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Abstract--A simple mathematical model is developed which computes fingerprint local ridge orientation 
from core and delta positions. This model provides an intelligent tool for resolving ambiguities due to the 
periodic nature of orientation, in algorithms for interpreting fingerprint patterns. 

Direction field Fingerprint processing Ridge orientation Image analysis Mathematical 
model 

I. INTRODUCTION 

This paper describes a model of fingerprint ridge 
orientation. The model incorporates an understanding 
of the topology of fingerprints and is therefore of value 
in the interpretation of fingerprint images in automated 
fingerprint identification systems (AFIS). AFIS systems 
are of increasing interest and we resolve here one of 
the basic issues underlying fingerprint interpretation, 
namely that of resolving ambiguities in the recognition 
of ridge orientation. 

In a fingerprint the ridge structure defines everywhere 
a direction of ridge "flow", called the local ridge orien- 
tation (LRO). Two types of singular points, cores and 
deltas (see Fig. 1), form isolated singularities of the 
otherwise continuous LRO function. 

Ridge orientation has proven to be of fundamental 
importance in fingerprint image processing. The direc- 
tional image introduced by Mehtre et al. ~1~ consists of 
the LRO evaluated at each pixel position in the image. 
Applications requiring knowledge of ridge orientation 
include filtering to enhance fingerprint images, 12'3~ 
detection of singular points, ~4) fingerprint image seg- 
mentation, ~ ~  ridge detection during preprocess- 
ing, 16t postprocessing to redface numbers of false 
minutiae ~7~ and pattern analysis to extract classification 
types.~ t t, 

Several AFIS-based techniques of fingerprint en- 
hancement and pattern analysis require (ideally) a 
value for fingerprint LRO at every pixel. ~2~ The most 
usual approach in commercial AFIS systems has been 
to determine LRO accurately on a coarse regularly 
spaced grid, and assume it is constant within each rect- 
angular area. This is particularly unsatisfactory in 
regions near cores and deltas, where the ridge curvature 
is high. For example, the AFIS system developed by 
the U.K. Home Office ~13~ directionally enhances images 
only in low-curvature regions. By incorporating the 
model the enhancement can be applied to the entire 
image, greatly improving the encoding which follows. 
Another, more satisfactory, approach has been to use 

the directional image. 12'3~ Our model is also useful here 
because it can guide the process of LRO determination, 
yielding a better quality directional image, particularly 
for noisier images. 

Much work in the description and analysis of orien- 
tations in general images has been applied to finger- 
print image processing. Kass and Witkin tt4~ analyze 
oriented patterns by estimating dominant local orien- 
tations and combining these to construct a flow co- 
ordinate system. Applied to fingerprints this approach 
can determine the LRO pattern and locate the singular 
points. Zucker 115~ described orientations in terms of 
tangent vector fields, distinguishing between Type I 
(contour) and Type II (flow) processes. Fingerprint 
LRO is an example of a Type II process. More recently, 
Zucker and others have developed techniques of trace 
inference and curve detection ¢16'~ 7~ which have suc- 
cessfully detected ridges in fingerprints. This work, and 
related work for 3-dimensional images I1s'19~ is of in- 
terest because it applies differential geometric concepts 
such as tangent fields, direction fields and Poincare 
indices to the analysis of image directionality. It is not, 
however, immediately applicable to the problem of 
modeling LRO because LRO represents a flow-like 
(2-dimensional) rather than a curve-like (1-dimensional) 
process. Fingerprint pattern classification techniques 
in the literature Is ~o~ often depend upon an analysis of 
the LRO pattern. While this paper does not directly 
address the classification problem, our model has an 
understanding of LRO topology and can therefore be 
usefully applied to pattern classification. 

As mentioned above, many applications must pro- 
cess ridge orientation information, Ambiguities due to 
the multi-valued nature of orientation modulo n can 
occur during the analysis of the LRO pattern. Without 
an intelligent model which understands the topological 
behavior of ridge orientation, it is difficult to resolve 
these ambiguities satisfactorily. Section 3 concerns the 
nature of the ambiguities and the use of the model to 
resolve them. The result is demonstrated in an algorithm 
for interpolating between sampled values of LRO. 
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Fig. 1. A loop fingerprint, showing two singular points, 
marked C at the core and D at the delta. 

2. THE MODEL OF RIDGE ORIENTATION TOPOLOGY 

2.1. Direction and orientation 

Two distinct types of direction can be defined. One 
of these, which we shall call simply "direction", is easily 
described by the elementary mathematics of vectors. 
The other, called "orientation", is more useful for de- 
scribing directionality in images, but requires the con- 
cept of the "direction field". We adopt the term direction 
field from differential geometry ~2°~ even though "orien- 
tation field" might be a less confusing description in 

(a) 

/ 
(b) 

Fig. 2. Illustrating the difference between (a) direction and (b) 
orientation. 

view of our distinction between direction and orien- 
tation. 

