

anhydrin reaction
of the template

I Mechanism of
by N-Bromosuccinimide
(1993) 250–258.
Validation of some
ence of Ag(I), J.

zed Ce(IV) Oxidation
(30) 1011–1012.
Ion (1961) 319.
huric-Perchloric

sterdam (1966)

later and Waste

(1957) 1811–

ome amino acids

–HClO₄ Media
Tr. J. Chem. 20

Diffuse Reflectance Measurements of Chromium Trioxide and Some of its Suboxides

By Z. M. Hanafi, F. M. Ismail and A. K. Mohamed

National Research Centre, Dokki, Cairo, Egypt

(Received March 10, 1997; revised June 20, 1997)

Diffuse reflectance / Chromium trioxide / Suboxides of chromium

The visible and near ultraviolet absorption spectra of CrO_{3-x} ($x = 0$ – 1.5) have been measured by diffuse reflectance method at room temperature. absorption peaks or maxima are interpreted as charge transfer. A common absorption maximum was obtained at ~ 4.8 eV.

The results indicated that the samples CrO_{2.67} and CrO_{2.41} are contaminated with Cr⁶⁺ and Cr⁴⁺ ions respectively. The band observed at 750 nm in CrO_{1.98} spectrum was attributed to electron created from nonstoichiometry.

Introduction

The transition metal oxides form a groups of predominantly ionic solids which exhibit a wide range of optical and electrical properties. Many of these oxides have considerable use in electronic and magnetic devices. Little information is available in the literature on the energy band of 3d oxides such as CrO₃ [1–4]. This oxide tends to deviate from stoichiometry. The nonstoichiometry is associated with considerable modification of optical properties.

The present investigation is undertaken to make a systematic study of the diffuse reflectance spectra of stoichiometric CrO₃ and to compare the results with nonstoichiometry suboxides. For this reason, examination of the diffuse reflectance of CrO₃, CrO_{2.88}, CrO_{2.67}, CrO_{2.51}, CrO_{2.46}, CrO_{2.41}, CrO_{1.98} and CrO_{1.5} are carried out to derive more information about the effect of interactions in crystals of these oxides on the spectrum. This paper can be considered as continuation of previously measured physico-chemical properties of CrO₃ and its suboxides [5–7].

Table 1.

Solid	Preparation Temp. °C	Composition of the obtained solid
CrO ₃	230	CrO _{2.88}
CrO ₃	280	CrO _{2.67}
CrO ₃	320	CrO _{2.51}
CrO ₃	340	CrO _{2.46}
CrO ₃	360	CrO _{2.41}
CrO ₃	400	CrO _{1.98}
CrO ₃	1000	CrO _{1.50}

Experimental

Different samples of CrO₃ were prepared as given in Table 1 at 230–1000°C in a closed system [8]. More details concerning the method of preparation, chemical and X-ray analyses were described in previous publications [5, 9]. The samples were sieved through the 200 µm mesh to give the same average particle size.

The optical measurements were carried out using a Shimadzu double beam monochromator recording spectrophotometer model UV-360 (204–23300). Using an integrating sphere attachment special for powder samples. The spectrum was recorded from 200–800 nm against a reference path USP MgO. The first derivative was checked to detect the exact position of the absorption edge [10].

Results and discussion

The reflectivity change against the wavelength as recorded from the spectrophotometer for CrO₃, CrO_{2.88}, CrO_{2.67}, CrO_{2.46}, CrO_{2.41}, CrO_{1.98} and CrO_{1.50} are represented in Fig. 1. Table 2 gives the position of the bands [in eV]. An examination of the spectra for the different samples shows a common absorption maximum at $\sim(4.86 \pm 0.08)$ eV. It can be mentioned here that the position of this peak is independent of the sample composition and structure while its intensity decreases steadily with increasing oxygen deficiency. Szabó [11] showed that, Cr⁶⁺ exhibits an absorption peak at 4.7 eV and identified it with the $^1A_1 \rightarrow ^1T_2$ transition. Darrie [12] noted that the value amounting to 4.5 eV was corresponding to $^3t_2 \rightarrow 2e$ transition for CrO₃.

