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APPENDIX IV

TimME CONSTANT FOR THE CAPACITY OF THE TRANSITION REGION

For this case we shall consider the case of holes in an a-c. field with po-

tential
RT 2 xe™
¢"E(E+Iﬂ

where the d-c. retarding field is £7'/gL, and the a-c. field is k7/qL, where
1/L, is considered small for the linear theory presented here. The expression
for the current of holes is
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We shall obtain a solution for p by letting
b= o 8—:IL,- + P [e~:rIL, _ eﬁ‘,rz]efwl,

while neglecting recombination in this region so that p must satisfy the con-
dition 5 = —a (hole current)/dx leading to the differential equation
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There are three separate exponential dependencies of the variables leading
to three equations (neglecting terms of order (1/L)%)
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The first equation is satisfied by the equilibrium distribution and the
second by

p]_ = —Pg D/?,m L1],r
and the last by

1 4+ /1 + 4iwl?/D
e 2L,

It is evident that dispersive effects set in when

w = D/AL
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This corresponds to the result used in (4.31) in which (xr, — x7,)/10 was
used for L, . For smaller values of @ the current may be calculated and put
in simple form by expandmg v up to terms including w’. The resulting ex-
pression for the current is

I = —iwg po LAL/L)e™
This is interpreted as follows: The a-c. voltage across a layer L, thick is

8 = (kT/q) (L./Li)e™

and, if we consider plus voltage as producing a field from left to right, then
the a-c. voltage across L, is V = —&y. Substituting this for (L./L)exp(iwt)
gives

T = iwgpe Lg/RT)V

Here gpolr is the total charge in the layer L., (¢V/kT) is an average frac-
tional change in this charge for V so that (gpoL,) (¢V/kT) + V is a capacity.

APPENDIX V

TaE EFFECT OF SURFACE RECOMBINATION

In this appendix we shall consider the effect of surface recombination upon
the characteristics of the $-n junction. As for Section 4 we shall illustrate
the theory for the case of holes diffusing into n-type material. For sim-
plicity we shall treat a square cross-section bounded by y = +w, z = Fw,
the current flow being along +x.

We shall denote the a-c. component of # as

m=n (x: ¥ % t)
At x = 0, the edge of the n-region, we shall suppose that ¢, and y are inde-
pendent of y and z so that we shall have
PI(O: ¥ 5 t) = puw em‘ = (Pn qvl/kT)eim
by reasoning similar to that used for equation (4.5). The boundary condi-
tion at the surface will be

—D%=sp1 fory = +w
This states that the recombination per unit area is sp; and is equal to the
diffusion to the surface —Dap:/dy. Similar boundary conditions hold for the
other surfaces. By standard procedures involving separation of variables
we may verify that the solution satisfying the boundary conditions is

e
h= _Zu ai e 7 cos By cos Bz
1,f=
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where the eigenvalues 3; are determined by the boundary condition
Bav tan Bav = sb/D = x.

We use 8; = Bav for brevity later. Because of the symmetry of the boundary
conditions it is not necessary to include sine functions in the sum. The value
of a;; is given by

ai = (1+ iwrg)/(Dry)!
where 7;; is the lifetime of a hole in the eigenfunction cos ;v cos B;z; i.e.
745 1s the lifetime which makes

p = exp (—1/ri;) cos By cos B;s,
a function which satisfies the surface boundary conditions, a solution of the
equation
ap/ol = DV'p — p/r = —DB} + Bp — p/r

where to simplify the subsequent expressions we have omitted the subscript

p from 7. This equation leads to
1 —_—
Tij

DB + 8 + -

The coefficients a;; are readily found since the cos 8.y functions form an
orthogonal set (as may be verified by integrating by parts and using the
boundary conditions). The values are

aij/po = 4Alsin 8, sin 8;]/6.6,[1 4 (1/26,) sin 26,]-[1 + (1/26;) sin 20;]

The current corresponding to this solution is

I = —¢D ff (ap/ax) dy dz

integrated over the cross section at ¥ = 0. This gives

I = qusz S aij(ai/ puo)(4w’/6.6;) sin 8; sin 0,
Substituting for a;; and inserting pio = pagui/kT, we obtain an expression
for the admittance A, = I,/V exp(iwt):

