of the exact solutions. It is to be 
noted that each eigenvalue is doubly degenerate within the accuracy of our re- 
sults. 

Now let us expand (116) again, using (AlO) or (A13) for Se, and (A24) for 
Je, . This yields 

u - CeAe sin I%( cos2 0 - cos2 f&)-l’4 ( cosh2 P - cos2 190)~~‘~ 

~0s~ e - COS” eo)lj2 de 1 
~0s~ eo)l12 dp 

1 
, ose<eo. 

u - CeAe sin eo( cos2 e. - cos” 0)-1’4 (cosh2 CC - cos2 00)-1’4 

kc eo 
aexp - c 1 2 0 

( COS” e - ~0s~ e,) li2 de 1 
-cos ‘cc [I 2 e( ~0s~ e. - 003~ e)“” de - r/4 

00 1 

(128) 

(129) 

-cos - 
[ 1 

; oM (cosh2 /.h - cos2 eo)1’2 dp 1 ) e. -c e r ?r/2. 

For other values of 0 the asymptotic form of u can be found from (128) and 
(129) by the evenness and periodicity of the Se function. 

The constant B. in (128) and (129) is related to kc/2 and m by (A20), which 
is 

kc COS” e. qT/2, cos e,) = (7~8 + NjT m = O,l, **a . (130) 

The boundary condition (118) is, from (A24) and (A26), 

kc{ sinh Ro( 1 - cos” e. sech2 RO)1’2 - cos2 eo[B( r/2, cos 0,) 

- B(sin-‘(sech Ro), cos e,)]) = 2n’r n’= 2 . . . 
(131) 1 9, . 

The equations (130) and (131) which determine 00 and the eigenvalue k coin- 
cide with (90) and (91) when in (91) we set n = 2n’. When n is even, the 
asymptotic forms of the solution given by (128) and (129) coincide with (115) 
and (114)) respectively, provided we choose Ce such that 

(008~ e - ~0s~ eo)li2 de 1 = ( - 1)“‘2 n even. (132) 

In obtaining (132)) the exponentially small term in ( 128) was neglected. 
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The solution (117) becomes, when (All) and (A14) are used for So, and 
(A25) for Jo, , 

u - CoAo 
0 

p ’ (sin &-’ (cos2 0 - cos2 &-1’4 ( cosh2 p - COS” 190)~~‘~ 

COS” e - COS” eo)li2 de 1 
- cos” &)1’2 dp] , 0 s e < eo. 

u N COAO 
0 

i 2 (sin eo)-‘(cos” e. - cos2 0)-1’4 (cosh2 p - cos” eo)-“4 

kc e” 
*exp [ 1 ( 5 0 COS’ e - COS” eo)lj2 de 1 

.cos [ ‘cc 1 6( ~0s~ 2 00 e. - COS” e)“’ de - p/4 1 

(133) 

(134) 

. sin f oP ( cosh2 fi - cos” 00)1’2 de] 
[ 1 

e. < 8 < */2. 

The constant 80 is still given by (130). The boundary condition ( 119) now be- 
comes, with the aid of (A25) and (A26), the same as ( 131) with 2n’ + 1 in 
place of 2n’ on the right side. This equation coincides with (91) when in (91) 
we set n := 2n’ + 1. When n is odd, the asymptotic forms (133) and (134) of 
the solution coincide with (115) and (114)) respectively, if we neglect the ex- 
ponentially small terms and choose for Co the value given by 

00 

((30~~ e - COS” eoY2 de 1 (135) 
= (-l)(n-1)12, n odd. 

6. THE RECTANGLE AND EQUILATERAL TRIANGLE 

Let the domain D be a rectangle. If we consider a ray which makes an angle 
cx # 0, r/2 with one of the sides, we find that it and all the rays which arise from 
it by successive reflections are of one of four types. All the rays of each type are 
parallel to each other. This suggests that we introduce four normal congruences 
of rays, each consisting of all lines parallel to one of these four directions. One 
of these directions makes the angle CY with one of the sides, and the other three 
directions are determined by the law of reflection. Thus we have a one parameter 
family of sets of normal congruences, (Y being the parameter. To.each congruence 
we assign a replica of the domain D (Fig. 11) and from these replicas we construct 
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dpjzgijbdfs$$Jb 
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II: a 

C 

d b 

lx a 

FIG. 11. Four replicas of the rectangular domain and four congruences of rays 

the covering space by matching edges in accordance with the law of reflection. 
Thus when a .ray of congruence I hits side b, a ray of congruence II is produced. 
Therefore side I b must be joined to side II b. Likewise I c must be joined to 
IV c. Proceeding in this way, we find that the resulting covering space is topo- 
logically a torus: replica pairs (I, II) and (III, IV) each join at edges b and d 
while pairs (I, IV) and (II, III) each join at edges a and c. (See Fig. 12). 

When we apply (21) to two nonequivalent paths on this space, we obtain 
equations for the eigenvalues and the corresponding values of the parameter (Y. 

