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INTRODUCTION 

During the past year substantial progress has been made in determin- 
ing the energy-level structure of the valence-type semiconductors, germa- 
nium and silicon. This progress has stemmed in turn from three principal 
developments : 

1. The exploitation of the cyclotron resonance technique by Kittel 
and Kip et al. at Berkeley and by Lax and Dexter et al. a t  M.I.T. 

2. Detailed and relatively accurate calculations of the band struc- 
ture of germanium and silicon from first principles by F. Herman and 
collaborators at  R. C. A. 

3. Detailed experimental studies, especially a t  Naval Research Lab- 
oratory, Bell Laboratories, and General Electric, on the location and 
properties of the energy levels due to impurities and imperfections in 
Ge and Si. 
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The first two items have given us an insight into the structure of the 
valence and conduction bands, whereas the last has enabled us to  fill in 
the picture in the forbidden energy gap. With this picture, it is possible 
to present an account of the electrical properties of these semiconductors 
from a deductive point of view, proceeding from the energy level struc- 
ture as a starting point. It is the aim of this paper t o  outline such a 
presentation, and to summarize our understanding of the physical mech- 
anisms underlying the electrical properties of these elements. It will be 
evident that many of the general principles apply equally well to other 
semiconductors, and can serve as a basis for the discussion of the com- 
pounds in the companion paper by Burstein and Egli. 

In  Section I, we outline in a qualitative and brief fashion the general 
principles of energy band theory which are of most relevance to the semi- 
conductor problem. Most of these are ideas which were already well 
developed in the late 1930’s, but are perhaps not very well known to the 
worker in the field of semiconductor applications. In  Section 11, we dis- 
cuss the motion of electrons in energy bands under the influence of exter- 
nal electric and magnetic fields, presenting an elementary theory of the 
cyclotron resonance experiment as an example. This, in turn, serves as a 
natural point to summarize the current picture of the continuous energy 
levels of Ge and Si as it has developed quantitatively from the experi- 
ments, and in the light of theory. 

In  Section 111, the theory of localized states is discussed with special 
emphasis on the influence of the complex structures of the valence and 
conduction bands in modifying the simple theory of hydrogen-like impuri- 
ties. Qualitative discussion is also given of the localized levels provided 
by other than hydrogenic impurities, and of the levels produced by sur- 
faces and by dislocations. 

In Section IV, we indicate how the energy level picture is to be used 
in the statistical mechanical calculation of the equilibrium properties of 
semiconductors. Since the Fermi statistics as applied t o  simple semicon- 
ductors has been very adequately covered in well-known texts such as 
Shockley’s Electrons and Holes in Semiconductors, we concern ourselves 
here mainly with the modifications introduced by complex band struc- 
ture, and by the existence of temperature dependent energy levels result- 
ing from the interaction between electrons and thermal vibrations. 

In Section V, we present the phenomenological theory of the electrical 
conductivity, Hall effect, magnetoresistance, and thermoelectric power of 
Ge and Si, again stressing the influence of the complex band structure. 
In this section we treat the collision time as an empirical parameter with- 
out reference to detailed mechanisms of scattering, which are considered 
in Section VI. In  Section VI, mechanisms of lattice and ionized impurity 
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scattering are discussed in some detail, and some new results on scatter- 
ing in the valence band are presented. 

Finally, in Section VII, we review the optical properties of Ge and 
Si in terms of the different classes of allowed and forbidden transitions 
which may occur on the energy level diagram. 

The choice of topics has been selective, rather than comprehensive. 
The basis of selection of particular topics has often been the author’s 
own interests, and in general the emphasis has been on those topics for 
which treatments are not readily available in the literature. 

I. PROPERTIES OF ENERGY BANDS 

Many properties of solids can be satisfactorily treated by means of 
a physical model in which each electron is considered to  move independ- 
ently of the others. This does not mean that  it is assumed not to  inter- 
act with the other electrons, but only that the interaction is averaged 
over the motions of all the other electrons in the system, when consider- 
ing the motion of a given electron. Such a picture was first introduced by 
Hartree in connection with the quantum mechanical description of elec- 
trons in atoms. The scheme was later modified and improved by Fock, 
who showed that most of the simplifications made possible by the Hartree 
assumption could be retained in a model which took partial account of 
the correlations in the motions of the electrons which were entirely 
ignored in the Hartree scheme. 

For many purposes, the Hartree-Fock description is quite accurate 
for electrons in solids, especially for the description of the least tightly 
bound electrons, the ones which are primarily concerned in the electrical 
properties. The description is a self-consistent one; that is, each electron 
moves in an electrostatic potential which is made up of two contribu- 
tions, the potential due to  the ions, regarded as fixed charge distribu- 
tions, and the potential arising from the charge density of all the elec- 
trona which are concerned in the self-consistent calculation. This latter 
charge distribution is computed from the wave functions, which in turn 
are determined by solution of the Schrodinger equation for each electron 
in the potential. Self-consistency is achieved in principle when the poten- 
tial a t  the start and finish of the problem is the same (I). 

The reason for the utility of the self-consistent wave functions in the 
case of solids is that if the wave function for each electron is the solution 
of a one-electron Schrodinger equation in a triply periodic potential, then 
the resultant electronic charge distribution, and consequently the poten- 
tial, computed from these wave functions is also triply periodic with the 
same periods. Thus if we start the problem with a periodic potential, suc- 
cessive calculations of wave functions and potentials will always lead to  
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a periodic potential. The properties of the solutions of the wave equation 
for a single electron in a periodic potential present many special simplici- 
ties and general properties which we can describe independently of the 
particular form of the potential, except for its translational periodicity 
and other symmetry properties characteristic of the particular crystal 
structure being investigated. It is the properties of the eigenfunctions, 
and especially the eigenvalues, of the general periodic potential problem 
which we now wish to discuss (2) .  

In  the first place, we find that there are additional quantum numbers 
(besides the energy itself) which are “good” quantum numbers or “con- 
stants of the motion,” and which can therefore be used to label the vari- 
ous energy states. The most important of these is the so-called “reduced 
wave vector” k. It can be shown that the wave functions for a periodic 
potential are all of the form 

b(k, r) = u(k, r) exp ik . r (1.1) 

where u(k, r) is periodic with the same periodicity as the potential. The 
vector k spans a 3-dimensional space, known as reciprocal space. How- 
ever, only the vectors in a limited domain of this space actually have a 
separate physical significance. This limited region is a unit cell of a lat- 
tice in reciprocal space, known as the reciprocal lattice. In the literature, 
it is usually called the “first Brillouin zone.” For our purposes it may be 
thought of simply as a polyhedron whose shape is determined by the 
crystal lattice being considered. This polyhedron is illustrated for the 
diamond lattice, of which Ge and Si are examples, in Fig. 1 (3) .  Each 
point in the first BZ defines a reduced wave vector k, which is a vector 
from the center of the BZ to the point. The center can always be defined 
because, regardless of whether the original crystal has a center of inver- 
sion, the unit cell in reciprocal space does. Each reduced wave vector 
within the unit cell or BZ corresponds to a different eigenstate, and usu- 
ally a different eigenvalue, for the periodic potential problem. The eigen- 
values of the problem are distributed in allowed and forbidden bands of 
energies. Within each allowed range of energies, the eigenvalue may be 
expressed as a continuous function of k. The different allowed ranges 
may be labelled in order of increasing energy (2 ) )  so that the complete 
set of eigenvalues for the problem may be labelled by the functions 

E n @ )  

If we focus attention on one particular value of k, then there will be 
an infinite set, ascending in energy, of eigenvalues for this k. Although 
there is some degree of arbitrariness in the labelling of eigenvalues, we 
can always label them in such a way that if &(k) < En)(k) for one par- 
ticular value of k, then En(k) 5 En*(k) is satisfied for every value of k in 
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the BZ. If the eigenvalues are labelled in this way, then it can be shown 
that any surface of constant energy in k-space, Le., a surface whose equa- 
tion is 

has the same symmetry as the reciprocal lattice.* Thus, for example, if 

&,(k) = const. (1.2) 

FIU. 1. First Brillouin Zone for the diamond lattice. The diamond lattice consists 

of two interpenetrating face-centered cubic lattices displaced by the vector (: -, - I  : - aqo) 
relative to each other, where a0 is the cube edge. In  the Brillouin Zone the centers of 
the square faces are a t  k = ( 2 ~ / a o ,  0, 0) and five other equivalent points; the centers 
of the hexagonal faces are at k = (*/ao, a/aa, T / U O )  and seven other equivalent points. 
The total volume of the zone is equivalent to one-half of an electronic energy level 
per atom in the crystal. 

the crystal lattice has cubic symmetry, all the energy surfaces are left 
unchanged by any rotation in k-space which leaves a cube centered at the 
origin invariant. 

The equal sign is quite important in the above inequality. Depend- 
ing on crystal symmetry, there will be certain values of k for which two 
or more eigenvalues become equal. When this occurs, we have a “degen- 
eracy.” Degeneracy usually occurs in the BZ only for points of particu- 
larly high symmetry, for example, the center of the zone, the center of a 
polyhedral face, or a corner. As we move away from such points in 
k-space, the degeneracy is lifted. In  terms of energy surfaces, we say 
that two or more surfaces touch at certain points in k-space and sepa- 

* In  general, the symmetry of the reciprocal lattice is the same as that  of the 
crystal lattice, except that  the symmetry group of the reciprocal lattice always 
includes the inversion in the origin. In the case of the diamond structure, this means 
that the energy surfaces actually have greater symmetry than the original lattice; in 
fact they have the same symmetry as a body-centered cubic crystal structure. 
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rate as we move away from these points. Actually, surfaces may touch 
either at points, along lines, or, in some anomalous cases, even along 
whole surfaces. When touching surfaces do occur, they usually have 
cusps or sharp angles at the point or line of contact. 

At the polyhedral surfaces of the BZ and a t  the center, it can be 
' shown that the energy functions &,(k) have the property that their deriv- 
atives normal to  the surface vanish. This statement is true for general 
points of polyhedral faces, but if it happens that two energy surfaces 
touch a t  a point on the face, then it breaks down. However, it still fol- 
lows that the sum of the normal derivatives of the two degenerate energy 
functions is equal to  zero. This situation actually represents a very spe- 
cial case, and if we either slightly perturb the potential so as to  lower 
the symmetry of the crystal, or if we move a small distance away from 
the degenerate point, then the normal derivative vanishes again. 

The condition that the normal derivative of the energy vanishes on 
the zone boundary implies that  at some point on the surface of the BZ 
there must be either an extremum or a saddle point of the energy. The 
simplest case is that  of a maximum or a minimum. In  this case, the bot- 
tom or top edge of an allowed band corresponds to  a reduced wave vector 
either at a symmetrical point on the surface of the BZ, such as the center 
or corner of a face, or a t  the central point of the BZ. More complicated 
situations can occur, however, and in principle maxima and minima of 
the energy can occur a t  interior points of the zone. As we shall see, this 
more complex situation seems to  be true for both Ge and Si (4) .  In  such 
a case, the band edge occurs, then, at an interior point of the BZ, and if 
the reciprocal lattice has cubic symmetry, there will be a number of 
equivalent points in the zone having the same maximum or minimum 
energy. 

In  semiconductors, we are always dealing with energy bands which 
are nearly full or nearly empty; that  is, the number of electrons or missing 
electrons (holes) in any band is only a very small fraction of the total 
number that could be accommodated. This results in an important sim- 
plification of the form of the function En(k); namely, for the charge car- 
riers we are usually interested in, it can be expanded in a Taylor series 
about the wave vector ko which gives the maximum or minimum of 
En(k). I n  other words, since VGn(k0) = 0, En(k) is a quadratic function 
of the components of k - ko, where ko is the value of the wave vector 
for which the band edge occurs. 

I n  the most general case we have 

E n ( k )  - E n ( k 0 )  = 2 aijtitj 

where [I kz - ~ Z O ;  € 2  = k g  - 1cg0; f a  = k z  - k,o (1.3) 
i j  
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Equation (1.3) corresponds to  energy surfaces which are ellipsoids cen- 
tered about the point k = ko. In  a cubic crystal, such as Ge or Si, if the 

BZ because of symmetry, and the complete a 0 

point ko is not on an  axis or plane of 
symmetry, there will be 48 band edges in the 

energy surface for a given energy near the 
band edge will consist of 48 ellipsoids cen- 
tered about the 48 equivalent points. If ko 
is in a (100)-direction, there will be 6 ellips- 
oids, each an ellipsoid of revolution about the 
(100)-axis on which its center lies, If ko is on 
a face of the BZ in the (100)-direction, there 
will in effect be only 3 ellipsoids, each con- 
sisting of two half-ellipsoids on opposite 
faces of the zone. Values of k on opposite 

each other, so that the two half-ellipsoids 
are equivalent to  a single ellipsoid. These two 
situations are sketched in two dimensions in 
Fig. 2. In  the 3-dimensional case, the half- 
ellipsoids will be centered on the square faces 
of Fig. 1, which shows the BZ structure for cd) 

the diamond lattice. From symmetry it also FIG. 2. Elliptical energy 
follows that the unique axis of each ellipsoid contours for a twodimensional 

simple cubic structure. (two are equal) must lie along the respec- (a) Band-edge points at an 
tive (100)-axis. interior point of the BZ. 

Similar situations may arise for ko on (b) Band-edge point at the 
(111) or (110) axes. I n  the (111) case, there center of an edge of the BZ. 
will be either 8 or 4 ellipsoids of revolution (c) Case (b) 

the extended wave vector with their unique axes along the various body to show continuity of 
diagonal (111)-directions, I n  the case of 4 half ellipsoids. 
ellipsoids, they will actually consist of half- (d) Distorted energy sur- 
ellipsoids centered on the hexagonal faces.* faces which result when the 
In  the case of (1 10) ellipsoids, the three band edge POintsare very 

to the zone boundary. Under 
these conditions the energy principal axes can be all different. 
ceases to be proportional to k2 
for very smallexcitation above 
the band edge, 

ri 
(a I cb) 

faces of the BZ are actually equivalent to  (C) m 

* An alternative way of visualizing the situation 
described above is to consider that the domain of k 
is all space rather than just the first Brillouin zone. 
In  this case, the functions &"(k) may be regarded as functions in k-space which are 
strictly periodic, i.e. which repeat from cell to cell, each cell being obtained by transla- 
tion from the original first BZ. In  this picture, when an energy surface intersects the 
surface of a BZ, it continues on into the next cell. Thus, for example, when a half 
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0.66 ev!!’ 
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r--- 

0.18 ev. 
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FIG. 3. Energy as a function of reduced wave vector for (100) and (111) directions, 
as deduced from theoretical calculations and from cyclotron resonance and optical 
experiments. (A) Germanium; (B) Silicon. The curves are only approximate. Accu- 
rately known energy intervals are dimensioned on the diagrams. 