4 sin® 6; sin® 6,

AP = 41@2 q.uPn E;J'Cfi;' -:'2_ 1 1
6; 0; I:l + (2_0,) sin 26,-] [1 + (—ZE) sin 28,-]

where the sum plays the role formerly taken by (1 + iwt)'2/4/Dr in equation
(4.12); the factor 4w’ is the area of the junction.
We shall analyze the formula for the case in which recombination on the
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surface is smaller than diffusion to the surface so that x is not large. The values
of 8;, over which the sum is to be taken, may be estimated as follows: in
each interval of 8; of the form nr to (n + (3))m, 6; tan 8, varies from 0 to o,
giving one solution to #; tan 6; = x. For x small, the solutions are approxi-
mately

B = sin f = tan 6y = ‘\/)-(_
th

m + x/m; — sin 6 = tan 6 = x/=

8, = nr + x/nw; (—1)" sin 0, = tan 0, = x/nw
From this we see that the terms in the sum are as follows:
agg-4x2/x24 = ay

ano- 2(x/nm)’/ (nm)* = ano2x’ /T
- x0T
From this it is evident that unless x is large, the series converges very
rapidly. (This conclusion is not altered when the increase in anm with 8,8 is
considered.) Thus the dominant term in the admittance is

4w’qupo (1 + wrm)'"*/ v/ Do

where

DY 2
1/1‘09= 2(7"&—2) (&0)+ 1/7‘
D\ sw

=2 (i) + 1/r
w

This expression is valid only for sw/D small so that 02 = sw/D. The term
s/(w/2) represents the rate of decay due to holes recombining on the surface,
s having the dimensions of velocity. For w >> 1/7q0 , the admittance becomes
dulqugo(iw/D)1?2, the same value as given in equation (4.12) for large » and
an area 4w

The conclligion’ from this appendix is that for x small, the effect of surface
recombination is simply to modify the effective value of r and otherwise leave
the theory of Section 4 unaltered. :

For very large values of x, it is necessary to consider higher terms in the
sum and several values of 7 will be important. Under these conditions the
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approximation is that, at x = 0, 1 is independent of x and y may become a
poor one, especially for forward currents, because the transverse currents to
the edges will be important. Under these conditions the role of surface re-
combination will give rise to patch effects of the sort discussed in Section 4.

APPENDIX VI

TrE EFrEcT oF TrAPPING UrON THE DIFFUSION PROCESS

In this appendix we shall investigate the effect of the trapping of holes
upon the impedance. We denote the density of mobile holes in the valence-
bond band by p and the density of holes trapped in acceptors by p.. For
thermal equilibrium at room temperature there will be an equilibrium ratio,
called «, for $,/p. For germanium a = 10~* and for silicon & = 0.1 to 0.2.

We shall consider four processes which occur at rates (per particle per
unit time) as follows:

v, direct recombination of a hole with an electron (free or bound to a donor)
v, trapping of a hole by an acceptor

¥.o Tecombination of a hole trapped on an acceptor

v. excitation of a trapped hole into the valence-bond band.

Under equilibrium conditions as many holes are being trapped (rate pv.)
as are being excited (p.): hence v, = av,.

We shall study solutions of the customary form for the a-c. components:

P = pue
P1a = P e

These must satisfy the equations
po= DV — (it v)pr + vepua
b = vipr — (e + vra) pra

These lead readily to the equation for 7:

Dy = iw + v + v — vow/(iw + v + via) = i

fwi—yz

fwl—yT

Vely Ve

[ramsmolrrrnli- e vl

From this equation we can directly reach the important conclusion that
the trapping process can never lead to a capacitative term larger than the
resistive term. This result is obtained by analyzing the complex phase of v,
the admittance being proportional to y. In particular, we find that the real
term in Dy’ is always positive, as may be seen from inspection, so that the
complex phase angle of +y is less than 45°.

The form reduces to a simple expression if », and v, are very large com-
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pared to »,, ¥,; and w , a situation which insures local equilibrium between
p and po . Under these conditions we obtain

l:)")v'2 = fm[l = .a] + Vr + AV rag
Dividing by (1 + «) gives
er + Pavra
+
P+ ta

The interpretation is that the holes diffuse as if t «ir diffusion constant were
reduced by the fraction of the time p/(p + pa).- 1ey are free to move and
recombine with a properly weighted average of ». .nd v, .