Different authors [1, 2, 4, 13, 14] interpreted the position of absorption peak at 4.1–5 eV as due to charge transfer $^4A_{2g} (t_{2g}^3 \xrightarrow{20D_9} ^4T_{1g} (t_{2g} e_g^2))$. For the samples of intermediate composition between CrO₃–Cr₂O₃, this common

Fig. 1. Diffu

absorption concluded be due to these samp effect of tl duction of

Absorp extent, on

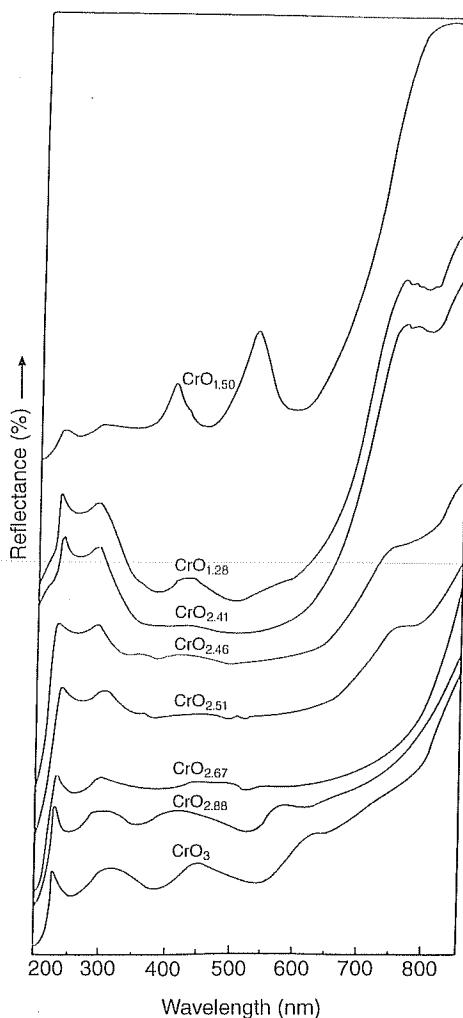


Fig. 1. Diffuse reflectance of chromium trioxide and some of its suboxides.

absorption peak was not previously reported in the literature. It is safe to conclude that the presence of this peak in the spectra of all samples may be due to the fact that the above charge transfer is predominant although these samples have different O/Cr ratio and structure [9]. The pronounced effect of the lattice is the decrease in the intensity of this band with reduction of chromium ion valency from +6 to +3 [2].

Absorption spectra in the region lower than 4.0 eV depend, to a certain extent, on crystal structure of the investigated samples and/or different oxy-

Table 2. The absorption bands of chromium trioxide and some of its suboxides (eV).

CrO ₃	CrO _{2.88}	CrO _{2.67}	CrO _{2.51}	CrO _{2.46}	CrO _{2.41}	CrO _{1.98}	CrO _{1.50}
1.57	1.60	1.51	1.53	1.53	1.51	1.51	1.65
			1.71	1.75	1.79	1.76	1.55
2.25	2.29					1.78	1.56
3.14	3.39					2.48	2.10
4.72	4.86	4.86	4.88	4.77	4.77	3.30	2.68
						4.77	4.94

gen deficiency and crystal field splittings which may lead to a variable interband absorption spectrum observed in Fig. 1. According to the X-ray diffraction patterns and infrared spectra [9], the oxidation state of chromium ion present in these samples are as following:

1. CrO₃ and CrO_{2.88} "Cr⁶⁺" (orthorhombic system)
2. CrO_{2.67}, Cr_{2.51}, CrO_{2.46} and CrO_{2.41} "Cr⁵⁺" (orthorhombic system)
3. CrO_{1.98} "Cr⁴⁺" (tetragonal)
4. CrO_{1.5} "Cr³⁺" (hexagonal).

These measurements gave no evidence of mixed valences in the above samples [9].

Going parallel to the above illustration, it can be observed that the reflectance spectra of CrO₃ and CrO_{2.88} show Cr⁶⁺ charge transfer bands at 3.14, 2.25 eV and 3.39, 2.29 eV respectively.