(a) Thermal free energy gap a t  300°K. 
(b) Deduced from optical data of Dash et al. (67) and of Fan et al. (118). 
(c) Deduced by Kahn (116) from optical data of Briggs and Fletcher (117).  
(d) Deduced by F. Herman (private communication to W. Paul) from optical 

(e) Symbols denote symmetry type a t  k = 0 according to the scheme of refer- 

If the band edge is a point of degeneracy, that is, if two or more 
energy surfaces are coincident a t  this point, then the energy surfaces 

ellipsoid touches the face of a cell, it is seen to be simply half of a complete ellipsoid 
which extends an equal distance into the next cell. This situation is also indicated in 
the sketch in Fig. 2. 

data on Si-Ge alloys (103). 

ence 2. 
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1.08 ev. 

I 

cannot be described as ellipsoids or spheres, but are warped in such a 
way as to  retain their cubic symmetry. The energy difference from the 
band edge is still proportional to the square of the magnitude of the wave 
vector difference, but is a more complicated function of the direction 
cosines of the vector k - ko. 

Examples of several of the cases mentioned above can be found in 
Ge and Si. The conduction band in Ge is thought to have prolate ellips- 
oids along (111)-directions. The conduction band of Si has ellipsoids in 
(100)-directions. The valence bands of both Ge and Si are thought to be 
doubly degenerate at  their upper edges, corresponding to pairs of warped 
surfaces in contact at  the point k = 0 (6). The doubly degenerate band 
edge in the valence band is nearly triply degenerate, in fact, so that i t  is 



94 HARVEY BROOKS 

thought that  another energy maximum a t  k = 0 lies very nearby, the 
separation being determined by spin-orbit interaction.* 

The band structure of germanium and silicon as  indicated by cyclo- 
tron resonance experiments, combined with the extensive theoretical cal- 
culations of Herman and his coworkers (6), are shown in Fig. 3. What is 
actually shown in this figure is the plot of the various &,(k) for k along 
certain particular directions in the BZ. Close study of the figure reveals 
many of the general characteristics of energy surfaces described above. 
We see for example, that the slopes of the & v.7. k curves vanish a t  the 
end of each curve, corresponding to  the face of the BZ. The one excep- 
tion to this generalization occurs for a pair of curves which become degen- 
erate in the (100)-direction. It is fairly evident that in this case, the sum 
of the two slopes is equal to  zero a t  the 7one face. 

We need a method for counting the total number of quantum states 
which lie between the band edge and a given energy within the energy 
band, and from this we can compute the number of states per unit 
energy range, or “density of states,” as it is usually called. To  make the 
first calculation, we merely compute the volume in k-space contained 
inside a given energy surface. For the purposes of this calculation, of 
course, the “interior” of a surface is the side of the surface on which the 
edge point of the band lies. The number of states per unit volume of 
k-space is just V/87r3, where V is volume of the crystal. Because one 
electrons of each direction of spin can be accommodated in each state, 
the number of electrons is V/47r3, or in other words, the largest number 
of electrons which can be accommodated between a band edge and an  

where we have written coordinate space volume to  distinguish it from 
volume in k-space. From the fact that & - &o is proportional to  k’, it 
follows that the volume V,  is proportional t o  I& - &,I$a, irrespective of 
the shape of the energy surfaces. This relation is always true sufficiently 
close to  the band edge. 

11. MOTION OF ELECTRONS IN EXTERNAL FIELDS 

The reduced wave vector k is a vector which in many ways behaves 
similarly to a momentum (7). If we define 

P = h k  
h = h / 2 1  (2.1) 

* Spin-orbit interaction can be of great importance in removing degeneracies in 
the band structure. For general considerations on the effect of spin-orbit interaction 
on energy bands, see reference 6a. 
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P is called the reduced momentum, and we can then speak of energy sur- 
faces in P-space instead of k-space. The energy for a band may then be 
written as &,(P). We know that in ordinary classical mechanics we have 
the relations 

v = P/m = VPH(P, q); dt dP - - -V,H(P, q) (2.2) 

where H(P, q) is the Hamiltonian, or total energy expressed as a func- 
tion of coordinates and momenta. I n  the case of solids, we identify the 
kinetic energy with the band energy &,(P) and assume that the coordi- 
nate derivative VJ?(P, q) just gives the negative of the applied external 
force. This results in the following relations, which can be demonstrated 
to  follow for electrons in bands, provided the fields are not too large (7) 

v = VPEn(P) 
e - _  - F =  - e E -  - v X H  dP 

dt C 

(2.3a) 

(2.3b) 

Equation (2.3a) tells us immediately that a t  a band edge the electron 
velocity vanishes. This is also true a t  k = 0, and in a direction normal to  
the face of a BZ a t  the BZ surface. Equation (2.3b) can also be written 
in terms of acceleration as follows 

The tensor quantity VpVp&,,(P) behaves like the reciprocal of a mass and 
is usually referred to  as the effective mass tensor. It can be either posi- 
tive or negative, and can indeed be positive and negative for different 
directions a t  the same value of &. At the bottom edge of a band, where & 
has a true minimum, the effective mass tensor has its three principal 
values all positive, whereas a t  the top edge of a band, the principal 
values are all negative. This implies that electrons near the top of a 
band are accelerated in the opposite direction from normal electrons. If 
we add up the individual accelerations of all the electrons in a fully 
occupied band, we find that the net acceleration of charge vanishes; i.e. 
no current can be produced by an electric field acting on a fully occupied 
band of electrons. This is why a solid having nothing but full or empty 
bands is an insulator at su5ciently low temperatures, in spite of the fact 
that  the individual electrons in the band are free to  move throughout 
the crystal. Strictly speaking, this conclusion, like Equations (2.3), is 
true only in the limit of weak fields, but for most practical cases i t  is 
valid. 
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For an almost full band, it is more convenient to discuss the behavior 
of the missing electrons than of those that are present. Since the result- 
ant of the accelerations of all the electrons in the band is zero, the result- 
ant acceleration of the incompletely occupied band is the negative of the 
resultant of the accelerations of the missing electrons. But since the miss- 
ing electrons lie near the top of the band if the solid is reasonably close 
to thermal equilibrium, they have negative masses. Thus for electric 
fields we have two negatives; that is, the fact that the electrons are miss- 
ing and that they have negative mass means that the current is in the 
normal direction. However, if we have a magnetic field present also, the 
negative mass additionally manifests itself in the velocity in the term 
v X H, and this gives us a total of three negatives which reverses the 
behavior of an almost filled band of electrons in a magnetic field as com- 
pared with an almost empty band. The sign of the Hall voltage thus ob- 
served is opposite for nearly full and nearly empty bands. This provides 
one method of identifying which situation we are dealing with. These re- 
sults may all be summarized in the statement that missing electrons of 
negative mass at the top of a band behave in every way with respect to 
external fields like positively charged particles having mass of the same 
magnitude, but positive. Such particles are called holes, and for all prac- 
tical purposes may be thought of as real particles in any phenomenon 
which does not involve particles leaving the crystal, for this particular 
behavior is entirely a product of the periodic potential. The sign of the 
various thermoelectric effects in semiconductors is also different for elec- 
trons and holes. 

Some confusion has arisen, even in the recent literature, over the 
physical significance of the effective mass concept and the derived con- 
cept of holes. Experiments designed to observe the motion of holes under 
applied fields, such as the drift mobility experiment of Haynes and 
Shockley (8), show the expected behavior of positively charged particles, 
but experiments designed to measure directly the inertial mass of charge 
carriers via the reaction on a solid body due to the acceleration of the 
carriers by a collapsing magnetic field (the Barnett experiment), always 
measure the true electronic mass (9). The reason is that the apparent 
mass of an electron in a periodic potential arises because of the possibil- 
ity of Bragg reflection of an electron by the crystal. I n  this reflection 
momentum is transferred to the lattice, but the energy transfer is negli- 
gible. Thus the electron gets all the energy, but the lattice takes up just 
the momentum necessary to make up for the difference between msffv 
and mav, where meff and m, are the effective and actual masses of the 
electron, respectively. In  an inertial experiment such as the Barnett ex- 
periment, the momentum given in this way to  the lattice is measured 
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together with the electron momentum. The true momentum of the elec- 
tron is just m,v, where v is the velocity given by Equation (2.3a), and 
m, is the free electron mass (10). 

A convenient illustration of the above ideas is provided by the fol- 
lowing somewhat simplified treatment of the cyclotron resonance experi- 
ment on semiconductors (11). An electron in a magnetic field will, in 
general, spiral around the field with a certain natural frequency given 
in Gaussian units by eH/mc. If an electric field of this frequency is ap- 
plied to the electron in a plane perpendicular to the magnetic field, the 
electron will gain energy from the electric field and will travel in ever 
increasing orbits. In  a solid this situation will result in resonant energy 
absorption, provided that the electron can perform quite a number of 
orbits before being thrown out of phase with the electric field by a scat- 
tering collision, and provided the conductivity is low enough so that the 
rf field can penetrate below the surface. These conditions have been real- 
ized in Ge and Si a t  liquid helium temperatures with samples of high 
purity and crystal perfection. Under these conditions, the time between 
collisions becomes very long. Although the number of electrons present 
is also very small, this can be enhanced sufficiently to produce observ- 
able energy absorption either by infrared irradiation of the sample dur- 
ing the experiment or by applying sufficiently high rf fields to produce 
electron multiplication. For further details of the experimental proce- 
dure the reader is referred to the original papers (11). 

Let us first consider electrons in the conduction band in Ge. In  this 
case let us assume we have multiple energy ellipsoids with the energy in 
each given by 

En(P) = P12/2m1 + P22/2m2 + P3'/2m3 (2.5) 

where PI, P2 ,  and P3 are the components of reduced momentum aloiig 
the principal axes of the ellipsoid relative to  the minimum point; the 
three axes are in the ratio of mlf4:  m2H: m3W. From (2.3a) it follows that 
the components of velocity are 

VI = P J m ,  v2 = Pdm2, 213 = PJma (2.6) 

The equations of motion of an electron may be written 
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Setting VI, V Z ,  213 = V I O ,  V Z O ,  v3oeiUt, we find the frequency conditions 

w = o  

The zero frequency corresponds to motion of the electron along the mag- 
netic field direction. In  the second equation wll  wzl  and w3 are three fre- 
quencies with the field respectively along the three principal axes of the 

1000 2000 3000 4000 

MAGNETIC FIELD IN OERSTEDS 

FIG. 4. Typical cyclotron resonance spectrum for germanium. Resonances due to  
two types of holes and one type of electron are shown. In these experiments the 
magnetic field is varied while the frequency of the r-f electric field is held constant. 

Taken from fig. 2 of Dresselhaus, Kip, and Kittel, “Cyclotron Resonance of 
Electrons and Holes in Silicon and Germanium Crystals,” Phys. Rev. 98, 368 (1955). 

ellipsoid, while all a?, and a 3  are the direction cosines of the field with 
respect to the ellipsoid axes. In an actual experiment, the frequencies re- 
sulting from all of the multiple ellipsoids are observed simultaneously, 
sinde there are electrons occupying each of them. For an arbitrary direc- 
tion of field, these frequencies will in general be different, so that mul- 
tiple peaks are obtained which shift relative to each other as the crystal 
orientation is changed relative to the field. A typical “cyclotron reso- 
nance spectrum” for Ge is illustrated in Fig. 4. It is obtained by vary- 
ing the field at fixed frequency. It is to be noted that resonances due to 
holes and electrons can be observed simultaneously. If circularly poIar- 
ized rf fields are used ( l a ) ,  only one sign of carrier is excited at a time, 
and the sign of the carrier can be distinguished by the sense of circular 
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polarization relative to  the magnetic field direction, thus providing direct 
evidence for the physical reality of holes. 

In  the case of Gel the experiments indicate that  the energy surfaces 
are prolate ellipsoids along (111)-directions in the crystal. The experi- 
ment cannot distinguish between the model of 8 and 4 ellipsoids. For an  
arbitrary direction of field, in general, four frequencies will be observed 
with this model, but for the field along a (100)-direction, all the ellipsoids 
are equivalently oriented, and the single frequency observed is 

(J' = S ( W I 2  + w22 + W32) (2.9) 

ml = 1.58me, mz = m3 = 0.082me (2.10) 

The anisotropy ratio ml/mz = 19.3 is an important quantity which will 
occur in connection with expressions for the dc galvanomagnetic effects. 

I n  the case of Si, the energy surfaces are prolate ellipsoids located 
along the six (100)-directions. According to  cyclotron resonance data, the 
effective masses are (11) 

The principal masses can be determined and are 

ml = Q.98me, m2 = m3 = 0.19me (2.11) 

and the anisotropy ratio ml/mz = 5.15. 
The theoretical calculations of Herman (6) suggest that the edge of 

the valence band should be triply degenerate a t  k = 0 with wave func- 
tions having symmetry similar to  that of atomic p-functions. Including 
spin, the degeneracy is actually six-fold. Dresselhaus and Kittel (6) have 
pointed out, however, that this degeneracy will be partially removed by 
spin-orbit interaction, so that there will be one four-fold degenerate state, 
highest in energy and corresponding to  an atomic j = % state and one 
doubly degenerate state corresponding to  an atomic j = state. At 
points other than k = 0 the four-fold degenerate state will be split into 
two doubly degenerate branches, each of which will give rise to  energy 
surfaces in the form of warped spheres. The j = M state will have spher- 
ical energy surfaces so long as the distance in energy from the band edge 
is small compared with the spin-orbit splitting. The expressions for the 
energy eigenvalues of the two branches are given by 

(2.12b) 

for the upper and lower band, respectively, the zero of energy being taken 
at k = 0 for the upper branch. Equations (2.12) are a good approxima- 
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tion when 
(a + b ) k 2  << A (2.13) 

An energy function of the form (2.12) is much more difficult to use in 
Equation (2.4) than is the case for ellipsoidal energy surfaces. Lax and 
co-workers (11) have carried out the solution by a perturbation method 
for the case when the momentum parallel to the magnetic field is zero. 
The result may be expressed as follows 

where 

w = w o  ( A* + B* (1 - ;cos2 0)2] (2.14) 

(2.15) 

In these equations, wo is the free electron cyclotron frequency. 
For warped energy surfaces, such as occur in the upper branch of the 

valence band, the motion in a magnetic field has been discussed by 
Shockley (IS). The path of the electron in P-space is defined by the in- 
tersection of a plane perpendicular to H with a constant energy surface. 

TABLE I. Effective-Mass Parameters for the Valence Bands of Germanium and 
Silicon 

Ge Si 

a* 13.0 4 . 1  
b* 12.01 2.83 
C *  7 . 1  2.33 
A + t  23.96 6.45 

A-t 2.04 1.75 
B-t +0.53 +0.24 

B+ t -0.53 -0.24 

* The parameters shown in Equation (2.12). 
t The parameters in the frequency Equation (2.14). 