FIG. 12. The covering space for the rays in the rectangular domain is equivalent to that 
obtained by joining together at their edges these two annular regions. Each annulus is ob- 
tained by joining together two replicas of the rectangular domain. 
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0 C 
B. 

FIG. 13. (A) A ray which makes the angle 01 with side a of an equilateral triangle yields, 
upon successive reflections, rays having just six different directions. (B) The six replicas 

of the equilateral triangle I appropriately joined at their edges. One ray congruence cor- 
responds to each triangle. The directions of these congruences are indicated by the sample 
ray shown. The covering space is obtained by joining the edge pairs (Ia,IVa), (IIIc,VIc), 

(Ib,IIIb), and (IVb,VIb). This space is topologically a torus. 

The four phase functions are then found to be linear functions of the coordinates 
x and y, and the four amplitudes are found to be equal and constant. The result- 
ing eigenfunctions, as well as the eigenvalues, are the exact solutions in this case. 
The special cases a! = 0; and Q! = ?r/2 correspond to solutions consisting of 
just two normal congruences each, and each covering space is topologically a 
cylinder. There is just one independent closed path on this space, and when (21) 
is applied to it, it yields an equation for Ic, since a! is already known. Again the 
exact solution of the problem is obtained. Since the calculations are simple and 
similar to those already presented, and since the results are well known, there is 
no point in describing this example any further. 

Now let us consider a domain D which is an equilateral triangle. If we follow 
a ray which makes the angle (Y with one of the sides, we find that successive re- 
flections generate rays which have only six different directions3 (See Fig. 13A.) 
This suggests that we introduce six normal congruences of rays, each consisting 
of all the lines parallel to one of these six directions. When we join the edges of 
the six corresponding replicas in accordance with the law of reflection, we again 
obtain a torus for the covering space. (See Fig. 13B.) Application of (21) to two 
paths on this space yields equations for k and CL The six phase functions are 

3 This may be seen by covering the plane with successive reflections of the original tri- 
angle. A ra.y plus its successive reflections is then just a straight line in the plane. There are 

only five kinds of differently oriented triangles in the plane which cannot be obtained from 
the original triangle by a translation, but which require an additional reflection and/or 
rotation. The six ray segments in the six essentially nonequivalent triangles give rise to 
the six different ray directions when they are brought back to the original triangle. 
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again found to be linear in x and y, and the six amplitudes are equal and con- 
stant. As for the rectangle, the eigenfunctions and eigenvalues constructed by 
this method are the exact solutions of the problem. For the same reasons given 
above, it is unnecessary to describe these results any further. 

7. AN ARBITRARY CONVEX REGION 

Let us now consider a convex plane domain D bounded by a smooth closed 
curve B. Let us suppose that within D we can find a one parameter family of 
smooth closed curves C(a) depending upon a parameter (Y and having the fol- 
lowing property: Any tangent to C goes into another tangent to C upon reflection 
at the boundary B. Then we can consider all the outward and counterclockwise 
directed tangents to C as a normal congruence of rays, and the inward counter- 
clockwise directed tangents as another normal congruence. The outward travel- 
ing rays go into the inward traveling ones upon reflection at B, and the inward 
travelling rays go into the outward traveling ones at C, which is a caustic for 
both congruences. The annular region between C and B is doubly covered by 
rays, and the corresponding covering space for OS is the torus obtained by join- 
ing two replicas of this annulus at their edges. Since there are two independent 
closed paths on the torus, and we have a one parameter family of curves C(a), 
and therefore of congruences of rays, we can apply (21) to each of two independ- 
ent curves. The two resulting equations will determine the eigenvalues k and the 
corresponding values of the parameter (Y. 

As one of the two paths we choose the caustic C. For this path m’ = 0, and if 
L denotes the length of C, then (21) becomes, with m in place of n, 

kL = 27rm m = 1,2, ..a . (136) 
For the other path we choose a ray from C to B, together with the corresponding 
reflected ray from B to C, and the shorter arc of C between the two points of 
tangency of these two rays. (See Fig. 9.) Let u denote the length of this arc and 
& and tz the lengths of the rays. For this path m’ = 1 so (21) becomes 

vt1 + t2 - u) = %r(n + pi) n = 0, 1, * * . . (137) 

The length of this path, tl + tz - 
sidered (10) .4 

u, is independent of the particular rays con- 

The preceding considerations are similar to those we employed in the cases 
of the circular and elliptical domains. In those cases the curves C(a) were con- 
centric circles and confocal ellipses, respectively. For an arbitrary convex do- 

* This fact enables us to draw B by a string construction once C is given (Ref. 10, pp. 
453,458). For this purpose we require a closed loop of string of length ti + tz + L - c which 
we wrap around C and draw out taut. Then the string consists of two tangents to C and 

the longer arc of C. The point at which the tangents meet lies on B. If we place a pencil 
point at this place and move it around C, we can draw B. 
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main no method is known for finding the curves C( CZ) . In fact, there is some doubt 
about whether any such curves exist for nonelliptical domains (10). Neverthe- 
less if we awsume that they do exist, we can determine approximately those which 
lie close to the boundary B. This construction is essentially that given by 
Birkhoff (11) in connection with the “billiard-ball problem”, which is mathe- 
matically equivalent to that of finding normal congruences of rays. 