Different authors [1, 11, 12] obtained the value amounting ~3.3 eV for the t₁ → 2 e or ¹A₁ → ¹T₂ transition for Cr⁶⁺. Also, Van Arkel [15] estimated the value of 3.14 eV for the gap width of CrO₃ by the electrical conductivity method. Thus, it is expected that the absorption peak at 3.14 and 3.99 eV for CrO₃ and CrO_{2.88}, respectively, correspond to the transition of an electron of the valence band to the conduction band of Cr⁶⁺. The variation of the position of this peak for CrO₃ and CrO_{2.88} may be correlated to the variation in oxygen deficiency as they have the same crystal structure (orthorhombic). The same result was reached by Khilla *et al.* [16] for WO₃ oxide. Also Vernon [17] *et al.* studied the optical spectra of 25 transition metal oxides. They found that the transition energies of the maxima varied logarithmically with the carrier concentration due to lattice defects.

The second absorption peak appearing in the spectra of CrO₃ and CrO_{2.88} lies at 2.25 and 2.29 eV respectively. Szabó [11] interpreted the peak at 2.7 eV as due to a tetrahedral strong field (Cr⁶⁺ to ¹T₁) transition from the ¹A₁ ground state in Cr⁶⁺. It is clear that this transition is independent of oxygen deficiency.

Spectra of CrO₃ and CrO_{2.88} show an absorption maximum at 1.57 and 1.60 eV, respectively, which may be compared with that obtained by Ellison [1] at 1.7 eV. He correlated this value to ground electronic term (⁴P) sepa-

rated by [5] study of 1.88 eV. In case CrO_{2.46} at 3.14 ar sition Cr⁶⁺ with Cr⁶⁺. These per free from

The p samples (that the d this split ticiency. the amou transfeere in the spe tially to t

The a sorption 1.51 eV a tion band same as Cr⁴⁺.

Samp mum abs energy fe octahedra that Cr³⁺ (t² e) tran ²A₂ → ⁴T

Diffei forms of As menti plateaus lattice de

In cor spectra o departure

Acknowl The autho the optica

ts suboxides (eV).

O _{1.98}	CrO _{1.50}
51	1.65
56	
78	
48	2.10
30	2.68
77	4.94

ead to a variable
ding to the X-ray
state of chromium

ombic system)

ances in the above

erved that the
transfer bands atiting ~ 3.3 eV for
cel [15] estimated
rical conductivity
4 and 3.99 eV for
of an electron of
ation of the positi
o the variation in
e (orthorhombic).
NO₃ oxide. Also
ion metal oxides.
d logarithmicallyCrO₃ and CrO_{2.88}
eted the peak at
ansition from the
s independent ofnum at 1.57 and
tained by Ellison
c term (⁴P) separated by 1.7 eV from the next higher term (⁴P) for Cr⁶⁺. From the previous [5] study by the present authors on CrO_{2.988} it was concluded that the value of 1.88 eV represents extrinsic region of this form.In case of the second group, and from the spectra of CrO_{2.67}, CrO_{2.51}, CrO_{2.46} and CrO_{2.41} several conclusions can be drawn. The absorption peaks at 3.14 and 2.25 eV of CrO₃ appear as very weak and broad in the composition CrO_{2.67}. This may be explained by the contamination of these samples with Cr⁶⁺ which cannot be detected by X-ray diffraction or infrared studies. These peaks disappear in other samples; this indicates that they are totally free from Cr⁶⁺ ions.The plateau or peak observed in the lower absorption maximum for the samples CrO_{2.51}, CrO_{2.46} and CrO_{2.41} (Fig. 1), can be explained by assuming that the distortion in symmetry of these samples (Cr⁵⁺) is enough to cause this splitting [11]. This distortion may be created from the oxygen deficiency. Darrie [12] stated that at all stages of the decomposition of CrO₃, the amount of oxygen lost is directly proportional to the number of electrons transferred to chromium. Thus, the splitting of absorption maxima observed in the spectra of the above samples (CrO_{2.51-2.41}) may be attributed essentially to the increase of electron due to nonstoichiometry.The absorption spectrum of CrO_{1.98} exhibits two very weak broad absorption peaks at 3.26 and 2.43 eV, two absorption maxima at 1.78 and 1.51 eV and one absorption peak at 1.56 eV. Chase [3] obtained the absorption bands at 1.5, 1.7, 2.7 and 3.1 eV for CrO₂. These values are nearly the same as those obtained for CrO_{1.98} and are attributed to the presence of Cr⁴⁺.Samples of CrO_{1.50} show absorption peaks at 2.68, 2.10 eV, and maximum absorption at 1.65 eV. Poole [18, 19] has already interpreted some energy features of the level diagram of Cr³⁺ in an octahedral and in an octahedral plus a trigonal crystal field environment. Companion [14] stated that Cr³⁺ give absorption peak at 2.6 eV which correspond to the ⁴A_{2g} → ⁴T_{1g} (t² e) transition. The energy levels at 2.10 and 1.65 eV are attributed to the ²A₂ → ⁴T₂ and ⁴A_{2g} → ⁴T_{2g}, respectively.Different authors [1-4] stated that, CrO₃ and Cr₂O₃ are the more stable forms of chromium oxides, while suboxides represent the impure oxides. As mentioned before, the spectra of intermediate samples contain knees, plateaus or peaks, at lower energies (Fig. 1). They represent the effect of lattice defects, and disappear in the stable samples (CrO₃ and Cr₂O₃).In conclusion, the qualitative features of the shapes of optical absorption spectra of CrO₃ and some of its suboxides may be used as measure for the departure from stoichiometry.