As a result of the warping of the surface, there is a slightly different 
cyclotron frequency associated with each value of PH, the component of 
reduced momentum along the magnetic field. The observed cyclotron 
resonance absorption will be the result of the superposition of the ab- 
sorption lines of individual electrons with different values of P H ,  so that 
the observed line will not have a simple resonance shape. Since the largest 
number of electrons will have PH in the neighborhood of zero, it is plau- 
sible that the peak of the absorption line should occur for the cyclotron 
frequency corresponding to P H  = 0. This was assumed by Lax and co- 
workers in interpreting their data, and was later justified by a detailed 
calculation of the line shape. This calculation predicted an asymmetri- 
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cal line whose degree of asymmetry was quantitatively confirmed by 
experiment. 

The valence band of Si has a structure similar to that of Ge. The con- 
stants of Equations (2.14) and (2.12) for both Ge and Si are given in 
Table I. 

In  addition to the approximations already pointed out, the equations 
of motion (2.4) are semiclassical in character and only represent the mo- 
tion of the electron when the quantum numbers in the magnetic field are 
large. The average number of quanta excited at temperature T is of the 
order 

kT 
ho 

n = -  (2.16) 

which is of order unity a t  liquid He temperature. Thus the semiclassical 
approach may be barely applicable. At the time of writing, no successful 
quantum mechanical approach to the problem has been reported ( I d ) .  

For the warped energy surfaces of the valence bands, one would ex- 
pect to observe not only the fundamental cyclotron frequency given by 
(2.14), but also certain higher harmonics of this frequency. Some evi- 
dence for such harmonics has been found, but their relative amplitude 
appears to be a strong function of the conditions of excitation (16). 

111. PROPERTIES OF LOCALIZED STATES IN SEMICONDUCTORS 

The electronic energy levels in bands are the only types of levels 
which would appear in a perfect crystal of infinite extent. However, real 
crystals always possess various types of impurities and structural imper- 
fections which usually give rise to new energy levels in the forbidden 
energy gaps. Usually these are not wholly new levels, but represent states 
which are split off from the bands. Whereas the wave functions corre- 
sponding to the band levels represent charge density which is spread 
throughout the crystal, the wave functions associated with energy levels 
in the forbidden range are localized in the vicinity of the imperfection 
(16). These localized levels can occur at  impurities, at  line imperfections 
or dislocations, and at  grain boundaries or free surfaces. The conditions 
under which localized levels can occur and their general nature will be 
developed in the following paragraphs. 

The simplest type of localized level, and the only type which is fairly 
well understood in Ge and Si, is that associated with a substitutional im- 
purity from Group I11 or Group V of the periodic table, i.e., in the col- 
umns adjacent on either side to Ge and Si. As an illustration, let us con- 
sider the case of As in Ge. The element As contains 5 electrons outside 
a closed-shell configuration; it behaves chemically with a valence of 5.  
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When located in a normal Ge lattice site, the As ion core looks a good 
deal like the Ge ion core, so to  a first approximation we may regard the 
energy level structure of the crystal as not modified by the substitution 
of As for Ge in a few positions. However, As does supply an additional 
electron which has to be accommodated in the energy level structure. 
Since the valence band is just full in the perfect Ge crystal, the  extra 
electron must go into the otherwise empty conduction band. In  this band 
level, however, the extra electron is free to  wander over the whole crystal, 
and since the As atom would have been neutral with the extra electron, 
when this electron is lost to  the conduction band, the As cell appears as 
a site of one positive electronic charge. This charge exerts a force on the 
extra electron in the conduction band, tending to  attract it back towards 
the As cell. This attraction is quite weak in Gel however, because the 
intervening Ge crystal between the As and the extra conduction electron 
behaves like a dielectric medium with a dielectric constant roughly equal 
t o  the ordinary macroscopic dielectric constant of Gel which in this case 
has a value of 16. Thus at large distances from the As, the conduction 
electron is subject to  an attractive potential (17) of magnitude 

V(r)  = -e2 /Kr  (3.1) 

where K is the dielectric constant, and e the electronic charge. 
Now for fields which are sufficiently slowly varying, i t  can be shown 

that the electron in the conduction band behaves as though the equa- 
tions of motion (2.3) could be quantized exactly as are the equations of 
motion for an ordinary free particle in quantum theory. The resulting 
Schrodinger-like equation is the so-called effective mass equation, whose 
solutions, for spherical energy surfaces and the potential (3.1), are wave 
functions and energy values analagous to  those of the ordinary hydrogen 
atom. The wave functions fall off in amplitude exponentially with the 
distance from the impurity, with effective radius given by 

where ah is the radius of the first Bohr orbit in hydrogen, a convenient 
unit of distance in such problems. With this value of r, the total lowering 
of the energy below the conduction band is 

The quantity e2/2ah is the ionization energy of hydrogen, and is equal 
t o  13.62 ev. Although the derivation was only approximate, Equation 
(3.3) turns out to  be nearly exact. Essentially, it expresses the fact that  
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an electron from the conduction band behaves exactly like the electron 
in a hydrogen atom, except with its mass equal to the effective mass and 
the effective charge on the nucleus being reduced by a factor of the dielec- 
tric constant. If the effective mass were just equal to the free electron 
mass, Equation (3.3) would give 0.053 ev for Ge and 0.094 ev for Si as 
the energy required to free an electron from the vicinity of the As im- 
purity into the conduction band. 

When we have ellipsoidal energy surfaces, the treatment is somewhat 
more complex. This problem has been given a semirigorous quantum 
mechanical foundation by Kittel and Mitchell, by Lampert, and by 
Luttinger and Kohn (18). The complete wave function for the electron 
in the field of the impurity may be written 

where the wave function near the edge of the band may be written 

b,(k, r) = e*.I{uo(ki, r) + i(k - ki) . ul(ki, r ) )  (3.5) 

Here the subscript i refers to a particular band-edge point in reduced 
wave vector space, and (3.5j is valid for k-vectors only in the immediate 
vicinity of the band-edge point -over the same region, in fact, in which 
the approximation of ellipsoidal energy surfaces is valid. The functions 
uo and u1 are periodic, i.e., the same in every cell of the crystal except 
the impurity cell, whereas the envelope function 4(r) is slowly varying 
from cell to cell. This envelope satisfies the effective mass wave equation 

where G ,  is the energy of the band edge, & is the actual eigenvalue, and 
V(r) is the disturbed part of the potential due to the presence of the 
impurity. 

Equation (3.6) cannot be solved exactly, but has been treated by the 
variational method (18) using a trial wave function of the form 

where ro = Kh2/m,e2 (3.8) 

The energy is minimized with respect to the parameters a and b, using 
the masses given by (2.10) and (2.11). The results for Ge and Si are as 
follows: 



104 HARVEY BROOKS 

Ge Si 
a 0.368 0.465 
b 0.132 0.270 
?,/a 43.5Uh 25.8ah 

& - G ,  0.00905 ev -0.0298 ev 

In Equation (3.9), ah is the Bohr radius of hydrogen, and the quanti- 
ties ro/a and ro/b represent the extension of the wave functions away 

(3.9) 

ro/b 121.lUh 44.4ah 

ACCEPTOR POTENTIAL 

4.0 - 

3.0- 

GERM4NlUM 

2 0  - 

DONOR POTENTIAL 

ID- 

POTENTIAL ENERGY 
20- RYDBERG UNITS 

3.0 - 

40- I I  
FIO. 5. Sketch of the effective potential experienced by an electron in the field of 

an impurity. Outside the impurity cell only the part of the potential which differs 
from the lattice potential is shown. Inside, the complete potential of the impurity is 
indicated, modified by the fact that the impurity is in a cavity in & dielectric medium 
of dielectric constant K. Upper figure for donor, lower figure for acceptor. 

from the impurity center. It is seen that (3.3) gives approximately the 
numerical results shown in the last row of (3.9), if we take as the effec- 
tive mass the geometric mean of the three principal masses. 

The ionization energies in (3.9) are extremely small, and in practice 
the electron is usually separated from the impurity at all except the very 
lowest temperatures. 

Similar techniques have been used by Luttinger and Kohn and by 
Kleiner (19) for the computation of excited states. The results have been 
verified experimentally in an approximate way by Burstein and co- 
workers, using optical techniques (20). 

The potential energy e2/Kr  cannot be valid right down to the origin, 
nor can the effective mass equation (3.6) be valid inside the impurity 
cell. When the electron is inside the impurity, it moves as though it had 
the normal electronic mass and experiences the full unshielded field of 
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the impurity ion. Thus the total effective potential experienced by the 
electron is somewhat as sketched in Fig. 5. 

Outside the impurity cell, this does not include the periodic part of 
the potential but only the disturbed part. The complete wave function 
for the impurity electron is then obtained by matching a solution of the 
form (3.4) to  a solution inside the impurity cell. The matching condi- 
tions have been treated in detail for various types of band structures by 
Brooks and Fletcher (21 ) .  The matching conditions alter the eigenvalues 
from (3.3) or (3.9). For Group V donors, the effect is almost always to  

TABLE 11. Ionization Energy for Group V Impurities in Germanium and Silicon 

Impurity Germanium Silicon 

Theory. * Experiment Theoryb* Experiment 
(ev) (ev) (ev) (ev) 

Sb 0.012 0.0096 (22 ,W)  0.037 0.039 (24) 
P 0.012 0.0120 (d2 ,13 )  0.039 0.044 (24) 
As 0.012 0.0127 (82, I S )  0.043 0.049 (24) 
Hydrogenic 0.012 0.030 

* For spherical energy surfaces, based on estimates from spectroscopic data. 
a Calculated for meff = )$me, K = 16. 
b Calculated for meif = >/sm,, K = 12. 

increase the impurity ionization energy beyond the hydrogenic value. 
Rough estimates are shown for m/m, = 0.2, K = 16, and m/m, = 0.33, 
K = 12 in Table 11. The first case corresponds roughly to  the Ge conduc- 
tion band, and the second to  the Si conduction band. 

Let us now turn to  the consideration of Group 111 impurities. I n  this 
case the impurity atom contains fewer electrons outside a closed shell, 
so that in the first approximation we have the normal electronic energy 
level structure of pure germanium with one electron missing from the 
top of the valence band. This electron behaves like a hole, or positive 
electron. Since in this approximation all the electronic wave functions 
are band functions, the corresponding charge is spread uniformly through- 
out the crystal, including the impurity cell. Since the impurity atom now 
has one nuclear charge less than normal, it appears negatively charged, 
and at large distances from the impurity the hole moves in a dielectric 
shielded potential exactly analagous to  the potential seen by the conduc- 
tion electron in the donor case. Thus, so far as motion outside the im- 
purity cell is concerned, the treatment of an “acceptor” is precisely 
analagous to  that of a donor. We have already seen however, that  in- 
side the cell we have an electron of normal mass and no dielectric con- 
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stant. What becomes of the hole concept inside the impurity cell? We 
may look at  the problem most conveniently in terms of the motion of an 
electron in the state of the crystal in which the acceptor level is occupied 
by an electron. The electron in the acceptor comes from the top of the 
valence band, and is therefore an electron of negative mass. Outside the 
impurity cell it moves in the repulsive potential of the impurity cell, but 
since it has negative mass, it is nevertheless bound. The wave function 
is of the general form of Equation (3.4) with 4(r) localized. This wave 
function must be matched at  the surface of the impurity cell to a wave 
function inside the cell for a normal electron moving in the field of the 
impurity ion plus the negative charge due to the other electrons in the 
valence band. The resulting potential inside the cell is indicated in Fig. 2 
(upper curve). It is found that the matching of wave functions can be 
carried out straightforwardly (Zl), and again the influence of the impu- 
rity cell itself on the hydrogenic eigenvalue is rather small, a t  least for 
the dielectric constant and effective mass of Ge and Si. 

The effective mass equation satisfied by the acceptor electron is that 
appropriate to the degenerate valence band. The situation for warped 
surfaces and degenerate bands has been considered in an approximate 
fashion by Kittel and Mitchell and by Luttinger and Kohn (28). It is 
found that (3.6) must be replaced by a system of coupled differential 
equations, which result in mixing of the wave functions from the differ- 
ent degenerate bands. Recently a variational solution of the coupled 
differential equations has been given by Kohn and Schechter (Ha). For 
Ge the resulting eigenvalue is: 

Calculated Experimental (B doped) 
G, - G -0.0089 ev -0.0104 ev (3.10) 

The theory agrees with experiment in predicting almost identical ioniza- 
tion energies for donors and acceptors in Ge. In both cases the energies 
are slightly too small, a fact which can probably be accounted for by the 
correction for the central cell. There is not a correspondingly satisfactory 
treatment for acceptor states in Si since in this case the ionization 
energy of the acceptor is of the same order of magnitude as the spin-orbit 
splitting. 

So far the treatment has been based on the assumption that the in- 
teraction of impurities could be ignored. Because of the large orbits of 
impurity states, however, the orbits begin to overlap for rather low im- 
purity concentrations. This effect is further enhanced by the lack of 
spherical symmetry of the wave functions, as shown by Equation (3.9). 

An approximate condition may be derived for the critical mean dis- 
tance between donors at which the ionization energy disappears. At this 
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concentration, electrons can jump from impurity to impurity, and the 
single impurity level is broadened out into a band. The critical separa- 
tion of impurities occurs when the “impurity band” begins to overlap 
the conduction band. The condition is (26) 

= In 6 + 1) 
r1 

(3.11) 

giving D/r l  = 3.23, where D is the critical spacing and rl is given by 
(3.12). 

r1 = ro /b  (3.12) 

The critical concentration is l/Da and takes the values 

(3.13) 7 2 ~  = 1.2 X 10’’ donors/cma for Ge 
n D  = 1.8 X 10’8 donors/cma for Si 

Experimental results for donor ionization energy as a function of donor 
concentration for Ge are shown in Fig. 6 (26).  The agreement between 
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Fro. 6. Ionization energy of donors as a function of donor concentration in n-type 
germanium. From P. P. Debye and E. M. Conwell, Phye. Rev. 93, 693, 704 (1954). 

theory and experiment is seen to be excellent. Until the conduction band 
structures were elucidated by cyclotron resonance experiments, a con- 
siderable amount of theoretical work was done to explain the critical 
concentration (27), including the effect of the random distribution of 
impurities. The present results appear to indicate that the effect is a 
perfectly straightforward one of overlap of wave functions, and does not 
involve any subtle considerations. 