Let 7 denote arclength along B, let a( T) denote the radius of curvature of B, 
and let P(T) denote the distance from B to C along the normal to B. We must 
determine P(T) in such a way that C has the properties described above. When 
C is sufficiently close to B, the radius of curvature of C at any point is nearly 
equal to that of B at the corresponding point. Then we find that t1 m tz M (2ap)“* 
and c E 2a tan-‘( tl/a) . The constancy of t1 + t2 - u now yields 

2(2apy - 2u tan-‘( 2p/u)l” = 4~y. (138) 

This is the equation of the curve C(CY) since, for each value of the constant CY, 
it determines the function P(T). Upon solving for P(T), we obtain 

p(T) = $‘3U1’3(T). (139) 

Now that the curves C(a) have been determined, we can apply (136) and 
(137) to determine Ic and (Y. Upon making use of (138)) (137) yields at once 

ka = a(n + s/4) 12 = 0, 1, *. * , (140) 

To apply (136) we must compute L which is given by 

Here Lo is the length of B. When this value of L and the above value of (Y are 
used in ( 136)) it yields 

2am = kLo - k113 [T(n+a>l”3r,‘oU-2’3(T) dT 
(142) 

+ . . . ) m= 1,2 ) . . . . 

After solving for k, we find 

If only the first term in this expression for k is retained, then this condition re- 
quires that X = L$m, where X = 2?r/k is the wavelength of the wave motion. 

The eigenfunctions whose eigenvalues have just been found are practically 
zero everywhere inside the caustic C(a). This could be seen by utilizing complex 
rays to construct them. They would be found to decay exponentially with k and 
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with distance from the caustic. Therefore these eigenfunctions are essentially 
different from zero only in the thin strip between C and B. Consequently they 
account for the “whispering gallery” phenomenon of acoustics in which a per- 
son who speaks near the wall of a convex room can be heard across the room near 
the wall, but not in the interior of the room. Therefore we call these solutions the 
whispering gallery modes (see Fig. 14). They generalize the corresponding results 
for a circular room (see Section 4) and for an elliptic room (see Section 6). Me- 
chanically these solutions describe a particle sliding along the wall, or bouncing 
along it and always staying very close to it. Although we could now construct 
the eigenfunctions in the thin strip near the boundary, we will not do so. 

Another set of eigenfunctions can be found for a convex domain. These are 
analogous to those solutions for the ellipse which have hyperbolic caustics. Me- 
chanically they describe a particle bouncing back and forth between two points 
on the wall, along a diameter which is perpendicular to the boundary at both its 
ends. In order that such a motion be stable, the diameter must be the minimum 
diameter of the domain. The eigenfunctions differ essentially from zero only in 
a thin strip around this diameter, and the strip is bounded by two caustic curves 
C1 and CZ (see Fig. 15). To find these solutions we must find a one-parameter 

FIG. 14. The “whispering gallery” modes of an arbitrary convex region are essentially 
different from zero only in the shaded thin strip lying next to the boundary. 

FIG. 15. The “bouncing ball” modes of an arbitrary convex region,are essentially differ- 
ent from zero only in the shaded thin strip surrounding the minimum diameter of the do- 
main. 
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set of pairs of curves G(LY) and G(a), such that every tangent to C1 goes into a 
tangent to Cz after one or more reflections at B, and vice-versa. Then we can 
define four normal congruences of rays. These rays are the tangents, or rather 
half-tangents, to C1 and Cz. In general, it is necessary to extend C1 and Cz out- 
side of D and to include as rays the tangents to these extensions. One congruence 
consists of the half-tangents which terminate on Cl or Cz and are directed from 
one side of the domain to the other-say upward. Another congruence consists 
of the half-tangents which originate on Cl or Cz and are also directed upward. The 
other two congruences consist of the corresponding downward directed half- 
tangents ((see Fig. 10). Corresponding to these four congruences of rays, we 
consider four replicas of the ‘Lcurvilinear rectangle” bounded by B, C1 , and Cz . 
Upon joining their edges appropriately we obtain a torus. Then the two condi- 
tions (21) yield equations for k and (Y. Rather than carry out this construction, 
we will just state the leading term in the result for the eigenvalue. It depends only 
upon the length L1 of the minimum diameter of D, and is 

k $+ . . . n = 1,2, **.. (144) 