Acknowledgment

The authors are indebted to late Prof. Dr. M. A. Khilla for help in obtaining the optical reflectance spectra.

References

1. A. Ellison and K. S. W. Sing, *J. Chem. Soc. Faraday* **24** (1978) 2017, 2809; *Trans. Faraday Soc.* **66** (1970) 1004.
2. T. I. Y. Allos, R. R. Birss, M. R. Parker, E. Ellis and D. W. Johnson, *Solid State Commun.* **24** (1977) 129.
3. L. L. Chase, *Phys. Rev. B* **10** (1974) 229.
4. K. W. Blazey, *Solid State Commun.* **11** (1972) 371.
5. M. A. Khilla, Z. M. Hanafi and A. K. Mohamed, *Thermochim. Acta* **54** (1982) 319; **39** (1982) 139; **56** (1982) 291.
6. M. A. Khilla and A. A. Hanna, *Ibid.* **51** (1981) 335.
7. Z. M. Hanafi, F. M. Ismail and A. K. Mohamed, *Z. Phys. Chem.* **194** (1996) 61.
8. T. Kubota, *J. Phys. Soc. Jap.* **15** (1960) 1706.
9. F. M. Ismail, M. A. Khilla and A. K. Mohamed, *Egypt. J. Chem.* **33** (1990) 411.
10. M. A. Khilla and N. H. Rofail, *Radiochim. Acta* **40** (1986) 155.
11. Z. G. Szabó, K. Kamaras, Sz. Szebeni and I. Ruff, *Spectrochim. Acta* **344** (1978) 607; *Magy. Kem. Foly.* **83**(7) (1977) 317.
12. R. G. Darrie, W. P. Doyle and I. Kirkpatrick, *J. Inorg. Nucl. Chem.* **29** (1967) 979.
13. K. W. Blazey and H. Rohrer, *Phys. Rev.* **185** (1969) 232.
14. A. L. Companion and M. Mackin, *J. Chem. Phys.* **42** (1965) 4219.
15. A. E. Van Arkel, E. A. Flood and N. F. Bright, *Cand. J. Chem.* **31** (1953) 1009.
16. Z. M. Hanafi and M. A. Khilla, *Z. Phys. Chem.* **89** (1974) 230.
17. R. P. Vernon, B. W. William and R. Rustum, *J. Solid State Chem.* **4** (1972) 250.
18. C. P. Poole and MacIver, *J. Chem. Phys.* **41** (1964) 1500.
19. C. P. Poole and J. J. Itzel, *Ibid.* **39** (1963) 3445.

Dielectric
of Urea-
and its E
of CarboBy Jia-Zhen Y
and Chao-Jun
Department of C

(Received Marc

Thermodynai
Carbonate /

The determinati
mass% urea-wat
| $\text{NaHCO}_3 (m_1)$,
318.15 K. The c
to thermodynai
sociation entrop
urea-water mixe
dependence of T

Introductio

The dielectric
dissociation c
but also by c
information i
solvent intera

As a part
carbonate-bic
that the secon
tures from 27
vents have b
without liquic

This project