As we shall see, the direction field is suitable for 
describing the behavior of fingerprint ridge orientation 
in the vicinity of cores and deltas, whereas the vector 
field is not. 

A vector in the plane, as shown in Fig. 2(a), forms 
some angle 0 with the Cartesian x-axis. 0 is in the range 
0 to 2n rad and is called the direction of the vector. 
Directions of vectors can be naturally represented as 
elements of the unit circle S ~. Since we will be interested 
only in the directional properties of vectors, all vectors 
will be assumed to have unit length. 

Figure 2(b) shows a straight line through the origin 
instead of a vector. This line forms some small positive 
angle 0 with the positive x-axis. 0 is called the orien- 
tation of the line and lies in the range 0 to n because it 
is unaffected by rotation through integer multiples of 
g. Orientations can be represented as elements of the 
projective circle pl which may be thought of as a circle 
with circumference n and radius 1/2. (Mathematically, 
the projective n-space P" is obtained by identifying 
radially opposite points of the unit n-sphere S".) 

2.2. Vector fields and direction fields 

A vector field can be regarded as a 2D function 
assigning a direction in S 1 to each point. Analogously, 
a direction field ~z~ can be regarded as a 2D function 
taking on values which are orientations in W. In both 

~A 

(a) 

(b) 

Fig. 3. Two sets of curves. The curves in (b) are orientable; 
those in (a) are not. 
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(a) 

(b) 

Fig. 4. Poincare indices for direction field singular points: (a) 
core (index 1/2); (b) delta (index - 1/2). 

cases the function is defined and continuous everywhere 
except at a finite number of singular points. 

The fundamental difference between vector and 
direction fields is revealed when their integral curves 
are compared. An integral curve of the field is a curve 
whose tangent has everywhere the same direction (or 
orientation) as the field. Integral curves of vector fields 
are always orientable; that is, it is possible to assign 
arrows to the curves, indicating a forward sense of 
"flow" which is consistent and continuous. However, 
direction fields need not be orientable. Figure 3 shows 
examples of orientable and non-orientable sets of cur- 
ves. In the non-orientable example, a discontinuous 
change in the sense of the arrows occurs at the point 
p along the path AB shown. 

It is in the concept of orientability that we find a 
vector field unsuitable to model realistic fingerprints, 
and a direction field suitable. Note the similarity be- 
tween the non-orientable example of Fig. 3 and the 
ridge pattern of a loop fingerprint. 

The difference between direction and vector fields is 
also revealed by the Poincare indices ~z ~ of the singular 
points of the field. The Poincare index of a singular 
point p is the net or algebraic number of rotations 
through 2rt made by the direction (or orientation) of 
the field as a simple closed curve surrounding p and 
no other singular point is traversed in the anticlockwise 
sense. It is well known that Poincare indices in vector 

fields are always integers. For direction fields the indices 
may also be half-integers. Iz2) Figure 4 shows patterns 
of lines resembling the areas around cores and deltas in 
fingerprints, showing that the index of a core is + 1/2 
and the index of a delta is - 1/2, corresponding to 
changes in LRO ofn and - rt, respectively, as the curve 
is traversed. The center of a circular whorl has an index 
of + 1 and can be regarded as two superimposed cores. 
The values of Poincare indices for the various LRO 
singularities were noted in reference (11). Sander and 
Zucker I~ s~ have described these singularity types, their 
Poincare indices, and the use of direction fields to 
describe surfaces in 3D images. 

Our use of the direction field provides a mathematical 
basis for describing fingerprints. Without it the orien- 
tation of ridges could not have been modeled in a 
manner which exhibits the non-orientability and 
Poincare index values characteristic of fingerprints. 

2.3. A model of  LRO topology 

It should now be clear that a local ridge orientation 
function LRO(x, y) can be modeled as a direction field 
having singular points d l . "  dr, of index - 1/2 at delta 
points and c l . . . c  k of index 1/2 at core points. 

The model of LRO which is developed here is the 
simplest possible model which accounts correctly for 
the topological behavior of orientation around the 
singular points. It provides a direction field O(x,y) 
which is deformable onto the true LRO field of a real 
fingerprint. Any two fingerprints with the same singular 
points are modeled by the same function, even though 
their LRO values may differ in detail. Each pattern 
can, however, be continuously mapped onto the other. 
Therefore, the O(x, y) of the model can be regarded as 
the LRO of some "ideal" fingerprint having the given 
core and delta positions. Its relation to the actual LRO 
of a real fingerprint is discussed in the next section and 
its usefulness in real applications is described in the 
sections which follow. 