8. THE SPHERE 

Let us now take for D the interior of the three-dimensional sphere of radius a. 
If we consider a ray which is tangent to some concentric sphere of radius a0 , 
then all the rays which arise from it by successive reflection will be tangent to 
the same sphere. Furthermore all these rays lie in the plane containing the origi- 
nal ray and the center. This suggests that we introduce normal congruences of 
rays as follows. We choose a radius uo , an angle 80 and a line through the center 
of the sphere, which we will call the polar axis. We consider any plane through 
the center whose normal makes the angle (7r/2) - 00 with the axis. In this plane 
we consider four congruences of rays, the four sets of half-tangents to the circle 
r = a0 in which the plane intersects the sphere of radius a0 . These tangents may 
travel either inward or outward and clockwise or counterclockwise. Since two 
such planes pass through any point whose @ coordinate satisfies 00 < 8 < ?r - eo, 
there are eight rays through each such point, provided a0 < r < a. Thus we have 
defined eight normal congruences of rays which depend upon the two parameters 
a0 and e. :, as well as upon the choice of the polar axis. The sphere r = a0 and 
the cones e = tVo and 0 = ?r - B. are the caustic surfaces of all these congruences. 

Each congruence fills out the region uo 5 r 5 a, B. 5 0 s 7~ - e. and 0 I 4 s 
2~. When we match up the eight replicas of this region to obtain the covering 
space, we find that it consists of two disjoint parts. The replicas belonging to the 
four congruences of rays which travel in the direction of increasing 4 combine to 
form one ispace, and the four replicas associated with the direction of decreasing 
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4 form another. Each of these spaces is topologically equivalent to the (Cartesian) 
product of a torus and a circle. Consequently there are three nonequivalent closed 
paths on either of these spaces. We may choose one of them to be the circle 
formed by the intersection of the sphere r = uo with the cone 0 = B. . The other 
two may be chosen in one of the planes introduced before, just as the two paths 
were chosen in the case of the circular domain (see Fig. 5). When (21) is applied 
to these three paths on either space, it yields 

k( 27~0 sin 0,) = 27rm m=0,1,2..*, (145) 

k[2(u2 - uo2)1’2 - 2~0 cos-l(uo/u)] = 2a(n + x/4) n = 0, 1, 2 . . . , (146) 

k(27ruo) = 2*(Z + x’) 2 = 0,1,2 **a . (147) 

These three equations determine the eigenvalue k and the two parameters a0 
and 00. From (145) and (147) we see that 1 m 1 5 1. 

To determine the eight functions Si we proceed as in the previous examples, 
and first determine them on the caustic r = uo . Then by using (6) we will find 
them at points off the caustic. From the way in which the ray congruences were 
constructed, it follows that on the caustic r = uo , Si varies as arc length along 
any great circle which lies in a plane making the angle (r/2) - 00 with the axis. 
Therefore along the equator (t9 = 7r/2), Si = fuo$ sin B. provided that Si = 0 
at ( a0 ,1r/2, 0). The choice of sign depends upon whether Si corresponds to rays 
travelling in the direction of increasing or decreasing values of 9. To find Si at 
any point PI which is on the sphere r = G but is not on the equator, we consider 
the two great circles through PI lying in planes of the type described above. We 
determine the value of Si at the point where either great circle cuts the equator 
and add or subtract to it the distance along the great circle from the equator to 
PI (see Fig. 16). In this way we obtain four possible values which are 

&(PI) = *a0 9 sin e. f a0 
[ 

-1 cos 8 
cos 

-l cot e - 
cos eo 

- sin e. cos 1 cot0 * 
(148) 

The two choices of sign in (148) are independent. 
To find Xi at a point P = (r,e,4) where uo g r s a, we use (6). There are 

two rays from the caustic to P, and they both have the length t = (r” - ~02)~‘~. 
By considering the location of the point of tangency of the ray, we find from (6) 
that 

Si(P) = Sd(Pl) f [(r2 - Uo2)1’2 - COS-‘(Uo/T)]. (149) 

Here PI = (a0 , 0,4) is the projection of P onto the caustic. The last term in (149) 
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FIG. 16. The spherical angles necessary to determine the eiconal for a spherical domain 
are given by the relations cos y = cos e set e,, and cos 6+ = tan e. cot e. 

accounts for the difference between S; at PI and at the point of tangency. When 
(148) is inserted into (149) we obtain the eight functions S; which are given by 

&(r,C?,f#~) = fa0t#1 sin 00 f a0 

[ 

-1 cos e -l cot 8 
cos cos8a - sin 00 cos ~ 

cot e. 1 (150) 

zt [(r” - uo2y - cos-‘(ao/r)l. 

To determine the amplitudes Ai we consider the tube of rays belonging to any 
one congruence and tangent to the caustic r = a0 in the strip bounded by the 
circles 0 and 6’ + de. For simplicity we assume, rather than deduce, that the A; 
are independent of 4. Upon applying (8) or (9), or the equivalent flux conserva- 
tion requirement, to such a tube, we obtain 

Ai s A~r-1’2(~2 - a~)-“‘(sin2 e - sin2 &-“‘. (151) 

From the conditions (17) at r = a and from the relation between the Ai at the 
caustic, we see that the constants must be equal in magnitude in those four of 
( 151) which correspond to increasing 4. Pairwise, their phases are either equal 
or differ by -&r/2, according as the corresponding replicas of the domain join 
at the boundary or at the caustic. The same remarks apply to the four Ai which 
correspond to decreasing 4. 