D/ + )W = [Dp/(p + Pl =

APPENDIX VII

SOLUTIONS OF THE SPACE CHARGE EQUATION

We shall first show that the space charge equation (2.11) has a unique
solution for the one dimensional case. For simplicity we write (2.11) in
the form

2
j_‘“ = sinh u — f(x) (A7.1)
to which it can be readily reduced. We shall deal with the case for which
[ = faforx < x (A7.2)
f=fafora > a > a, (A7.3)

so that the interval (x4, %) is bounded by semi-infinite blocks of uniform
semiconductor. We shall require that % be finite at x = == . This boundary
condition requires that for large values of | x|

=ty + Ao x— —® (A7.4)
w =y + Aye """ x— + o (A7.5)
where
sinh #, = fa, sinh #, = fj
= | (cosh u)'®|, v = | (cosh )" |

(If the opposite signs of the y’s were present, the boundary conditions would
not be satisfied.) The exponential solutions are valid for |# — u.| or
| — | < 1. For larger values, however, solutions exist which are ob-
tained by integrating (A7.1) to larger or smaller values of x.

For these extended solutions the values of u(x, 4,) and #'(x, 4a) (= du/dx)
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are monotonically increasing functions of 4,. This may be seen by con-
sidering ¥ = x,. For A, sufficiently small, the value of %(xs, 4,) and «'(x,, 4a)
are given simply by (A7.4). For larger values of 4,, an exact integral will be
required. It is evident, however, that | solutions of the form (A7.4) are
related simply by translation for < x,. Hence increasing 4, is simply
equivalent to integrating (A7.1) to larger values of « and it is evident that
this increases # and %' mo otonically. It may be verified that for a sufficiently
large A, the solution becc es infinite at x, so that u(x 4, 44) %' (24 , 4a) both
vary monotonically and ¢ tinuously from — =< to + = as 4, varies from
negative to positive valu ~ We shall refer to this property of #(xa, 4a),
' (xa, Ag) as Pr.

We next wish to show that w(xy, Aa), #' (21, Aq) has the property Py for
values of x; > x,. To prove this we note that if for any x; , (%, 4.) and
#'(x,, A,) are finite, the solution may be integrated somewhat further to
obtain #(x. , Ag), #'(x2, Ag) for xs > x, . From equation (A7.1) it is evident
that an increase in either #(x;, a) or #'(x;, a) will result in an increase in
d*u/dx* in the interval x; < x < a3 so that # and %' at x, are monotonically
increasing functions of % and #’ at x; . Hence if % and #’ at x; have the
property P1, so do x and ' at a2 . By extending this argument we conclude
that » and «’ at any value of x have the property P;. (A rigorous proof
can easily be completed along these lines provided that | f(x) | is finite.)

Similarly it may be shown, starting from (A7.5), that #(x, 4,) is a mono-
tonically increasing function of A4, and #’(x, 45) is a monotonically decreasing
function of Aj.

In order to have a solution satisfying (A7.4) and (A7.5) we must have,
for any selected point x,

u(x, 4,) = ulx, Ay) (A7.6)
w'(x, Ag) = ' (x, Ay) (A7.7)

Now as the equation u(x, 4.) = u(x, A,) varies from — o to + o, #'(x, 4,)
varies from — « to + % and #'(x, 4;,) varies from 4+« to — =%, monotoni-
cally and continuously. Hence there is one and only one solution of (A7.1)
satisfying (A7.4) and (A7.5).

In order to verify that the solutions discussed in Section 2 are correct for
large and for small K, we show schematically in Fig. Al the solution for a
representative K as a dashed line together with the curve . = uo(y) = sinh™
y. In terms of #o, equation (2.16) becomes

2
du

oF K2 (sinh % — sinh uy). (A7.8)
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From the symmetry of the equation, it is evident that # must be an odd
function of y and hence that the solution must pass through the origin.
The boundary condition in this case will be that u — u, for y — 4= so that
there will be no space charge far from the junction. We can conveniently use
the origin as the point at which the solution from y = 4= joins that from
y = — =0; from symmetry, this requires merely that # = 0 when y = 0.

Uo=sinh'y
\

W AND u.oT /4’
rd ~ =L
’f
’l
4
4
4
7’
—
Wy Y
’I
4
I’
P 2
/ d?u _ 1 [smh w-sinh uo]
e UZ K2

Fig. Al—Behavior of the solution of Equation (2.16) or (A7.8).