We now describe the model. First, regarding the 
image plane as the complex plane C, consider the 
rational polynomial function 

( z  - z O ( z  - z 2 ) ' " ( z  - z O  
q ( z )  

( z  - p O ( z  - p 2 ) ' " ( z  - p , . )  

with first-order poles and zeros Pl , . . . ,  P,. and z~ . . . . .  z k. 
It is well known that the Poincare indices are + 1 at 
each zero and - 1 at each pole. 

We observe empirically that far from the center of 
the image, the ridge orientation tends towards a con- 
stant value, say 0~. Noting that the cores and deltas 
of a fingerprint have Poincare indices of 1/2 and - 1/2, 
define 

p ( z ) = / ( e Z ~ O ' . ( z - z c ' ) ( z - z c z ) ' " ( z u Z c m ) ~  
( z  - zd~ ) ( z  - zd2)"" . ( z  - zd , , )  / 

where Zc~,...,Zck and za~,...,zak are the locations of 
the cores and deltas, respectively, and 0~ is the ridge 
slope at infinity. With the usual alignment, 0.~ = O. 



(a) 

(b) 

Fig. 5. LRO patterns determined by the model: (a) whorl; (b) double loop; (c) loop; (d) tented arch; (e) plain 
arch. 



(c) 

(d) 

Fig. 5. (Continued.) 
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(e) 
Fig. 5. (Continued.) 

The above equation has the required half-integral 
Poincare indices, since taking the square root of a 
complex number halves its argument. 

Thus the model of LRO is 

O(z) = (arg(p(z))) mod n. 

2.4. Relationship to the LRO of real finyerprints 

The actual LRO of a real fingerprint is a direction 
field with singular points at the cores and deltas. The 
modeled orientation O(x,y) is a direction field with 
identical singular point positions and types. Therefore, 
LRO(x, y) = O(x, y) + e(x, y) where the error e(x, y) is a 
direction field having indices of value zero at all singu- 
lar points. 

Figure 5 shows fingerprints of the plain arch, tented 
arch, whorl, loop and double loop classification types. 
Line segments representing orientations determined 
by the model are superimposed. The model correctly 
represents the topological behavior of the ridge struc- 
ture, but does not provide close point-wise approxi- 
mation to the true values. Therefore, the usefulness of 
the model lies not in providing accurate orientation 
values but in providing knowledge about their behavior. 

3. USE OF THE MODEL TO RESOLVE AMBIGUITIES IN LRO 

Applications requiring knowledge of ridge orienta- 
tion include filtering to enhance fingerprint images and 

pattern analysis to extract classification types and 
minute details in AFIS systems. 

Traditional methods of real analysis assume that the 
function being analyzed is continuous and real-valued. 
Problems arise when processing orientations because 
this basic assumption is violated. Although LRO is 
continuous as a function taking values in p1, it is 
usually discontinuous (and indeed multi-valued) when 
viewed as real-valued. 

The multi-valued nature of orientation leads to am- 
biguities when processing orientations. Suppose for 

0m 

(a) (b) 

Fig. 6. Two or ienta t ions  01 = n/4 and  02 = 3n/4, with the 
interpolated midpoint  values Or.: (a) 0,~ = 0 obtained as suming  
clockwise rotation from 0 ~ to 02; (b) 0m = n/2 obtained assum- 

ing anticlockwise rotation. 



Model for interpreting fingerprint topology 1053 

example that interpolated orientation values are re- 
quired along the line joining points pl and P2, where 
O(p~) = 3n/4 and O(p23 = rt/4 (say) as in Fig. 6. There 
are infinitely many ways of reaching 37t/4 from n/4 - P~ 
may be circumnavigated any number of times in either 
sense. The figure shows two of these options, which 
yield different results. 

If the rate of change of 0 is known, the ambiguity is 
resolved. The sign of the derivative indicates whether 
to move clockwise or anticlockwise around W, and its 
magnitude indicates the number of revolutions required. 
With a suitable sampling rate, the number of full 
revolutions is always zero, and the choice is simply 
between clockwise and anticlockwise rotation. The 
LRO model provides the information required to make 
this choice. 

3.1. Orientation unwrapping 

Standard 2D analysis could be applied to LRO if it 
were possible to "unwrap" O(x, y), converting it into a 
continuous real-valued function O~(x, y). Unwrapping 
is performed by adding a suitable multiple of rc to each 
sample, thereby removing the discontinuities. Un- 
fortunately, the following result applies. 

Theorem. A 2D orientation valued function O(x,y) 
cannot be unwrapped if it has a singular point. 