Upon choosing the value for the constant in (151) appropriately, and insert- 
ing the four 8; from (150) and the corresponding Ai from (151) into (3), we 
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obtain for u in the range a0 < r 5 a, 00 < B < ?r - 00 , the result 

m cot e 

In writing (152) we have introduced m from (145). The sign in e&“” depends 
upon whether we choose the four waves which travel in the direction of increasing 
or decreasing 4. By using complex rays. corresponding expressions for u can be 
obtained in the rest of the sphere. 

The exact eigenfunctions for this problem are 

u = jl(kr)Plyco~ e)e*% (153) 

If the appropriate asymptotic forms of the spherical Bessel function jl(kr) and 
the associated Legendre functions Pl”(cos 0) are inserted into (153), the result 
coincides exactly with (152) within a numerical factor. The asymptotic form of 
the eigenvalue equation j,)( ka) = 0 is identical with (146) when a0 is eliminated 
from (146) by means of (147). 

Some of the calculations and results of this section are the same as those 
previously given by Landauer (2, 3). However, he did not consider the eigen- 
value problem in a bounded domain but instead considered waves in an un- 
bounded region. Consequently, his construction is somewhat more arbitrary 
than ours. He relied upon separation of variables to characterize a particular 
solution. One of his results is the asymptotic formula referred to above for 
Pl”(cos e), which can also be obtained from the differential equation for this 
function, but which apparently had not previously been given. 

9. SPHERICALLY SYMMETRIC POTENTIALS 

As a final illustration of our method, let us consider the Schrodinger equation 
for a particle in a spherically symmetric attractive potential V(r). We shall 
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write this equation in the form 

A% + lc2n2(r,lc)u = 0. 

Here the index of refraction n(r,k) is defined by 

(154) 

n2(r,k) = -1 - k-2V(r). (155) 

We wish to determine the energy levels - k2 and the corresponding eigenfunctions 
u for large values of k2. The domain is now all of space. This problem is exactly 
of the type considered in Ref. 1. There it was shown that all the procedures which 
we have been using are applicable to this problem provided we replace the 
straight line rays by the trajectories of a particle of mass m and energy fi2k2/2m 
in the potential fi2V/2m. We must still find normal congruences of such trajec- 
tories, determine the covering space, etc. But now the phase function S. which is 
the Hamilton-Jacobi function, satisfies the equation ( VAS)~ = n”(l). Thus 
1 OS / = n(r) , and this must be taken int’o account in applying (21) . 

In order to define normal congruences of rays we assume that V(r) is of such 
a form that bounded trajectories exist for some range of energies k’. Then for 
each lc in this range a bounded trajectory will lie between two spheres, a0 5 r 5 a. 
Each trajectory is a plane curve, due to the symmetry of V. Therefore we may 
apply exactly the same considerations as we did in the preceding section to de- 
fine eight normal congruences of rays which depend upon a0 , B. , and k. The radius 
a of the outer sphere is determined by a0 and k. The covering space is the same 
as before. We may choose the same paths as before in applying (21)) but we must 
use trajectories instead of straight lines in the second path. Then (21) yields 

kn(ao)27rao sin 00 = 2?rm, m = O,l, ... , (156) 

2/t /a n(r) [ 1 + r2&)‘l”’ dr - 2kaon(ao)w = 2~ 
- all (157) 

n = O,l, ..., 

kn(a0)27ra0 = 27r(Z + $s), Z = 0, 1, ..a . (158) 

In (157) the final $5 occurs on the right side because the path is tangent to the 
inner and outer spheres, both of which are caustics. The angle y is the polar 
angle in the plane of the trajectory. The a on the left side occurs because it is 
the angular separation between points at which r = a0 and r = a on a given 
trajectory. These equations determine k, a0 , and 00 . As before, (156) and (158) 
show that 1 m / 5 1. To simplify the integral in (157) we use the fact that 
dy/dr = &r-‘aon(a~)[r2n2(r) - a~%z(ao)]-1’2. Then (157) becomes 

k /“a [n”(r) - rp2atn2(ao)]1’2 dr = vr (n + k), n = O,l;**. (159) 
a0 
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To determine the Si we proceed as in the preceding problem. It follows that 
the angular dependence of the Xi is the same as before. When the correct varia- 
tion of Si along a trajectory is included, we obtain 

A%(P) = Si(P1) f f h”(r) - r-2uo%2(uo)]“2 dr. (160) 
a0 

To obtain the amplitudes Ai we also proceed as before, noting that the flux is 
proportional to (VS)“A,” multiplied by the cross-sectional area of a tube of rays. 
Then instead of (151) we obtain 