The existence of impurity banding was first suggested on experimen- 
tal grounds by Hung (28), and considerable experimental evidence for 
it has accumulated since. It results in an unexpectedly large conductivity 
at  low temperatures. A number of attempts have been made to calculate 
the energy level structure and the electronic transport properties asso- 
ciated with impurity bands (29). The difficult feature of the problem 
arises from the random locations of the impurity atoms. The estimates 
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discussed in Equations (3.11) and (3.13) are based on the assumption of 
a regular lattice of impurities, and give surprisingly good values for the 
critical concentration. * 

We should expect that, in addition to  the ground hydrogenic state 
which we have computed in Equation (3.9), there should exist excited 
states of the impurity center. Burstein and coworkers have actually found 
evidence of such levels in silicon by long wavelength infrared absorption 
measurements at liquid helium temperature (SO). These results will be 
taken up in more detail in Section VII. A theory for excited donor levels 
in silicon has been given independently by Luttinger and Kohn and by 
W. Kleiner (29). The spacing of the excited levels agrees very accurately 
with the theory, as is to be expected from the fact that the excited wave 
functions have p-like symmetry and are therefore much less influenced 
by the impurity cell than is the ground state. 

When we come to consider imperfections other than Group I11 or 
Group V impurities, we must pay more attention to what happens to the 
wave functions inside the impurity cdl. Almost no theoretical work has 
been done on this problem. The simplest case is, perhaps, that of a neu- 
tral impurity center which has a very different ion core potential than 
the rest of the atoms of the crystal. We will assume that the disturbance 
in potential is confined to the impurity cell itself. If the potential is 
nearly like the host crystal, there will be no bound level. Rather each 
conduction-band electron as it goes by will be scattered and will give rise 
to some net localization of charge. As the potential gets deeper compared 
with the host crystal, a bound level will eventually split off from the 
conduction band. For this to happen in Ge, the mean cell potential has 
to be of the order of 5 ev lower than for the surrounding Ge atoms (66). 
Since the impurity cell now has a negative charge after it has captured 
an electron, this bound level is, by definition, an acceptor level in spite 
of the fact that it is closer to the conduction band than to the valence 
band. As the impurity potential gets deeper, the bound level gradually 
moves towards the valence band until it finally merges with it. At this 
point, the valence band accommodates one extra electron. At some stage, 
probably before the first level merges with the valence band, a second 
bound level may split off from the conduction band. If this second bound 
level is occupied by an electron, the impurity cell can become doubly 
charged. The case which seems to be most common in practice is that in 
which two bound levels exist in the forbidden gap, one near the valence 

* It should be noted that an impurity band develops for impurity concentrations 
considerably below those given by Equation (3.12). The most important electrical 
effects occur when the banding is appreciable, but before the impurity band has 
broadened out to overlap the bottom of the conduction band. 
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band and the other near the conduction band. Acceptor levels of this 
type occur for Au and for many of the iron group transition metals in 
Ge (31). In  the case of gold in germanium, an additional level about 
0.05 ev from the valence band has recently been established by Dunlap 
as a donor level (32). 

When the potential of the neutral impurity is deep enough to cause 
the first bound level to merge with the valence band, there will be local- 
ization of negative charge near the impurity cell. This will produce a 
long-range Coulomb field which can bind a hole in a normal acceptor 
state similar to that of a Group I11 impurity. This will represent the nor- 
mal situation when a neutral impurity of this type is added, since the 
valence band can then accommodate one more than the number of avail- 
able electrons and will have a hole in it. 

Some of the situations which occur experimentally are illustrated in 
Table 111. Not all of these results are established experimentally beyond 
question. 

In the case of Group I1 or Group VI impurities, we might expect to 
find He ion-like levels. In  this case, however, the influence of the poten- 
tial in the impurity cell is so great, that it is difficult to find any correla- 
tion between observed levels and a hydrogenic model. 

It is also possible to imagine a neutral impurity for which the poten- 
tial is so shallow that an additional electron would not be bound, but 
would go into the conduction band, although its wave function would be 
partially localized near the impurity. If we now consider the neutral crys- 
tal and examine the energy level of the last electron, we find that the im- 
purity becomes positively charged when this electron is removed, but 
that the added charge is sufficient to bind the electron locally in a non- 
hydrogenic level. Such a level could even approach close to the valence 
band, but would still be a donor level, by definition. An example of this 
situation seems to be the case of gold in silicon, reported by Taft and 
Horn (33). An energy level diagram for Si is shown in Fig. 7. In addition 
to the donor levels mentioned, the diagram shows two levels of unknown 
origin found in Si by Haynes and Hornbeck (34). These deep-lying levels, 
called traps, have a remarkable property: they accept electrons, but can- 
not apparently capture holes directly from the valence band. This sug- 
gests that they must be positively charged even when occupied by an 
electron; in other words, they are double donors. In  this case, a potential 
barrier could lie several tenths of a volt above the edge of the valence 
band, and the thermal energy of holes would not be sufficient to sur- 
mount it. If this energy-level picture is correct, there must exist an ad- 
ditional energy level corresponding to a doubly charged impurity which 
is merged with the valence band or is split off below it. 
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TABLE 111. Summary of Observed Impurity Levels in Germanium and Silicon* 

Germanium 

0.0120 
0.0127 
0.0096 
0.0093 

0.18 

0.27 f 0.02 

0.31 Jt 0.01 

0.35 5 0.01 

0 .2  

0.0104 
0.0102 
0.0108 
0.0112 

0.029 
0.25 
0.040 
0.05 
0.15 

0.23 

0.34 f 0.02 

0.25 * 0.01 

0.16 f 0.01 

0.04 
-0.25 

h l ,  CI, D5 
GI 
GI 
G1 
G1 

GI, D1, D5 
GI  
M3 

D2, D4, B1 
B2, KI, B1, D4, R3 

MI, D4, K1 
D6, D7 

D3, N1, K1, K2 
D3, N1, D6 

B2, N2, M4, M5 

N2, T2, T5 
N2, T2, T5 

N2, T3, T4 
N2, T2, T3 

T6 

D 4  
H1, B2, F1 
B3, J l ,  L1 . .  

Silicon 

B A 
A1 A 
Ga A 
In A 
P D 
As D 
Sb D 
Li D 
Ad11 D 
Electron traps (1) D,T 

(2) D,T 

0.045 
0.057 
0.065 
0.16 

0.044 
0.049 
0.039 
0.033 

0.57 
0.79 

0.33 

M2, B4, M3 
M2, B4 
M2, B4 

M2, B4, N3 
M2 

M2, M3 
M2 

M2, T1 
H2 
H2 

Key to Symbols: D = donor level, A = acceptor level, R = recombination center, 

* Based on J. A. Burton, Physia 20, 845 (1954). 

T = minority carrier trap (probably double donor or acceptor). 

B1 Burstein, E., Davisson, J. W., Bell, E. E., Turner, W. J., and Lipeon, H. G., 
Phys. Rev. 93, 65 (1954). 
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B2 

R3 
B4 

c1 
D l  
D2 
D3 
D4 
D5 
D6 
D7 
Fl 
G1 
H I  
H2 
J1 

K l  
K2 
L l  

M1 
M2 

M3 
M4 

M5 
N1 
N2 
N3 
TI 
T2 
T3 
T4 

T5 
T6 
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At the present time, practically no theoretical work has been carried 
out to explain the position of impurity levels other than the simple hy- 
drogenic ones. We have seen, however, from earlier arguments that the 
mean potential of the impurity can vary between rather wide limits and 
still give rise to essentially hydrogenic levels. The problem in the general 
ctwe is an extremely complicated one quantitatively, although the quali- 
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tative features described above can be fairly readily understood and sim- 
ple models can be constructed with the properties described. 

Some rough qualitative considerations may be adduced to explain 
some features of the results with non-hydrogenic impurities. For example, 
it appears to  be a good empirical generalization that elements which pro- 
duce deep-lying acceptor levels in Ge give rise to donor levels in Si. The 
lattice constant of Ge is 4.2% larger than that of Si, so that an Au atom 
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FIQ. 7. Energy-level diagram for the forbidden gap in silicon, including trapping 
levels of unknown origin: J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97,311 (1955). 
Since energy levels are deduced from thermal activation energies, they must be inter- 
preted as energy levels appropriate to O'K, and the diagram is drawn accordingly. 
A = acceptor Ievel, D = donor Ievel, 0 2  = double donor (ie., when level is occupied, 
it still carries one positive charge). 

would be more compressed in Si. Since the gold is compressed anyway, 
this will have the effect of raising all the levels for Au in Si relative to 
those in Ge. Apparently this rise is sufficient to  bring the donor level 
which is nearly merged with the valence band in Ge well up into the for- 
bidden gap in Si and to cause the other two acceptor levels to  merge with 
the conduction band in Si. There is one piece of evidence against this 
picture. W. Paul has made measurements of the effect of pressure on the 
upper of the two gold levels in n-type Au-doped Ge (56). These measure- 
ments indicate that an increase in pressure actually causes the gold level 
t o  move away from the conduction band and remain nearly fixed rela- 
tive to the valence band. The two pieces of information are hard to rec- 
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oncile at the moment. Present theory should make it possible to  make 
more quantitative calculations on such questions, however. 

It seems surprising that so many localized levels corresponding to  dif- 
ferent states of ionization of Au can exist within the narrow forbidden 
gap, since the self-energy of two electrons both localized in the same cell 
is many times larger than the size of the gap. However, calculations for 
a simplified model (21) show that even for a variation of potential in 
the impurity cell up to  10 times the size of the gap, a level remains local- 
ized within the gap. Thus the experimental result is a t  least reasonable. 

Isolated impurities constitute only one of the many types of imper- 
fections which can occur in semiconductors as well as metals. Other types 
include lattice vacancies and interstitials, line imperfections or disloca- 
tions, and surface imperfections such as grain boundaries or, indeed, free 
surfaces. All such imperfections can give rise to  localized states with 
energy levels in the forbidden gap. Practically nothing is known about 
such levels from a theoretical standpoint, and experimental information 
is in a much hazier state than is the case for impurities and energy bands 
themselves. The following facts are pertinent to  this discussion: 

1. Germanium can be made to  flow plastically by a slip mechanism 
above about 500°C. Dislocations put into a Ge single crystal by bend- 
ing give rise to  acceptor levels whose total number is of the order of 
magnitude of the number of atomic sites along the dislocations (36). 

2. The free surface of Ge probably possesses surface traps whose 
density is of the order of a t  least 1011/cm2, and which behave essen- 
tially like acceptor levels below the center of the forbidden gap (37). 

3. Grain boundaries in Gel which can always be described by suit- 
able arrays of dislocations, give rise to  acceptor levels most of which 
lie very close to  the top of the valence band (38). Indeed, in gold- 
doped Ge which is nearly insulating a t  liquid N, temperatures, grain 
boundaries act as short-circuit paths of thin p-type layers. 

4. Vacancies and interstitials generated by radiation bombardment 
or by heat treatment give rise to  acceptor levels in Gel and to  paired 
donor and acceptor levels in the middle of the forbidden gap in Si 

The level structure produced by dislocations in Ge appears to  be 
rather complicated. Pearson, Read, and Morin (41) investigated the elec- 
trical characteristics of n-type Ge following plastic deformation, and con- 
cluded that dislocations produce an acceptor level about 0.2 ev below the 
edge of the conduction band. Gallagher and Tweet (36) investigated the 
electrical properties of gold-doped Ge in which dislocations had been in- 
troduced by bending. The doping was such that the material was high- 

(39, 40). 
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resistivity p-type at  low temperatures before treatment. After treatment 
the material became lower-resistivity p-type, the data being interpretable 
in terms of an acceptor level about 0.05 ev above the top of the valence 
band. They also found that plastically bent n-type Ge remained n-type 
near the neutral axis, but changed to p-type near the fibers of maximum 
strain. This qualitative result again supports the idea that acceptor levels 
are introduced which lie below the center of the forbidden gap. The ap- 
parent contradiction between the two results seems to originate in differ- 
ences in the heat-treatment following deformation. The low-lying acceptor 
state near the valence band seems to disappear after extensive annealing 
and is probably associated with debris of the plastic deformation in the 
form of isolated vacancies generated according to a mechanism originally 
suggested by Seitz (4.2). It is interesting to note that certain orientations 
of grain boundary also appear to generate acceptor states at  about 0.05 ev 
above the valence band, whereas other orientations give acceptors lying 
even closer to the valence band (43).  The conductivity associated with 
grain boundaries probably results from holes in the space-charge region 
surrounding the boundary, rather than from conduction by the surface 
acceptor states in the boundary itself. 

It is interesting to speculate on the nature of the energy-level struc- 
ture produced by extended imperfections such as dislocations. Shockley 
has suggested the hypothesis of “dangling bonds” (44) which, in the 
mode of description we have been using, may be regarded as neutral cen- 
ters having a potential much deeper than that of the surrounding Ge lat- 
tice. The dangling bonds arise essentially from the fact that Ge atoms 
near the center of an edge dislocation do not have normal coordination. 
Thus the dislocation may be regarded as a linear array of neutral centers 
whose linear density depends on the degree of edge character of the dis- 
location. These centers are so close together, however, that they influ- 
ence one another strongly when they capture electrons and so cannot be 
treated like isolated impurities. As they become filled with electrons, they 
become charged and repel further electrons, so that they cannot become 
fully occupied. The line of negative charge on the dislocation induces a 
space charge in the surrounding material, and results in severe disturb- 
ance of the whole potential distribution around the dislocation. Shockley 
(44, 46) has suggested that extended imperfections may lead to one- or 
two-dimensional energy bands, There seems to be little evidence in favor 
of such conducting states, however, and it seems more probable that the 
electrons are more localized and form, in effect, linear or two-dimensional 
lattices of charges. This will be so both because of inevitable irregularities 
in the dislocations or surfaces and because of characteristics which are 
inherent in the nature of the one- or two-dimensional problem as com- 
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pared with the three-dimensional one. Read (44) has considered the na- 
ture of the statistical mechanical problem which occurs when we have 
dense distributions of acceptors on a line or surface. The general idea may 
be stated simply as follows. Suppose - E t  is the energy gained when an 
electron falls from the conduction band into the first trap. Then when 
there are n electrons in traps, the total energy of the system is given by 

-nEt + ae2n2/K (3.14) 

where a is a number of order unity, i.e., between 1 and 10. The second 
term arises from the electrostatic interaction of the trapped charges. 
Minimizing with respect to  n, we obtain 

n = KEt/2ae2 
E,i, = -KC i t 2  / 4ae2 

Emi,/n = -E t /2  
(3.15) 

This analysis is for a one-dimensional imperfection. Taking Et as 0.2 ev, 
we find n = 1.76K/a X 10" filled traps per centimeter of dislocation 
length. 

I n  (3.14) and (3.15) we have neglected the influence of the positive 
charge induced in the surrounding semiconductor by the line of negative 
charge. This can be shown merely to  alter the effective value of a, how- 
ever. Actually CY is not quite a constant, but, as shown by Read (44), is 
given explicitly by 

CY = 111 (n$'/rENDL') - 0.866 

where ND is the density of donors per cubic centimeter in the bulk semi- 
conductor (strictly, the excess of donors over acceptors). This calcula- 
tion involves the assumption that the charges are localized a t  the ac- 
ceptor sites. 