Proq[i Let p be singular. Assume 0 can be unwrapped, 
yielding 0o. Let C be a simple closed curve around p, 
and (x, Yt any point on C. As C is traversed anticlock- 
wise from (x, y), 0, changes through 2n.ix(p) to its final 
value O,(x,y)+2rt . ix(p) .  This final value occurs at 
the same point (x, y), so by continuity of 0 u, O,(x, y) 
= 0~(x,y) + 2~z.ix(p). So ix(p) = 0, contradicting the 
statement that p is singular. Q.E.D. 

However, unwrapping is always possible in the 1D 
case. For  each x in increasing order, choose an integer 
k(x) which makes Ou(x) = O(x) + k(x)rt continuous from 
0 to x. Figure 7 shows an orientation function and its 
unwrapped version. 

Phase unwrapping ~23"24~ is a related problem where 
the phase 0(~) of the Discrete Fourier Transform of 
some signal f ( x )  must be unwrapped. The unwrapped 
phase takes the form 0u(co)-= 0(o))+ k(~o).2~z where k 
is integral. Solutions to this problem find k(o2) by using 
the signal data f ( x )  to estimate the phase derivative 
0'(~o). Phase unwrapping does not apply directly to 
orientation unwrapping because there is no cor- 
responding signal. However, the same general approach 
can be applied by using the ERO model to estimate 
the derivative of the orientation. 

The ability to unwrap 1D functions permits a restric- 
ted form of analysis of orientations in two dimensions. 
Given a simple curve C(t) not passing through singu- 
larities of O(x,y), the 1D function O(C(t)) can be un- 
wrapped along the curve yielding O,(C(t)). Ordinary 
analysis can then be applied along C using any classical 
algorithm. In particular, C could be any straight line 

: ! = . . . . .  

3rt ~ ~ _ 

Fig. 7. A 1D orientation function (above) and its unwrapped 
version (below). 

parallel to either coordinate axis, and the entire image 
can be covered by such lines. 

3.2. Use of the LRO model for orientation unwrapping 

An estimate of the derivative of the orientation is 
given by the gradient of the modeled LRO function: 

V0 = V(arg p(z)) 

1 v J ( Y c i -  Y,  X - -  Xci ) 

2 i~'l/ ~(X - -  X¢i) 2 -t- (y  - -  Yci) 2 

(3 'di--y,x--xdi)  ) 

ix - -,d,l 2 + { , , -   idii= 

With an appropriate sampling rate, LRO changes by 
less than ~t rad between samples. If so, only the sign of 
the derivative is required. With this simplification, the 
unwrapping algorithm is: 

procedure unwrap (var x, xdot: array of real) 
{x is the data to be unwrapped, and } 
[xdot is the array of derivative values } 
const 

maxdiff = ~z/4 
begin 

x[1] :=x[1]  mod ~r 
for i:= 2 to length of x do 

Restrict x[i] to the range x[i - 1] - g/2.. x[i  - 1] 
+ 1r/2 by adding or subtracting a suitable multiple 
of 7r. 
diff :=x[i]  - x[i  - 1] 
if(diff > maxdiff) and (xdot[i] < 0) then 

x[i]:=x[i]  -- Jz 
elseif (diff < -maxdiff )  and (xdot[i] > 03 then 

x[i]:= x[i] + 7r 
endif 

endfor 
end 

3.3. Application to interpolation of  orientations 

Since determining ridge orientation reliably can be 
computationally demanding unless special hardware 
is available, it is often not feasible to evaluate LRO 
directly for each pixel. Our approach is to determine 
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the LRO at a square grid spaced (say) 16 pixels apart, 
and obtain intermediate values by interpolat ion.? 
During interpolation, the multi-valued nature of orien- 
tation leads to ambiguities which can be resolved by 
the model as described earlier. The algorithm for inter- 
polating an n by n array of orientations by a factor K is 

{We have n rows and n columns of data} 
for i:= 1 to n do 

unwrap row i 
interpolate row i by factor K 

endfor 

{We now have n rows and n * K  columns} 
for i:= 1 to n , K  do 

unwrap column i 
interpolate column i by factor K 
wrap column i 

endfor 
{We now have n * K  rows and n . K  columns} 

Provided that the unwrapping does not fail, the be- 
havior of the above interpolation algorithm is identical 
to that of the standard interpolation technique incor- 
porated within it. 

4. CONCLUSION 

This paper has shown that fingerprint local ridge 
orientation can be best described using the direction 
field concept of differential geometry, rather than the 
more usually encountered vector field. A simple model 
of fingerprint local ridge orientation topology in terms 
of the positions of cores and deltas has been presented, 
and shown to be of practical use in the 2D interpolation 
of sampled LRO values from real fingerprints. The 
model emphasizes the fundamental importance of core 
and delta numbers and positions in determining the 
topology of the fingerprint LRO structure. 
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