Ai = A i’r-1’2[r2n2 - aozn2(a0)]-1’4( sin” 19 - sin2 00)~~‘~. (161) 

The constants in this equation are found as before. When the four SC and Ai 
corresponding to trajectories travelling in the direction of increasing values of 
4 are inserted into (3), we obtain for u in the range a0 < r < a, O. < 0 < ?r - B. 
the result 

u = r-““[r”n”(r) - ~o2n~(u~)]-“~ [sin2e - m2(Z + ~)-2]-1’4e~imb 

(162) 

The negative sign in (162) results if the waves corresponding to decreasing values 
of C$ are used. By using imaginary trajectories similar expressions for u can be 
obtained in the other regions of the sphere. 

The exact eigensolutions of (154) are of the form 

u = fl(r,k)P,“(~O~ e)e*im+. (163) 

When the appropriate asymptotic forms of fl(r,k) and Pl”(cos O), obtainable 
by the WKB method, are inserted into (163)) the result coincides with (162). 
The asymptotic form of the equation for the eigenvalue coincides with (159). 

10. CONCLUSION 

We have presented a method for finding the asymptotic solutions of eigenvalue 
problems for certain partial differential equations. This method replaces the 
problem of solving the partial differential equation by that of finding families of 
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solutions of certain ordinary differential equations. In the case of the Schr6dinger 
equation, the ordinary equations are the classical equations of motion. For the 
reduced wave equation, they are the ray equations of geometrical optics. To ob- 
tain complete results, complex solutions of these ordinary equations must also 
be employed. In the two cases just referred to, this introduces “imaginary me- 
chanics” and “imaginary optics”, respectively. In all the examples treated here 
which could be solved by other methods, our method gave the same result as the 
asymptotic form of the other result. This is a partial verification of our method. 
We have also treated the arbitrary convex two-dimensional region, for which no 
other method of solution is known, and obtained the “whispering gallery” and 
“bouncing ball” modes for it. Let us now consider possible additional applica- 
tions of our method. 

First let us consider the reduced wave equation in a three-dimentional convex 
domain. To obtain the analogs of the bouncing ball modes for it, we again con- 
sider a minimum diameter of the domain. We can find eigenfunctions which are 
essentially different from zero only in a narrow tube around this diameter. For 
them the eigenvalues are again given by (144). To obtain the “whispering gal- 
lery” mod.es we consider on the boundary the closed geodesic of minimum length 
Lo . Again we can find eigenfunctions which are essentially different from zero 
only in a narrow tube around this geodesic. The corresponding eigenvalues are 
k = 27rm/L0 + . . . . 

To obtain solutions of the Schr6dinger equation for an arbitrary potential, 
we begin with a one parameter family of stable periodic classical oribts depending 
upon the energy lc’. The two cases referred to above are special instances of this 
procedure in which all the orbits coincide. Then all trajectories of energy k2 
which paems near the periodic one of the same energy with nearly the same di- 
rection will remain near it. Therefore for each k we can construct normal con- 
gruences of such trajectories, each of which will fill up a narrow tube around the 
stable orbit. By means of them we can construct eigenfunctions which are es- 
sentially different from zero only within such a tube. The first terms of the corre- 
sponding eigenvalues are then determined by the condition that a half-integral 
number of wavelengths must fit around the original orbit. In applying this con- 
dition, the optical length or change in “action” around the path must be used. 
Then the condition on k is just (21) with m’ = 0. The integral in (21) is the 
optical length L( Ic) of the motion in the stable orbit with energy k2. Thus the re- 
sult for Ic becomes kL(k) = 2?rm. 

The reason why a stable orbit was required in this construction is that only 
when the orbit is stable will all nearby and nearly parallel trajectories stay near 
it. If the original periodic orbit is not stable, the nearby trajectories will not stay 
near it. From these facts it follows that only the stable classical motions can be 
approximated arbitrarily closely for all time by quantum mechanical wave mo- 
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tions. This remark, which also applies to nonperiodic motions, accounts for 
macroscopic manifestations of quantum mechanical effects, such as the limitation 
of the number of bounces of one ping-pong ball on top of another (see Ref. 12). 
In such cases the classical motion is unstable, so that the quantum mechanical 
fluctuations are capable of changing it. 

We could apply our method to problems without stable orbits and to other 
problems if we could determine the classical trajectories. In the neighborhood of 
a stable orbit they can be found by perturbation methods, using the stable orbit 
as the starting point. The difficulty in finding the classical trajectories in general 
seems to be the main limitation on the use of our method. 