For large negative y, # = sinh™ y and du/dy = 1/cosh o so that du/dy
is small. It is at once evident that, for large values of K, % must lie above 1,
so that the integral

du

(1/K%) f; (sinh # — sinh %) dy = ay (A7.9)

will be large enough to make the solution u(y) pass through the origin. If
u — up > 2 over the region of largest difference, the space charge will be
largely uncompensated and the solution will correspond to that used in
equation (2.18). On the other hand, as K — 0, the requirement that u(y)
pass through the origin leads to the conclusion that % — #p must be small for
all values of y. The possibility that u oscillates about uo need not be con-
sidered since it may readily be seen that, if for any negative value of v,
say 1, both #(y) and '(y;) are less than wuo(y1) and ' (1), then «(y) and
' (y) are progressively less than wo(y) and uo(y) as y increases from y; to 0.-
Hence, if for negative y the # curve goes below the ug curve, it cannot pass
through the origin.
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APPENDIX VIII
List or SymBOLS
(Numbers in parentheses refer to equations)
a= (Ng — N,)/x (2.14)

A = admittance per unit area of junction (4.23)

A, = component of 4 due to hole flow into n-region (4.12) (4.24)

A, = component of 4 due to electron flow into p-region (4.25)

A7 = component of A4 due to varying charge distribution in transition
region

4 also used as a constant coefficient in various appendices

b = ratio of electron mobility to hole mobility

b = symbol for base in Sections 5 and 6

B constant coefficient in various expansions in appendices

¢ = symbol for collector in Section 6; a length in Appendix III

C = capacity per unit area

C,,C, (425) (4.27) as for 4,, 4,

Cr (2.42) (2.45) (2.56) as for Ar

D = diffusion constant for holes (4D is the diffusion constant for electrons)

e= 2718...

[ see Appendix 7

g = rate of generation of hole-electron pairs per unit volume (3.1)

G = conductance per unit area of junction

G., G, as for A’s

i=v-1

I = current density

[., T, = current densities due to electrons and holes (2.5) (2.6) (4.10)

Tooy Ipo Iy (411) (4.12) (4.18) (4.19)

1., I.,, I, saturation reverse current densities (4.11) (4.18) (4.21)

I, see text with (4.35)

J = subscript in Section 3 for junction Fig. 5 equation (3.11)

k = Boltzmann’s constant

K = space charge parameter (2.17)

L. = length

L, = n;/a (2.15)

Ly = Debye length (2.12)

Ly, L, = diffusion lengths for electron in p-region and holes in n-region (4.8)

L., = length required for potential increase of kT/q in region of constant
field (4.32) Appendices IT and IV

Ly corresponds to a-c. field, Appendix IV

n = density of electrons

5
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Ma, np = equilibrium densities of electrons in - and p-regions

p = density of holes

pn, p» = equilibrium densities of holes in u- and p-regions

po = d-c. component of non-equilibrium hole density (4.3)

1 exp(iwl) = a-c. component of non-equilibrium hole density (4.3)

P = total number per unit area of holes in specimen (2.35)

g = electronic charge (g = |q|)

Q = ¢P = total charge per unit area (2.39)

r = recombination coefficient for holes and electrons (3.1)

R = resistance of unit area

R, = resistance of unit area obtained by integrating conductivity (3.10),

Appendix I

R, = effective series resistance, discussed in connection with (3.13)

s = rate of recombination per unit area of surface per unit hole density,
Appendix V

S = susceptance per unit area (imaginary part of admittance)

Sp,Sn,Srasfor A’s.

t = time

T = temperature in °K

T = subscript for transition region

u = qu/kT (2.9), & — ¢1)/kT (2.32), Appendix VII

1 and 1e™" = d-c. and a-c. components of voltage applied in forward direc-

tion (4.2)

W = width of space charge region in abrupt junction, Section 2.4

w = half thickness of n-region or transistor base of Sections 5 and 6.

w = half width of square rod in Appendix V.

x = coordinate perpendicular to plane of junction

y, 5 = transverse coordinates, Appendix V

y = reduced length (2.17), Appendix VII

« = current gain factor in transistor (6.4)

« = parameter in Appendix ITT and VI

a;; = parameter in Appendix V

3; = parameter in Appendix V

v = parameter in Appendices IT, IV and VII

¢ = symbol for emitter Section 6

0; = Bav Appendix V

¢ = dielectric constant

mobility of a hole (bu = mobility of electron)

— rates of recombination etc., Appendix VI

= charge density (2.1)

= conductivity

Il I

=

9 ® % E
I
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o; = conductivity of intrinsic material (4.15)
o, = conductivity of n-region = gbunn
o, = conductivity of p-region = gqup,

T = time
7a 7 Tp = life times of electrons in p-region and holes in n-region (3.2) (3.3)
(4.7)

rr = relaxation time of transition region, Appendix IV
®, ¢p , ¢r = Fermi level and quasi Fermi levels (2.2) (2.4)

8¢ = applied voltage across specimen in forward direction, Section 2.3,
(4.2)

x = sw/D in Appendix V

Y = electrostatic potential (2.2)

w circular frequency of a-c. (4.2)

I