As an example, we may take N D  = 10'6 donors/cms, corresponding 
to 1.7 ohm-cm material. We find n = 3.7 X 10" trapped electrons per 
centimeter of dislocation for the maximum number which can be accom- 
modated. Since a decreases with increasing N D ,  there is an increase in 
the number of electrons which can be accommodated with decreasing re- 
sistivity of material. For a spacing between acceptor sites of 4 & (a typi- 
cal value), the sites will be only 15% occupied in the example given, even 
a t  absolute zero. For this example a is about 3. 

For the two-dimensional imperfection, the situation is somewhat more 
complicated, the total energy being given by 
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where N D  is the density of ordinary atomic impurities in the bulk of the 
n-type semiconductor. Because of the last term, (3.16) does not have an 
absolute minimum. Instead, the minimum is determined by the maxi- 
mum available number of states. A calculation with plausible numbers, 
in fact, shows that the middle term in (3.16) is always negligible com- 
pared with the other two, so that the self-energy of the surface charge 
is unimportant. Thus, there is a fundamental difference between line and 
surface imperfections. The middle term of (3.16) is usually ignored with- 
out discussion in the literature dealing with surface states. 

A type of localized atomic state which is of great practical impor- 
tance is the so-called recombination center. Such centers were first in- 
troduced for Ge and Si by Hall (46) and by Shockley and Read (47'). 

4 

FIG. 8. The recombination mechanism of Read, Shockley, and Hall. The basic 
processes involved in recombination by trapping: (a) electron capture, (b) efectron 
emission, (c) hole capture, (d) hole emission. From W. Shockley and W. T. Read, Jr., 
Phys. Rev. 87, 835 (fig. 1) (1952). 

They are needed t o  explain the observed recombination rate of holes 
and electrons in semiconductors, since direct recombination appears to 
be a relatively improbable process (48). The process envisaged is shown 
in Fig. 8. An acceptor center near the middle of the forbidden gap 
captures an electron, to become negatively charged, following which it cap- 
tures a hole. The process could also occur in reverse order with a donor- 
type center. Very little is known about the nature or origin of recombina- 
tion traps. Certain elements, dissolved in Ge, are known to increase the 
recombination rate drastically (49). Examples are Cu, Nil Co, Fe, and 
Mn, but they are effective only at temperatures such that the correspond- 
ing acceptor centers are singly charged (60). On the other hand, there is 
fairly convincing evidence that structural imperfections also affect re- 
combination. For example, Ge which is quenched from a high tempera- 
ture shows increases in recombination even when great precautions are 
taken to keep copper away (39). Other experiments show a good correla- 
tion between recombination rate and crystal perfection as determined by 
X-ray line broadening (51).  Although there may be considerable question 
about the validity of the interpretation of the X-ray data in terms of a 
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dislocation density, the general correlation with recombination seems un- 
questionable. There seems also to be a correlation between recombina- 
tion rate and impurity content (52).  Little theoretical work has been 
carried out on the trapping process itself. Trapping can occur theoreti- 
cally either by a radiationless process in which energy is conserved by 
the lattice vibrations, or by a radiative process in which the energy is 
carried away by one or more light quanta. However, unless the trapping 
occurs via excited states of the center in several steps, a multiphonon 
process would be involved for the radiationless transition in Ge and Si 
(54),  and this has very low probability. The possibility that capture in the 
center occurs with the emission of radiation has been investigated by 
Aigrain (53) , who has searched for the recombination radiation associated 
with trapping in the Ge recombination level which is 0.2 ev above the 
valence band (46) and has found some evidence for its existence. * Wannier 
(55) has discussed the trapping problem on the basis that the rate deter- 
mining process is the slowing down of a conduction electron to essen- 
tially zero velocity, in which case it is assumed to be captured with cer- 
tainty. With this extreme assumption, a lower limit for the lifetime of 
an electron in the presence of empty traps can be set a t  10-9 sec. For the 
deeper electron traps found in p-type Si (0.79 ev below the conduction 
band), Hornbeck and Haynes (34) estimate the mean life of an electron 
in the presence of empty traps (density 10l8 ern+') a t  2 X lo-* sec cor- 
responding to a cross-section per trap of 3 X 10-19  cm2, which in turn 
corresponds to an effective trap radius of 60ab or 5Kah. 

Such very large cross-sections appear to be associated only with so- 
called minority carrier traps, which are now believed to  be double donors 
or acceptors and therefore present a strong Coulomb attraction for the 
approaching carrier. In  the case of recombination centers, the cross-sec- 
tions are generally much lower. For Ni in Ge, for example, the cross-sec- 
tion for holes is about 4 X cm2, whereas for electrons, it is about 
10-16 cm2, the difference reflecting the fact that Ni is an acceptor and 
therefore presents unit negative charge for capture of holes, but is neu- 
tral for the capture of electrons (49). 

IV. STATISTICAL MECHANICS OF SEMICONDUCTORS 

The application of Fermi statistics to the calculation of the popula- 
tion of energy levels in a semiconductor in thermal equilibrium has been 
discussed rather completely in the existing literature, and we therefore 
refer the reader to these treatments (56) in the interests of brevity. There 

* More recent work indicates that the radiation observed may be due to transitions 
between the different branches of the valence band (Aigrain, private communication). 
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are a few points which have received some attention recently, which are 
worth mentioning in this review. 

The first point concerns the significance of the energy which occurs 
in the Fermi factor when the energy levels of a semiconductor have an 
explicit temperature dependence. This question has been discussed by 
Rushbrooke in very general terms (67), and more specifically as applied 
to  semiconductors by Landsberg (68) and by James (69). The argument 
which follows is essentially due to Landsberg. 

The concept of individual particle levels, as envisioned in Fermi sta- 
tistics, is only an approximation. Actually the energy of each electron 
depends also, at least to a slight degree, on the states of all the other 
electrons and on the excitation of each of the lattice oscillators, that is, 
on the state of vibration of the crystal. We use the subscript s to denote 
a given electronic energy level and the subscript j to describe the state 
of the rest of the crystal. Thus E8,j represents the energy of an electron in 
the state s when the rest of the crystal is in the state j .  Then the prob- 
ability of occupation of the state s is given by a Fermi factor 

f(EJ = 1/[1 + exp ( E ,  - E F ) / ~ T I  (4.1) 
where E ,  = - k T h  {Zjexp ( -&, , j /kT))  (4.2) 

The summation is taken over all possible states of the rest of the crystal. 
The energy E ,  which occurs in the Fermi factor is thus related to a 

partial statistical sum, or partition function, in precisely the way that 
the Helmholtz free energy is related to the normal partition function. 
The quantity E ,  may thus be described as the free energy of the crystal 
when one electron is held in a quantum state s. Such a definition, of 
course, implies that we may still identify the state s through all the pos- 
sible states of the rest of the crystal. In Ge and Si this identification pre- 
sents no difficulty, since the effects of the rest of the crystal may be 
treated as a relatively small perturbation. 

A more careful analysis for a system at constant pressure shows that 
the quantity E ,  actually has the properties of a partial Gibbs free energy. 
I n  this case E ,  in Equation (4.2) must be replaced by 

where V ,  is the volume available to the electron in state s, essentially 
the volume of the crystal. 

The second point concerns the statistics of localized levels. Equation 
(4.2) or (4.3) applies to states in the allowed energy bands of the crystal. 
If we take into account spin degeneracy, the Fermi factor must be mul- 
tiplied by 2 in order to compute the total occupation probability of a 
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band state. Now, band states have the property that the corresponding 
wave functions are spread throughout the crystal. Thus there is prac- 
tically no price, in terms of extra electrostatic interaction, for putting 
two electrons in the same state. This is the condition for the applicability 
of Fermi statistics in its simple form. In the case of localized states, how- 
ever, a very different situation obtains. Even though an electron may be 
allowed two directions of spin in a localized state, once the state is oc- 
cupied by an electron of either spin, it cannot then be occupied by an 
electron of opposite spin, because the electrostatic repulsion of the two 
localized charge distributions would raise the energy of the second elec- 
tron. Nevertheless the statistical analysis must take into account the 
double degeneracy of the level. The statistics may be formulated quite 
generally, using the free energy concept as before. The Fermi factor for 
a discrete level is of the form 

 ED) = 1/[1 + exp (ED - E F ) / ~ T I  (4.4) 

where ED = - k T I n [ ~ g ~ e x p ( - & t / k T ) ]  (4.5) 
I 

where gl is the degeneracy of the lth level, and &I is its energy. For a sin- 
gle level of multiplicity g, the effect of (4.5) is to lower the effective energy 
of the level by an amount -kT In g, about -0.7kT in the ordinary case 
of spin-degenerate levels. The corresponding Fermi factor is 

f = 1/[1 + ( l l g )  exp (ED - E F ) / ~ T I  (4.6) 

where &o represents the position of the discrete level. 
Before discussing applications of (4.6), we shall consider the popula- 

tion of electrons in the band levels. Near the band edge of a semiconduc- 
tor, we have seen that the density of states is proportional t o  ( E  - Eo)M, 
irrespective of the shape of the energy surfaces. Thus, for example, the 
number of electrons in the conduction band is given by 

n, = h* 1/[1 + exp ( E  - Ep)/kT]CEsdE (4.7) 

where E represents energy measured from the edge of the conduction 
band. If the number nc is known, then Equation (4.7) may be regarded 
as an equation for the determination of EF. For small densities, the solu- 
tion may be written 

exp ( - E F / ~ T )  = (fi/2)(l/nC)C(kT)% 
- (1/2 l /z)  ((~~/2)(l /n,)C(kT)”)-’l  (4.8) 

The usual approximation in semiconductor statistics corresponds to  the 
second term in the bracket of (4.8) being negligible. 
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The numerical value of the constant C depends on the energy sur- 
faces. For the multiple ellipsoid structure, as in the conduction bands 
of Ge and Si, we find 

(2 / ; ; /2 )  C = 2 v (2r/h2) %(mlmzms) % (4.9) 

where v is the number of minima, and spin-degeneracy is taken into ac- 
count. Equations (4.8) and (4.9) can also be put in the form 

where 
no = 2(2rmeffkT/h2)M exp (EF/kT)  (4.10) 

meti = (mlrnzrn3)%% (4.11) 

As an illustration for the Ge conduction band, assuming 4 minima, we 
have meff = 0.550me. The quantity meii is a “density-of-states effective 
mass,” and must not be confused with the cyclotron effective mass. 

TABLE IV. The Ratios &/A,  and A,/Ao for Ge and Si 

Ge (4 minima) Si (6 minima) 

Electrons 0.412 1.129 
Holes (1) 0.2075 0.390 
Holes (2) 0.0084 0.068 
Total holes 0.216 0.458 
Geometric mean of holes and electrons 0.299 0.719 

For warped energy surfaces, such as occur with degenerate band 
edges, the following treatment is appropriate. The energy surfaces may 
always be written in the form 

& = (P2 /2me)48 ,4 )  (4.12) 

where a(8,4) is a coefficient depending only on the direction of the re- 
duced momentum vector P. It is readily shown that 

( l / ; ; /Z)C = 2(2?rme/h2)% 2 (%r> 1 [4&4)l-3ddn (4.13) 

the integral being over the complete solid angle in momentum space, 
and the summation over the different degenerate surfaces. Numerical re- 
sults for Ge and Si are summarized in Table IV. The figures in the table 
are in units of Ao, where 

A .  = 2(2rm,/h2)4*(kT)3* = 2.436 X 1010 at 294°K (4.14) 

i 

The table entry thus represents the ratio v(mlm2m3/m,~)~* or A , / A o .  
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Quite generally we have the relations 

(4.15) n = A,exp (EF - E,)/kT 
p = A,exp (E, - Ep)kT 

where n and p are, respectively, the number of electrons in the conduc- 
tion band and the number of holes in the valence band, and A,, and A ,  
are obtainable from Table IV. For intrinsic material, we have 

n = p = ni = (A,AP)H exp [-(IT, - E,)/21cT] (4.16) 

where E,  and E ,  are the conduction and valence band energies, or, more 
strictly, free energies. With the aid of (4.16) and the measured intrinsic 
resistivity at  294’K, and also a knowledge of electron and hole drift 
mobilities at these temperatures (60, 61), we obtain for Ge 

EQ = E ,  - E,  = 0.656 ev (4.17) 

A similar calculation for Si gives EQ = 1.089 ev. 
It must be emphasized that the energy gaps obtained in this way are 

free energy gaps. It is also possible to obtain an enthalpy of activation 
from the slope of a graph of In p vs. 1/T. Such graphs usually give good 
straight lines, indicating that the enthalpy of activation is nearly a con- 
stant. The gaps obtained from them are 0.785 ev for Ge and 1.21 ev for 
Si. The discrepancy between these figures and the free-energy gaps per- 
mits an estimate of the temperature coefficient of the gap. If the gap 
width is assumed to vary linearly with temperature, the variation neces- 
sary to explain the discrepancy is 4.4 X lO-*/”C for Ge and 4.1 X lO-*/OC 
for Si. 

Some, but not all, of this temperature variation can be accounted for 
merely by the variation of lattice constant with temperature. The pres- 
sure variation of resistivity has been measured for Ge by Paul and Brooks 
(62) and by others (63). The equivalent temperature coefficient may be 
found from the relation 

( a E ~ / a T ) p  = (av /aT>p(ap /av>~(aE~/ /ap )T  (4.18) 

and is -0.78 X ev/”C for Gel much less than the observed value. 
The difference must be ascribed to an explicit temperature dependence 
of the energy gap, arising from the interaction between electrons and lat- 
tice vibrations (64). For Si, the pressure coefficient of the gap appears 
to be opposite in sign (66), and would predict a temperature coefficient 
of +0.26 x ev/”C. Thus in the case of Si, we must assume that the 
explicit temperature dependence of the gap is by far the dominant effect. 

It is of some interest to compare results deduced from resistivity 
measurements on intrinsic material with those obtained from optical 
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data. Unfortunately) interpretation of optical data is not straightfor- 
ward. This is because of uncertainty of how optical absorption data 
should be extrapolated to zero absorption coefficient in order to obtain 
a true gap width. Furthermore, optical data do not measure a true 
energy difference. The reason for this is that during an optical transi- 
tion the lattice remains frozen, as it were, in the same configuration it 
had in the initial state, which is not in general a configuration of thermal 
equilibrium for the final state. The situation is further complicated by 
the fact that the transition between band edge points in k-space is for- 
bidden, and can only take place with simultaneous emission of absorp- 
tion of a lattice vibration or phonon. Nevertheless, Bardeen and co- 
workers have shown (66) that the “forbidden” transition is sufficiently 
strong in Ge and Si to be observed under the usual experimental condi- 
tions, so that the threshold frequency for optical absorption gives a rea- 
sonable picture of the gap width. The “optical gap widths” are 0.62 ev 
for Ge and 1.05 ev for Si, in each case about 0.04 ev smaller than the 
corresponding free energy gaps (67). The values for the shift with tem- 
perature of the optically determined energy gap are -4.4 X 10-4 ev/’C 
for Gel and -4.5 X ev/”C for Si, in rather good agreement with 
the values deduced from free energy considerations. * 

Let us now consider the theory of the energy gap in greater detail. 
The energy levels of the system may be written in the form 

G,j = €8 + Ej + 6 a , j  (4.19) 

where s stands for electronic quantum numbers and j for all the lattice 
quantum numbers. The energy 68,j represents the energy of interaction 
of an electron in state s with a lattice in state j .  If this interaction can 
be treated as a small perturbation, then we may write 

6 a , j  = zqba(q)(nq + %) (4.20) 

where q is the wave-number vector which identifies a particular lattice 
vibration) b,(q) is an interaction coefficient, and nq is the number of 
quanta of oscillator q which are excited. 