APPENDIX I. ASYMPTOTIC FORMULAS FOR MATHIEU FUNCTIONS 

The Mathieu functions Se,( h, cos 0) and So,(h, cos 0) are solutions of the 
equation 

S” + (b - h” cos” e)S = 0. (AlI 

They satisfy the following conditions 

Se(h,l) = 1, Se’(h,l) = 0, (A21 

So(h,l) = 0, So’(h,l) = 1. (A3) 

It follows from these conditions that Se is an even function of 19 and So an odd 
function. The constant b in (Al) is determined by the condition that the solu- 
tion Se or So be periodic in e with period 21r. In each case this condition deter- 
mines a countable set of values of b which we denote by be,(h) and born(h), 
respectively, where m is a non-negative integer. If b 2 h” we define pLg by the 
equation 

b1’2 = h cash ~0 . 

If b 5 h2 we define 6, by the equation 

b”’ = h cos 00 . 

C-44) 

(A51 

We now seek asymptotic formulas for Se and So valid for h large. We will 
also permit b to become large by assuming that b is given by (A4) or (A.5) with 
pa or e. fixed. In the first case, b 2 h2, when (A4) holds, (Al) has no turning 
point for any real value of 0. Therefore the usual WKB method is immediately 
applicable and yields 

Se(h, cos 0) - (sinh Pi)“’ (cosh2 ~.c~ - cos” @)-Ii4 

’ (cosh2 Po - COS” e)“” de 1 (A6) , 



EIGENVALUE PROBLEMS 71 

So(h, cos t5~) - h-l (sinh p0)-“’ (cash’ ~0 - cos” 0)-l/4 

e (cosh2 po - cos2 e)“2 de 1 L47) 
. 

The integral in (A6) and (A7) is given by 

s gs( h2 cos p. - cos2 e)“2 de = coshpo E y sech p. [ (2, )- E(~-4se&d]. (A@ 

The constant p0 , which now plays the role of b, is determined by the requirement 
that the solution Se or So be periodic in e with period 27r. Applying this condition 
to (A6) or (A7) leads to the condition 

Ihcoshp0E(i,sechr0) = m2r m = O,l, .*.. (A9) 

Thus we see that for each value of the integer m, one value of ~0 is determined 
by (A9). Within the accuracy of (A6) and (A7) the same values of ~0 are found 
for both Se and So. It is customary to label the solutions Se, and So,,, with the 
value of the integer m. 

In the second case, b 5 h2, when (A5) applies, (Al) has turning points at 
e = kte, + 2~’ and B = &(?r - 0,) + 2+ where j is any integer. Let us first 
consider the asymptotic form of Se and So in the interval 0 5 8 < B0 . In this 
range the WKB method yields 

Se(h, cos 0) - (sin eo)l12 (~0s~ 8 - ~0s” eo)-114 

COS” e - COS” eo)“” de 1 (A101 
. 

So(h, cos e) - h-’ (sin e,)-“” (~0s~ e - cod eoP4 

COS” e - ~08 eo)lj2 de 1 (All) 
. 

The integral in (AlO) and (All) can be expressed in terms of the elliptic in- 
tegral B(x,k) as 

s oe( cos2 0 - c0~2 eo)1/2 de 

= sin2e0B(sin-‘[g],sin80), 
L412) 

0 5 e 5 ea. 

Here B and F, the elliptic integral of the first kind, are defined by 

B(x,k) == J’,‘; ( 1 - k2 sin2 4)-l” cos” 4 d$ = lC2E(z,k) - E2(1 - k2)F(z,k), 

F(z,k) == iz (1 - k2 sin” #))-1’2 dep. 
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Now we apply the WKB connection formulas to obtain the asymptotic formu- 
las in the range 00 5 0 5 ?r - 00. In this way we obtain 

Se(h, cos 0) - (sin eo) li2 (~0s” e. - cos” e)-lj4 

(~0s~ e. - COS” eo)l12 de 1 
.cos h 

[I 
7 COS” e. - COS” e)“” de - 

80 
% 1 , 

So( h, cos e> N h-‘(sin 00)-1’2 (cos2 B. - cos” 0)-“4 

(~0s~ e - COS” eo)1’2 de 1 
~05~ e)“” de - i 1 . 

The last integral in (A13) and (A14) is given by 

(Al3) 

s ’ (c0s2eo - COS" e)1’2 de 
00 

= ~O$eo[B(%,eOseo) -B(sid’[~],coseo)]. (A15) 

Let us now impose the condition that Se and So be periodic in 0 with period 
27. This condition will determine the possible values of 00 . To apply this con- 
dition it is not necessary to obtain the asymptotic formulas for Se and So in the 
interval ?r - B. 5 0 s ?r. In fact the formulas for the interval 0 5 0 6 7r/2 
sufFke for this purpose. This is so because the periodic solutions are either even 
or odd about the value 0 = ?r/2, as follows from (l)-( 3). Therefore the periodicity 
conditions reduce to 

Xe(h,O) = 0, or Se'(h,O) = 0, 

So(h,O) = 0, or So’(h,O) = 0. 