If we substitute (4.20) into the expression for En we find 

En = E, - IcTZ, In (M sinh [(hv, + b,(q))/%kT]i (4.21) 

For the free energy gap, i.e. the difference in free energy between two 
states, labelled 1 and 2, Equation (4.21) leads to 

* That is, using Equation (4.16) and activation energies from reference 61. 
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At room temperature, for the lattice frequencies for which the b’s are 
appreciable, it suffices to replace the hyperbolic functions by their argu- 
ments, leading to the approximate relation 

Assuming that the b’s are obtained from a perturbation calculation, it is 
readily found that all the bl’s are negative, corresponding to a downward 
displacement of the edge of the conduction band, and all the b2)s are 
positive, corresponding to an upward displacement of the edge of the 
valence band. Hence all the logarithmic terms in (4.23) are positive, and 
the free energy gap EG varies linearly with the temperature with a nega- 
tive coefficient, in agreement with observation. 

The mean change in energy in an optical transition near the band 
edge may be written in the general form 

(4.24) 

where the statistical weighting factors are taken as those appropriate to 
the lower state for both states involved in the transition. This reflects 
the fact that the lattice remains “frozen” during the transition. Using 
(4.20) in (4.24)’ we have 

A& = Ei  - Ez - k T z q [ b z ( q )  - b i ( q ) l / [ h ~ q  + bz(q)I (4.25) 

The temperature coefficient in (4.25) agrees with that in (4.24) to the 
first order in the ratio b(q)/hvq, a result which has already been men- 
tioned by James (69). It is well t o  emphasize that had AL\E been computed 
by averaging each &,,j with the statistical weight appropriate to the par- 
ticular electronic state, rather than the final one, then A& would have 
been independent of temperature in the high temperature approximation, 
a result which could be obtained directly from thermodynamic relations 
between energy and free energy. * 

As to actual magnitudes, the expressions (4.23) and (4.25) are iden- 
tical for all practical purposes. The part of the temperature coefficient 
which is due to explicit temperature dependence of the free energy gap 
is 3.6 X l O - * / O C  for Ge, and 4.4 X 10-4/0C for Si. The theory of the bJs 
has been given by Fan (6.4). It is subject to modification due to the com- 

*This discussion is, strictly speaking, valid only when the form of the normal 
modes does not depend on the electronic state. This is probably a good assumption 
for valence semiconductors but not for ionic crystals. The author is indebted to M. 
Lax for calling his attention to this restriction. 
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plex nature of the energy surfaces. This modification will be discussed in 
Section VI. 

There is nothing in the theory presented so far which would explain 
the difference between the thermal and optical gaps. However, i t  must 
be remarked that the optical gap is not accurately given by (4.24). This 
arises primarily because the optical transition also involves a phonon (66) 
which can supply part of the energy for the transition. Thus the optical 
gap should be smaller than the thermal gap by just the energy of a 
phonon necessary to  scatter an electron from the point P = 0 in the con- 
duction band to a minimum point on the (111)-axis. The energy differ- 
ence amounts to about 0.035 ev, and this has been used by Marfarlane 
and Roberts (109) to deduce that the minima in Ge lie about N of the 
way out to the BZ boundary along the (111)-axis. This in turn would 
suggest an 8-, rather than a 4-minimum model. 

Warschauer and Paul (69) have also made measurements of the pres- 
sure coefficient of the optical gap. For absorption coefficients between 10 
and 70 cm-I, the displacement averages about 8.5 X ev/dyne/cm2, 
as compared with 5.5 X ev/dyne/cm2 deduced by Paul and Brooks 
(62) for the thermal gap from measurements of resistivity as a function 
of pressure in the intrinsic range. The discrepancy between the optical 
and thermal data can probably be explained in terms of a change with 
pressure in the shape of the absorption vs. wavelength curve, such that 
extrapolation of the optical data to zero absorption coefficient would pro- 
duce a smaller optical gap. As yet, however, the experiments only sug- 
gest, but do not quantitatively establish, this explanation. 

Returning now to the question of impurity levels and their statistics, 
we consider the case of a donor level of degeneracy g below a conduction 
band by an energy difference ED. It is necessary to consider also the pos- 
sibility that acceptor levels are present which, being way below the donor 
level, will be completely filled with electrons captured from the donors. 
We then obtain the formula of DeBoer and van Gee1 (70) 

(4.26) 

where A ,  is the quantity obtained in connection with Table IV. The data 
shown in Fig. 6 were obtained by Debye and Conwell (96) by choosing 
the constant A,, to give the best fit to low-temperature Hall effect data, 
on a variety of samples of different purity. They used Equation (4.26) in 
a form which amounted to assuming g = 2. However, they found the 
best fit to all data was obtained by taking A ,  = 0.125 Ao. Since this is 
only 45 the value of A ,  computed from cyclotron data, one would be 
tempted to  believe that g should be increased to 6, which seems unlikely, 
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or that there is a temperature dependence of E, - ED, which seems 
equally unlikely. The latter hypothesis would require a donor ionization 
energy which increased with temperature at a rate of 2.6 X lo-* ev/"C. 
This is highly improbable since it would imply a donor ionization energy 
of the order of 0.08 ev at room temperature. It seems most likely that  
the criterion of optimum fit is too insensitive actually to  determine the 
density-of-states mass in this manner. 

When we have to  deal with holes, a relation analagous t o  (4.26) 
holds. In  this case, however, the usual situation is that  there are several 
types of acceptor level t o  which an electron may be added, correspond- 
ing, for example, t o  different possible spin orientations of the missing 
electron. As a result, the symmetry of Equation (4.26) with respect to  
holes and electrons is preserved. If we take as the argument of the ex- 
ponential on the right of (4.26), or its hole analogue, the free energy 
change resulting from the addition of an electron from the conduction 
band or the removal of an electron to  the valence band, then we obtain 
the correct result. Since the state of the impurity center with four elec- 
trons per atom is usually the state of minimum degeneracy, it is usually 
most convenient t o  take this state as the reference for computing free 
energy changes. More generally, we can take into account possible ex- 
cited levels of the impurity center by replacing the donor energy level in 
accordance with Equation (4.5). 

Equation (4.26) exhibits three distinct regions. In  the first, n is com- 
parable to N D  - NA and is essentially independent of temperature. This 
is the case normally exhibited by Ge and Si a t  room temperature, and 
down to  a t  least liquid nitrogen temperature. In  the next region, n is 
much less than ND - NA, but larger than N A ,  so that an  approximate 
solution of (4.26) is 

n = (ND - NA)36(An/g)55exp { -(& - 8 D )/2kT) (4.27) 

In  this region the ionization energy of the donor is actually twice the ob- 
served activation energy for conduction. In  the third region, n is less 
than both NA and N D  - NA, and the activation and ionization energies 
become equal. This will always happen a t  sufficiently low temperature. 
However, because of the smallness of the activation energies, factors of 
T" and T% which occur on the right side of (4.27) and its counterpart 
tend to  conceal the change in apparent activation energy. Mere graphs 
of In p us. 1/T are not reliable for the determination of activation energies 
in such cases. 

Another case of interest is that  which occurs when there exist several 
levels for a given center, the most thoroughly studied example being that 
of Au in Ge. In  this case we will assume that the deeper level come- 
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sponds to the first electron, which may go in with only one direction of 
spin, whereas the upper level corresponds to the addition of a second 
electron, which may go in with either direction of spin. If ETI and ET, 

10/ T O K  

FIG. 9. Variation of Hall effect and carrier concentration with temperature for 
gold-doped germanium. From W. C. Dunlap, Jr., Phys. Rev. 97, 614 (1955). 

represent energies of the first and second trapped electrons, respectively, 
then the Fermi factor for an Au level is given by (71) 

If the Fermi level is well above TI and above Tz, then we find 

(4.29) n(n + ~ N T  - N D )  

N D  - n 
A ,  

= 7 exp { -(Ec - ET,)/LTJ 

where NT is the number of trapping atoms, and EC the edge of the con- 
duction band, while N D  is the number of conventional donors. Equation 
(4.29) has a solution if ~ N T  > N D ,  and in general the activation energy 
will be equal to EC - E T ~ .  If the Fermi level is below both T, and Tz, 
then we obtain 

(4.30) 
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where p is the number of holes in the valence band. More generally in 
Equations (4.29) and (4.30), N D  should be replaced by the excess of 
normal donors over normal acceptors. This equation has a solution if 
NT > No, and in general the activation energy is equal to the energy 
ET, - E,, where E ,  is the energy of the edge of the valence band. Both 
these types of behavior have been reported by Dunlap (31). Typical be- 
havior is illustrated in Fig. 9, which shows results for both p -  and n-type 
gold doping. The type of situation described above has been recently 
formulated in more general terms by Landsberg (72). 

So far we have excluded from consideration the case in which classical 
statistics is not a good approximation. Many cases occur in which the 
electron concentration in the conduction band or hole concentration in 
the valence band becomes high enough to bring about a transition to  
Fermi statistics, the so-called degenerate case. This situation has been 
considered extensively, especially by Lark-Horovitz and co-workers (66). 

V. THEORY OF TRANSPORT PROPERTIES OF SEMICONDUCTORS 
In the present section we shall present an elementary derivation of 

formulas for electrical resistance, Hall effect, and magnetoresistance ef- 
fects. A more rigorous derivation would involve the use of the Boltzmann 
equation, which we shall omit here. The present derivation has the ad- 
vantage of keeping the physics in evidence at each step, although the 
chain of reasoning is not complete. 

We shall consider first the case of a single type of charge carrier with 
spherical energy surfaces. The electric field is taken in the x-direction, 
the magnetic field in the r-direction, and the Hall voltage or field is 
measured in the y-direction. The equations of motion may be written 

du,/dt = ( e /m)E,  + WOV, 

dv,/dt = ( e /m)E,  - WOV, 

w0 = eH/mc 
(5.1) 

For convenience we have taken the carrier as a hole, and m stands for 
the effective mass. The solution of (5.1) may be written in the complex 
form 

v, + iu, = (v ,  + iuu)oeciwot + (e/m)(E, + iE,)(l - exp [ - iwo t ]> / iwo  (5.2) 

where (u, + i ~ , ) ~  is the initial condition. We assume that each collision 
completely randomizes the direction of motion of the carrier. For con- 
duction problems we are only interested in acquired motion, so hereafter 
it will be legitimate to omit initial conditions. If we focus attention on 
any particular carrier, the probability that it has survived collision for a 
time t is exp ( - t / ~ ) ,  where T is the collision time and in this example will 
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be assumed to be a function only of the energy of the carrier. The mean 
acquired velocity is then obtained simply by averaging (5.2) with respect 
to the normalized probability (1,'~) exp ( - t / r ) .  The mean contribution 
to the electric current is then obtained by multiplying the mean acquired 
velocity by the charge e, and this must be averaged over all the electrons 
in the distribution in order to obtain the total current according to the 
relation j = n e ( v ) A V .  The result is 

(5.3) j ,  + i j ,  = (ne2//m)(E, + i E , ) ( ~ / ( l  + Z'WOT))AV 

where n is the total number of carriers. The average is taken with the 
distribution function 

where x = &/kT (5.4) 

This is similar to a Maxwell distribution, but contains an extra weight- 
ing factor of the energy. Hereafter, unless otherwise specified, all aver- 
ages used in this section will be with respect to the distribution (5.4). 

The result (5.3) must be rearranged by separating into real and im- 
aginary parts. 

Measurements are usually made in such a way that the Hall probes, 
measuring E,, are effectively open circuit; hence in (5.5) we must set 
j ,  = 0. When this is done we finally obtain the relations 

(5.7) 

If T is independent of energy, the averages may be dropped and we have 
the simple results 

E, = (l/nec)jZH (5.8) 
Thus the electrical resistance is independent of magnetic field, whereas 
the Hall constant (which is the coefficient of j,H in the second Equation 
(5.8))  directly measures the density of carriers, n. 
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In general, of course, 7 does depend on energy, and we cannot make 
the above simplification. However, it is often a good approximation to 
assume that WOT is small, so that we can expand the denominators in (5.6) 
and (5.7). The result is 

uo = 1 / p 0  = ( n e 2 / m > ( T ) A v  

With the aid of the Schwarz inequality, it may be shown that the cor- 
rection term always represents an increase of resistance with magnetic 
field. The so-called magnetoresistance is given by 

(T3)AV(7)AV - (T2)AV2 
Ap/poH2 = (e2/mzcz) 

(.)A? 
(5.10) 

It is also useful to define an auxiliary coefficient 

Ap/poR2U02H2 = (T3)AV(T)AV/{T2)AV2 - 1 (5.11) 

The theory of T will be discussed in Section VI. Here we shall give 
only the results necessary for the purposes of calculating the averages in 
Equations (5.6)-(5.11). There are two principal sources of scattering in 
Ge and Si: 

1. Scattering by lattice vibrations. This is the dominant form of 
scattering in pure materials and at  high temperatures. For this type 
of scattering, the collision time 7 decreases uniformly with increasing 
energy, inversely as the square root of the energy for the simplest 
theory. 

2. Ionized impurity scattering. This is the dominant form of scat- 
tering in impure semiconductors and at low temperatures. For this 
type of scattering, the collision time varies as a positive power of the 
energy, the +34 power in the simplest theories. The coefficient of this 
power is actually a slowly varying function of energy, but this varia- 
tion can be neglected for the purposes of the present analysis. 

The two types of scattering will occur simultaneously at  some ener- 
gies, and they combine according to the law 

1/T(&) = 1/TL(&) -k 1/Tr(&) (5.12) 

where TL(&) is the mean free time for lattice scattering, and TI (&)  that for 
impurity scattering, each considered alone. 
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Under some circumstances neutral impurity scattering also occurs for 
which r (&) is independent of energy. 

It must be emphasized that the existence of a T is itself an approxima- 
tion. For spherical energy surfaces centered a t  P = 0, it always exists, 
provided energy loss in collisions can be neglected, but for nonspherical 
surfaces and surfaces centered at other than P = 0, there is no case in 
which the assumption of a T is entirely justified. These points will be dis- 
cussed in Section VI. 

In many cases it is convenient to assume that r varies according to a 
power law of the form 

7 = r o / & P  (5.13) 

For example, for the simplest theory p = M for scattering by lattice 
vibrations, and p = -N for scattering by ionized impurities. When this 
scattering law is substituted into Equation (5.9), we obtain the foIIow- 
ing relations 

go = (ne2/m)rO(kT)-Pr(% - p)/r(%) (5.14) 
R = (1/7=c){r(% - 2p)r(%)/DY% - P)l21 (5.15) 

(5.16) 4 = Ap/poR2a02H2 = {r(% - 3p)r(% - p ) / W ( %  - 2 ~ 1 1 ~ 1  - 1 

where r(z) is the gamma function (73). The combination of gamma func- 
tions which occurs in (5.15) will be called X ( p ) ,  whereas that in (5.16) 
will be called ~ ( p ) .  These functions will be found to be useful even for 
nonspherical energy surfaces. However, a difficulty occurs because X ( p )  
blows up as p approaches %, and ~ ( p )  bIows up as p approaches %. This 
is an important problem because, as we shall see, experiments indicate 
that the lattice collision time varies as &-0.64 in n-type Ge, and as &-'.BE 

in p-type Ge. The divergence of the integrals for X(p) and ~ ( p )  is, of 
course, merely the result of the approximation used in arriving a t  (5.13)- 
(5.15). This approximation can actually break down in three ways. 

1. The lattice scattering cannot be approximated by a simple power 
law down to the lowest energies, but always approaches an &-% be- 
havior for sufficiently slow electrons (see Equations (6.15) and (6.16) 
in the next section). 

2. The scattering law (5.13) is not valid down to zero energy, but 
is cut off at  a certain energy by the onset of ionized impurity scatter- 
ing, which varies as a positive power of the energy. Hence the inte- 
grals involved in ( T ~ ) ~ "  do not actually diverge as & .--) 0. 

3. The terms in wo2r2 in the denominators of the averages in (5.6) 
and (5.7) become important and cannot be neglected for sufficiently 
small &. They can also be seen to prevent the divergence of the integrals. 
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Which case occurs depends on whether the term in wo2r2 is smaller or 
larger than unity a t  the energy for which r reaches its maximum when 
impurity scattering is taken into account. If it is smaller, then the values 
of the three coefficients remain independent of magnetic field, whereas if 
larger, the coefficients show field dependence down to  quite low fields. 

The exact evaluation of the r-averages would require lengthy numer- 
ical integration using the composite T of Equation (5.12). The only case 
which can be integrated in terms of tabulated functions is the case of no 
impurity scattering with T L ( G )  a &-$*. However, H. Jones (74) and John- 
son and Lark-Horovitz (75) have evaluated the integral for the 7-aver- 
ages corresponding to  X(p) for the case p = 56 and variable amounts of 
impurity scattering. If lattice scattering predominates heavily, then the 
averages may be approximated fairly well with incomplete gamma func- 
tions, or by simple power series in the value of the variable x = xo for 
which r(&) has its maximum. This variable is given by 

x0 = [ ( q / p ) r ( g d  + q)r(x - p ) ~ l / ( p + * ) [ ~ ~ ~ ~ ) / ~ ~ ( ~ ) ] l / ( p + * )  (5.17) 

where p and q are the energy exponents of lattice and impurity scatter- 
ing, respectively, and p ~ ( ~ ) ,  p ~ ( ~ )  are actual mobilities which would exist 
due to  lattice and impurity scattering a t  the temperature T a t  which xo 
is evaluated. 

As an illustration of the sensitivity of the results even to  small 
amounts of impurity scattering, we show, in the table below values of 
the functions X(p)  and ~ ( p )  for various ratios ~ L ( ~ ) / ~ I ( T )  and for the case 
p = 0.64, p = 1.5 

0.02 
0 .01  
0.002 
0.001 

10-6 
10-6 
0 

10-4 

1.21 
1.22 
1.27 
1.27 
1.32 
1.34 
1.34 
1.35 

0.95 
1.19 
1.25 
1.34 
1.45 
1.56 
1.63 
1.74 

For comparison, it is interesting to  note that  when we have lattice 
scattering alone with p = s, we obtain X(p)  = 3 ~ / 8  = 1.1781, 

~ ( p )  = 4/7r = 1.274 

while for ionized impurity scattering alone, with q = x, we obtain 
X(p)  = 315~/512 = 1.931 and q ( p )  = 32768/6615r = 1.572. 
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Curves for the composition of lattice and impurity scattering in the 
calculation of ( T ) ~ ~  have been given by Johnson and Lark-Horovitz (76) 
and by Conwell (60). 

Two further generalizations of the above results are possible and must 
be carried out before the formulas can be applied to Ge and Si. The two 
effects which must be considered are the influence of anisotropic effective 
mass, and the simultaneous presence of electrons or holes originating in 
different energy bands. The fundamental idea to be applied in each case 
is that the different electrons in the distribution are effectively in paral- 
lel, so that their contributions to the conductivity are additive. This is 
in contrast to the different scattering mechanisms, which are effectively 
in series. 

Equation (5.5) may thus be generalized immediately, simply by sum- 
ming terms similar to those in brackets for all the bands involved, that is 

where it must be remembered that the cyclotron frequencies wi have a 
sign which will be taken as positive for holes and negative for electrons. 
As a typical illustration of the application of (5.18), we may consider the 
case of three bands, each with spherical energy surfaces, two being hole 
bands and one an electron band. We will also write the equations for the 
case of small magnetic field, where the denominators in (5.18) may be 
taken as unity. Then the Hall constant is given by 

(5.19) 

and the magnetoresistance coefficient [ is given by 

E =  [ n l ( p l ) A V  + nZ(M2)AV + n 3 b 3 ) A V ] [ n l ( p l 3 ) A V  + n&Z3)AV + n 3 ( p 3 3 ) A V ]  

[ - n l ( p 1 2 ) A V  + n 2 ( P Z 2 ) A V  + n 3 ( p 3 2 ) A V ] z  

- 1 (5.20) 

where nl, nz, and n3 are the numbers of electrons and of each type of 
hole, respectively; p1 = e(rI /ml) ,  etc. are the carrier mobilities as a func- 
tion of energy for each band, and are averaged over the appropriate dis- 
tribution of the form (5.4) for each band. The well-known formula for 
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the Hall effect in a semiconductor with minority carriers present is a spe- 
cial case of (5.19). The general theory has been developed for the multi- 
band model by Johnson and Whitesell (767, and its application to Ge has 
been discussed by Willardson, Karman, and Beer (77). Both groups of 
authors have extended the analysis to high magnetic fields, but have 
confined their attention to an energy dependence of r corresponding to 
p = 

The limiting case of very large magnetic fields is especially simple, 
although it cannot be achieved in practice except in some cases at liquid 
nitrogen temperature or lower. In  this case, for the 3-band situation used 
as an illustration above, the Hall constant directly measures the total 
charge density, independent of any mobility averages, i.e., 

or p = -94. 

The effect of magnetic field on the resistance is given by 

P J P O  = 
[nl(l/Pl)AV + nZ(l/pZ)AV f n3(l/p3)AV][nl(p1)AV + nZ(P(L2)AV + n3(p3)AV] 

[-nl + n2 + n3l2 
(5.22) 

where pm/po is the ratio of the resistance at effectively infinite magnetic 
field to that at zero field. It is of interest that the resistance a t  high fields 
is independent of the field, and depends on the sum of the reciprocals of 
the mobilities. This means that in the high-field case, the different scat- 
tering mechanisms, as well as the different electrons, contribute addi- 
tively to the resistance, and thus the treatment of simultaneous impurity 
and lattice scattering is greatly simplified. The same simplification re- 
sults if measurements are conducted at  sufficiently high frequency, so 
that WT >> 1. In the absence of a magnetic field, in fact, the expression 
for the current a t  high frequency becomes 

i 

(5.23) 

The theory for ellipsoidal energy surfaces has been given by Meiboom 
and Abeles (78). Here we shall present only a very oversimplified deriva- 
tion along the lines of Equations (5.2) and (5.5). We consider the equa- 
tions of motion of a carrier only for the very special case of the electric 
fields and the magnetic field along the three principal axes of one ellips- 
oid-the electric fields in the x- and y-directions, and the magnetic field 



134 HARVEY BROOKS 

in the z-direction. The equations of motion are then 

du,/dt = ( e /mJE,  + (e/mz)v,H (5.24) 
dv,/dt = (e/mz)E, - (e/m2c)v,H 

where ml and m2 are the masses for the x- and y-directions, respectively. 
Solving these equations and carrying out appropriate averages, as in the 
spherical case, we obtain finally 

e(u,)*v = (e2E,/m1)(~Lv - ( e 4 E , H 2 / m ~ 2 m ~ ) ( ~ 3 ) ~ ~  + (e3E,H/mlm2)(T2)~v 
(5.25) 

e(v,)Av = - (e*H&/mlm&T2)Av + (e2E,/mdT)nv 

Here we have made the approximation that the magnetic fieId is small, 
which results in the criterion 

( e H 7 / 4 G 2  c )  << 1 (5.26) 

We must sum the expressions on the right of (5.25) over the equivalent 
ellipsoids. For simplicity, we shall take the ellipsoids along the cubic axes, 
so that the different ellipsoids correspond merely to  permuting the masses 
in (5.25) and (5.26). When this is carried out, we obtain the following ex- 
pression for the Hall coefficient 

It can be shown that this expression is completely general and is valid 
for any arrangement of ellipsoids which has over-all cubic symmetry. 
Equation (5.27) can also be put in the form 

ml K = -l m2 = m3 
m2 

The theory for the magnetoresistance is somewhat more complicated, 
because for a cubic crystal there are actually three independent magneto- 
resistance coefficients a t  low magnetic fields (85). The simplified theory 
may be used to  obtain two of them for the case of ellipsoids along the 
cubic axes, which is the case of the silicon conduction band. For the 
transverse case we obtain 

[!:: = [ ( ~ a ) A V ( ~ > A V / ( T z ) A V z ] [ ( K 2  K 1) (2K 1 ) / K ( K  + 2)'I - 1 
= v ( p ) [ ( K 2  + K + 1) (2K + 1 ) / K ( K  + 21'1 - 1 (5.29) 

by means of (5.25).  For the longitudinal magnetoresistance, correspond- 
ing to  a magnetic field parallel to  the electric current, the coefficient 
vanishes in this particular orientation, as it does in all orientations for 
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spherical energy surfaces. The reason for this is that when the electron is 
accelerated along the electric field, it moves parallel to the magnetic 
field, and its motion is therefore unaffected. This is not generally true in 
the anisotropic case simply because, for an electric field not along a prin- 
cipal axis, there is a component of acceleration perpendicular to the mag- 
netic field, and the motion is therefore modified. Thus when the ellipsoids 
are in (111)-directions, as in Ge, there is no direction of electric field for 
which the longitudinal magnetoresistance vanishes. In this case the mag- 
netoresistance coefficient, defined in analogy with (5.16), is given by 

4% = dP)%[(K - 1)2(2K + 1)/K(K +'2)21 (5.30) 

The corresponding transverse magnetoresistance coefficient for (11 1)-el- 
lipsoids is given by 

t% = 'rl(p)[('X + 1)'/3K(K + 2)1 - 1 (5.31) 

with the symmetry relations 

ti$ = (vat.::: 
4% = 4% 
t.x = (%>.e + t E  (5.32) 

Simple relations may also be derived for the case of very large mag- 
netic fields. For the Hall effect we have 

R = l/nec (5.33) 

valid for either (100) or (1 11)-ellipsoids. For the transverse magnetore- 
sistance we obtain, in the case of ellipsoids along the cube axes 

p.0 = (:)Av ( T ) A v ( > $ ) ( m l +  m2 + ma>( l /m l+  l/ma + 1/md 
PO 

= (1 /7)AV(T)AV[(K + 2)(2K + 1)/9K] (5.34) 

In the case of (111)-ellipsoids we obtain, along cubic axes 
100 

[(2K + 1)(K + 2)/9KI 

( ~ / ~ ) A V ( ~ A V ) I ( ~ K  + 1I2/3K(K + 211 
t(2K + 1I2/3K(K + 211 

P m i o o  - 

P m i o o  - 

P-110 - 

PO 
010 

(5.35) 
PO 

1 1 0  

PO 

Numerical values for the mass factors in (5.28), (5.29), (5.30), (5.31), 
(5.34), and (5.35) are shown in Table V. The ratios on the left of (5.35) 
are the ratio of resistivity a t  high field to the zero-field resistivity. If the 
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collision times behave with energy according to  a power law like (5.13), 
then we find 

(1/7)AV(7)AV = r (p>  = (r(% + p)r(% - p)/[r(%)I21 (5*36) 

This factor has the value 32/9n = 1.131 for p = $5, and 32/3n = 3.39 
for p = 96, corresponding to  ideal lattice and impurity scattering, re- 
spectively. A similar factor occurs in connection with high-frequency con- 
ductivity. The basic reIation is 

(5.37) ghf/vdo = y ( p )  (e2/m2pdo2)/%f? 

1lm.n = (4$)(l/ml + l/m2 + 1/m) 

where pan is the mobility calculated from the dc conductivity, Udo. 

for Various Examples* 
TABLE V. Mass Factors in Expressions for Magnetoresistance and Hall Constant 

Ge Si 

K = 19.3 K = 14.5 K = 5.16 K = 4.5 

Mass factors only 
0.782 0.797 0.865 0.878 

1.402 1.354 
1.280 1.256 
1.010 0.923 1.00 1.00 

1.746 1.605 
1.280 1.256 
4.83 3.79 1.000 1.000 
1.280 1.256 1.330 1.286 

* For low fields, each factor in the table must be multiplied by h ( p )  for Hall con- 
stant, and by ~ ( p )  for both longitudinal and transverse magnetoresistance. For high 
fields, the factor in the table must be multiplied by 1 for longitudinalmagnetoresist- 
ance and by ~ ( p )  for transverse magnetoresistance (for a more general tabulation of 
mas6 factors, see reference 92). 

I n  the absence of a magnetic field the theory of electrical resistivity 
may be extended rather simply to  cover the case of a 7 which depends 
on direction as well as on energy. I n  this case, the weighting function is 
proportional to  

( v 2 )  exp ( -E/kT)dfJ~l(vpE(P) I (5.38) 

where d S p  is a n  element of surface in P-space on the energy surface. 
It might be thought that  since, for small magnetic fields, the change 

in direction of a carrier is small between collisions, the collision time for 
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a particular carrier will depend only on its initial velocity, and that there- 
fore the averages involved in X(p) and ~ ( p )  could be carried out by using 
the weighting factor (5.38) and including the directional dependence of r .  