The vanishing of either Se or So yields the same equation, namely 

(-416) 

(AI7) 

hcosze,$(~,~oseo)-~= (2m’+l)g m’=O,l,.... (A18) 

The vanishing of either Se’ or So’ yields the equation 

hCO$eoB(~,~Oseo)-~= 2~2’; m’ = 0, 1, 2, * . *. (A191 
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Both (A1.8) and (A19) can be written as the single equation 

hcos%u3(;,cOSeo) = (wz+;); m = 0, 1, 2, ... . (A201 

This completes our derivation of the asymptotic formulas for Se and So. 
We will now consider the solutions Je(h,, cash cl) and Jo(h, cash p) of the 

modified Mathieu equation 

J” - (b - h2 cash’ P) J = 0. (A21) 

In terms of certain constants Ae and Ao, to be defined later, the initial conditions 
can be expressed as 

Je(h,l) = Ae, Je’(h,l) = 0, (A=) 

Jo(h,l) = 0, Jo’(h,l) = Ao. w3) 

As before, we express b by (A4) or (A5). In the second case (A5), Eq. (A21) has 
no turning point. Therefore, for large h, the WKB method yields the following 
asymptotic formulas 

Je(h, cash EL) - Ae( sin f&)1” (cash’ P - cos’ 0,)-“4 

(cash’ /.L - cos” 00)~” I&] , 
(A24) 

Jo(h, cash /L> - Aoh-’ (sin c&)-~” (cash’ p - cos” f?~)-l’~ 

p - cos” eoy2 rip . 1 C-425) 

The integral in (A24) and (A25) is given by 

s 
o’ (cash!” /.L - cos” e$” dp = sinh P( 1 - cos” 00 sech’ ~)l” 

-co~eo[B(~,coseo)-B(sin~l(sech~),coseo)]. (A26) 

For large values of p, (A24) and (A25) simplify. If, in addition, cos 00 satisfies 
(A20), as in the case of product solutions of the reduced wave equation, (A24) 
and (A25) become 

Je(h, cash P) 

- [Ae(h sin 00)“21(h cash P)-“’ cos[, sinhp - (m + ;)%I, (A27) 
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Jo(h, cash P) 

- [Ao(h sin &)-““](h cash ~)-l’~ sin[hsinhp - (-+a);]. (A28) 

The constants Ae and Ao are defined so that 

Ae(h sin &,)1’2 = Ao(h sin 00)-“~ = 1. (A291 

Next, let us consider the case in which b is given by (A4). Then (A21) has 
turning points at p = fpo . First we apply the WKB method when p is in the 
interval 0 S ~1 < ~0 to obtain 

Je(h, cash P> - Ae( sinh ~0) “’ 

cosh2 p)li2 d/.t , 1 (*30) 

Jo(h, cash /L) - Aoh-’ (sinh ,.~-l’~ 

- cosh2 &l/2 dp . 1 (A31) 

The integral in (A30) and (A31) is given by 

s 
‘( h” cos /.LO - cosh2 /~)l’~ dp = cash po 

0 [ 
sinh p(tanh2 PO - tanh2 ~)1’2 

+ tanh2 p& sin 
--1 tanh ,X >I 

(A32) 

- tanhpo 
tanh cc0 ’ 

. 

Here D is defined by 

D( z,k) = 1% ( 1 - k2 sin2 c#J)-“~ sin2 4 d+ = km2F(x,k) -k- ‘E(z,k). 

Now by applying the WKB connection formulas we obtain, for p > PO , the 
formulas 

Je(h, cash P) - Ae( sinh Pi)“’ 

/JO - cosh2 /.L)~‘~ dp 1 (A33) 

(cosh2 /L - cosh2 &l/2 d/.i - ;] , 

Jo(h, cash p) - AohK’( sinh po) “’ 

- (cosh2 p - cash’ P~)-“~ exp h 
[s 

PO (cosh2 po - cosh2 /L)I’~ dp o 1 (A34) 

-cos h 
[J 

’ ( cosh2 /.L - cosh2 /.#’ dp - 5 . 
PO 1 
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The last mtegral in (A33) and (A34) is given by 

s 

Ir (cash’ P - cosh2 ,.Q)“’ do = sinh cc 1 - % 
Ii2 

PO 

- cosh~,,[E(~,sech~,,) -E(sin-lc~,sech~~)]. (A35) 

As before, if p is large and if ~0 satisfies (A9), the asymptotic formulas (A33) and 
(A34) both simplify to 

J(h, cash /L> - (h cash /?I2 eos[hsinha - (-+;);I. A(36) 

In (A36) we have utilized the definitions of Ae and Ao, which yield the relations 

Ae( h sinh ~0)“~ exp 
[I 

h :” (cosh2 /A, - cosh2 /.L)“’ &A 1 
== Ao(h sinh ~~)-l’~ exp h [s PO (cosh2 1 

(A371 

po - cosh2 /L)~‘~ & = 1. 
0 

For completeness, we include the following integral : 

. -1 tanh w - tanh2 ,~a sm tanh , tanh PO 

RECEIVED: June 9, 1959 
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