This procedure is only approximate, however, since the correct treatment 
of the problem by means of the Boltzmann equation gives rise to  addi- 
tional terms, which involve the gradient of T tangentially to  the energy 
surface. Although the more general theory has been given in principle by 
Wilson and others, i t  has never been applied in detail t o  an  explicit semi- 
conductor model. 

Shockley (79) and Seitz (80) have given, in principle, general solu- 
tions applicable to  cases when the approximation of small magnetic field 
is no longer suitable. These solutions are good for arbitrary energy sur- 
faces and arbitrarily large fields, provided only that  a collision time 
exists. In  the general case, since the carrier changes its direction of mo- 
tion significantly in one mean free path, the averaging of the collision 
time is very complicated. The general solutions have never been applied 
to  the semiconductor problem. 

In  the case of the energy surfaces appropriate to  the valence bands 
of Ge and Si, the simple analysis for quadric energy surfaces is no longer 
strictly applicable. Again, although the problem has been solved in prin- 
ciple (81), the solution has never been applied in detail t o  the semicon- 
ductor problem. Actually, however, the energy surfaces do not deviate 
too much from spheres, and so we might expect the multiband theory of 
Equation (5.18) t o  be applicable. 

Another theoretical quantity of considerable importance in correlat- 
ing electrical properties and band structures is the thermoelectric power. 
The theory of the thermoelectric power of semiconductors has recently 
been reviewed by Herring (82). I n  terms of the notation used in discuss- 
ing the galvanomagnetic effects, a general expression for thermoelectric 
power Q may be written 

eTQ = ( ( E  - ER)T)AV/(T)AV (5.39) 

or for a multiband situation 

(5.40) 

where ni is the number of carriers in band i, and mi is the mass, which 
in the case of ellipsoidal surfaces must be taken as the reciprocal mean 
mass as given, for example, by (5.37). Equation (5.40) may be inter- 
preted by the statement that the thermoelectric powers arising from each 
band combine as though they were voltage sources connected in parallel, 
each having an  internal resistance appropriate t o  the corresponding con- 
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tribution to the conductivity from that band. The sign of the contribu- 
tion depends, of course, on whether the band edge is above or below the 
Fermi energy. Equations (5.39) and (5.40) may also be readily general- 
ized to include the effect of a directional dependence of r ,  in the same 
manner as indicated by Equation (5.38), except that in this case the cor- 
rection is rigorously valid. 

The theory outlined above gives only the electronic contribution to 
the thermoelectric power. At low temperatures there is another and more 
significant contribution, which arises from the lattice vibrations (83). 
The theory is discussed in detail in reference 82. The basic idea is the 
following. At low temperatures, the electrons give momentum to the lat- 
tice vibrations (phonons) at a sufficient rate for the latter to be unable 
to come to equilibrium among themselves. In consequence, there is a net 
flow of energy in the lattice, related to the electric current, but carried 
by the phonons rather than the electrons. Since the thermoelectric power 
is directly related to energy transport by the electric current, the phonons 
give rise to a big increase of thermoelectric power at  low temperatures. 
The extensive analysis of Herring (82) has demonstrated that the experi- 
mental results can be explained in almost all detail by the theory. 

For purposes of illustration, we shall now discuss the application of 
the above theories to n-type Gel the material which has, perhaps, been 
most extensively explored from the experimental standpoint. For the 
galvanomagnetic effects, we shall discuss some measurements made on 
n-type Ge by G. Benedek (84) at 0°C. The experimental results were 

PH = Rocro = 4480 cm2/volt sec 
t i 0 0  = 1.086 (5.41) 
t o l o  - 

100 - 0.477 

The dependence of these coefficients on magnetic field was checked care- 
fully and found to be negligible up to 2000 Gauss, and so the small field 
theory is applicable. As a further test of this assumption and of the va- 
lidity of the theory, we show the test of the symmetry relations (5.32) 

%[$, = 0.543 
ti;: = 1.006 

i;ii = 0.492 

>d[i:i + [~~~ = 1.021 
(5.42) 

Since this symmetry would only apply for ellipsoids along the (111)- 
directions, the good agreement is striking confirmation of the cyclotron 
resonance data. More detailed confirmation of the angular dependence of 
the coefficients has been obtained by Pearson and Suhl (86). 

It is possible to eliminate ~ ( p )  from (5.30) and (5.31) t o  obtain an ex- 
perimental value for the mass ratio K.  The best fit is given by K = 14.5, 



ELECTRICAL PROPERTIES OF QERMANIUM AND SILICON 139 

which is somewhat less than the cyclotron resonance value, but barely 
outside the experimental error. If we take this result, we can compute 
the individual coefficients if we know X and q.  Taking p = 0.66 to fit the 
drift mobility data of Morin and Maita (86), we must still make some 
assumption regarding the cut-off due to  impurity scattering, as in Equa- 
tion (5.17). It is found that the best fit is obtained for this particular 
sample by taking p ~ ( ~ ) / p P )  as 5620  a t  0°C. Under these conditions, we 
obtain 

[loo = 1.090 
p 1 0  100 = 0.481 (5.43) 

p ~ / p n  = 0.980 

Since the impurity scattering was adjusted to  give agreement in this 
case, the only physical significance of (5.43) lies in the fact that  the 
amount of impurity scattering required is not unreasonable. As good a 
fit of the experimental data cannot be obtained without including impu- 
rity scattering. Morin (BY) reports a value of the Hall-to-drift mobility 
ratio which is somewhat larger than 0.98, actually about 1.05. However, 
his samples were somewhat purer, and taking this into account would 
raise the theoretical value to  about 1.05 also. 

An analysis of magnetoresistance data on n-type silicon has been 
made along similar lines by Pearson and Herring (89). They report a 
mass ratio of 4.6 to  4.9, which is in excellent agreement with the value 
of 5.2 obtained from cyclotron resonance data. Values of q ran from 1.12 
at liquid air temperature to  1.21 a t  room temperature. This is to  be com- 
pared with a value of 1.18 for Ge at room temperature. 

For n-type Ge Equation (5.39) for the thermoelectric power may be 
written 

- ( e l k ) &  = (Ec  - EF)/kT 4- % - p 
= In ( A n / % )  + % - p 
= In (Ao/n> + In (An/Ao) + 96 - p 

(5.44) 

where A,, and A0 are the quantities defined in connection with Table IV, 
n is the number of electrons in the conduction band, and p is the mobil- 
ity exponent. The only unknown in this expression is the ratio A,,/Ao. 
This has been determined by Geballe and Hull (90) t o  be 0.65, which is 
larger than the theoretical value of Table I V  by a factor of 1.65. Such a 
discrepancy suggests that  there may be 8 minima instead of 4 for the con- 
duction band, since otherwise an exponent of p = 0 would be required 
in the scattering. 

When we come to  deal with p-type Ge or either n- or p-type Si, the 
kind of analysis discussed above runs into difficulties, for in all these 
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cases the temperature dependence of the conductivity or drift mobility, 
which is proportional to ( T ) ~ ~ ,  is much stronger than T-'.6. Results for all 
the cases are summarized in Table VI. Possible explanations for these 
anomalies will be discussed in the next section. The point we are con- 
cerned with here is the implications of these temperature dependencies 
for the galvanomagnetic coefficients. In all except the case of n-type Gel 
if we interpret the drift-mobility results directly in terms of a mean free 
time 7 a E - P ,  where p = r - 1, r being the temperature exponent in 
Table VI, then we find that all the integrals for the galvanomagnetic ef- 
fects diverge. If we correct for impurity scattering, of course they con- 
verge, but the precise values of X and 7 become very sensitive to the 

TABLE VI. Temperature Dependence of Drift and Conductivity Mobility in 
Germanium and Silicon 

n P 

Germanium (91) 3.5 x IO'T-1.6 9 . 1  x 10sT-a.a 
Silicon (61) 4.0 x 1 0 9 ~ 4 6  2 . 5  X 10ST-2.3 

behavior of T ( & )  in the immediate vicinity of the point where it has a 
maximum, and are accordingly very sensitive to temperature and impu- 
rities and are quite large in magnitude. The greater the relative impor- 
tance of impurity scattering, the smaller will be both X and 7, so that 
these quantities will increase with temperature and decrease with impu- 
rity content, * even when the impurity mobility calculated separately is 
many orders of magnitude larger than the lattice mobility. Trends of 
this sort have been observed in Si and Ge (61,86,91), but a t  the moment 
it is difficult to say whether they have any real significance. 

Most theoretical explanations of the temperature dependence of mo- 
bility have the property in common that they require the energy depend- 
ence of the lattice mobility to flatten out at sufficiently low energies. 
This avoids the convergence difficulty, but does not essentially alter the 
conclusion that large values of X and 7 would be predicted. Thus any 
reasonable hypothesis for n-type Si would require X between 3 and 4, 
whereas the observed value is only slightly greater than 1 (61). For 
p-type Gel similar conclusions apply. In this case, in a typical sample, a 
X of 2.5 is anticipated, whereas the observed value is in the neighborhood 
of 2. However, as is explained below, this value of 2 is entirely accounted 
for by the two-band model, so that the extra factor due to the energy 
dependence of r would make the factor too large by far. In  the case of 

* Provided, of course, we remain in the range where scattering is predominantly 
due to  the lattice. 
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n-type Si, analysis shows that even with the large exponent one should 
not expect appreciable dependence of X and q on the magnetic field. In 
the case of p-type Gel owing to the presence of high-mobility holes in 
one of the degenerate bands, one would expect aome field dependence of 
these ratios, even at O"C, but this would not be enough to bring the 
values of X and q into agreement with observation. From these considera- 
tions, we are forced to the conclusion that the anomalous temperature 
dependence of mobility cannot be associated to any substantial extent 
with an energy dependence of the mean free path; it must rather be as- 
sociated principally with an explicit temperature dependence of the mo- 
bility, probably through the effective mass, at  least in p-type Ge and Si, 
and in n-type Si.* In  this connection, more extensive Hall and magneto- 
resistance measurements in Ge and Si as a function of impurity content 
and at several temperatures would be very desirable. 

C .  Herring (92) has carried out similar calculations using an explicit 
model for the scattering. Although the factors of increase for X are some- 
what smaller than indicated by the present analysis, the essential conclu- 
sions of the preceding paragraph are not changed. 

The case of p-type Ge has been analyzed in detail by Willardson, 
Harman, and Beer (77), and is of special interest. Here it is important 
to take into account the simultaneous presence of holes of two different 
masses, as outlined in Equations (5.19)-(5.22). However, it is probably 
also a reasonable first approximation to take the energy surfaces as spher- 
ical. Calculations in Section 6 will show that to a good approximation 
the mobilities of the two types of holes are in inverse ratio to their ef- 
fective masses, which gives a mobility ratio of 7.5 to 1. Willardson et al. 
find that their data can best be fitted by assuming n,/n, = 0.02 and 
p 3 / p 2  = 7.5. By assuming pure lattice scattering with p = $.i, it is pos- 
sible to evaluate the integrals in the exact expressions (5.18) and (5.19), 
and so to compute the Hall effect and transverse magnetoresistance coef- 
ficients as functions of magnetic field. The results of comparison of the- 
ory and experiment are shown in Figs. 10 and 11. In the case of the 
magnetoresistance, the dotted curve of Fig. 11 shows the computed coef- 
ficient for the case in which only one type of hole is assumed. The dra- 
matic influence of the 2% of high-mobility holes is thus indicated. The 
reason for this drastic behavior, of course, lies in the fact that in the Hall 
effect the mobility occurs squared, whereas in the magnetoresistance it 
occurs cubed. The result may be described by saying that the effect of 
low-mass holes is to increase the apparent value of X from 1.18 to 1.93 

* It should be emphasized that this conclusion is far from securely established. 
Recent evidence from high field magnetoresistance measurements in several labora- 
tories is not entirely consistent with it. 
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and the apparent value of 9 from 1.274 to 3.04, the latter resulting in a 
20-fold increase in magnetoresistance at low fields over that for a spher- 
ical surface having the mobility of the high-mass holes. It is to be empha- 
sized again that these results are obtained with the assumption that 
p = % for the lattice scattering. The value of 1.93 for X(p)  = pa/pD 

FIQ. 10. Variation of Hall constant with magnetic field for p-type germanium. The 
solid curve is the theoretical curve computed with ng/nz = 0.02 and p s / p 2  = 7.5, 
assuming the mean free path to be independent of energy. Taken from fig. 1, p. 1518 
of reference 77. 

agrees well with the result quoted by Morin (87‘) for holes a t  high tem- 
peratures, based on Prince’s drift mobility measurements (91). A much 
larger value would be obtained if a larger p had been taken, 

According to the interpretation of Willardson et al., Morin’s (87) 
anomalous temperature dependence of ~ H / P D  for holes is simply the re- 
sult of the strong field dependence of the Hall coefficient, which is 
produced by the low-mass holes. As the temperature is lowered, the 
product WT becomes rapidly larger and results in the low-field approxi- 
mation being less and less valid. These results illustrate the necessity of 
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always studying field dependence in any measurements of Hall effect or 
magnetoresistance. 

While the mobility ratio found by Willardson et al. is in good agree- 
ment with theory, the percentage of low-mass holes is about two times 
too small, as can be seen by reference to Table IV. In  fact, if we use the 
values of number and mobility ratio deduced from Table IV, we would 

CALCULATED BEHAVIOR IF &L 
HOLES HAVE MOBILITY p2 

'0 I 2  3 4 5 6 7 
MAGNETIC FIELD, KILOGAUSS 

FIQ. 11. Variation of magnetoresistance coefficient Ap/pH2 with magnetic field in 
p-type Ge. The solid curve is the theoretical curve computed with the same constants 
as in fig. 10. The dotted curve is the result which would be obtained on a one-band 
model. From fig. 4, page 1517 of reference 77. 

obtain an effective X of 2.66, an effective of 2.87, and an increase of the 
magnetoresistance over the one-mass value by a factor of 35. This dis- 
crepancy is difficult to explain, since rough arguments suggest that tak- 
ing into account the warping of the energy surfaces would serve to in- 
crease the theoretical values of X and 71 still more. It is interesting to note 
that the density-of-states mass deduced by Geballe and Hull (90) from 
thermoelectric power would agree much better with the interpretation of 
Willardson et al., if we assumed that the low mass is given correctly by 
the cyclotron resonance data, but that the high mass is that deduced 
from thermoelectric power. This also suggests an explicit mass variation 
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with temperature which is in the right direction and of the correct order 
of magnitude to explain the deviation of the mobility law from T-1.6. 

VI. MECHANISMS OF SCATTERING 

In the previous section we have introduced a phenomenological pa- 
rameter T(&), the collision time. It was indicated that T has various sorts 
of energy variation, depending on the mechanism of scattering. In the 
present section, we shall discuss the validity of the concept of collision 
time and discuss detailed calculations of the scattering probability. In 
the course of the presentation, we shall indicate the derivation of the 
energy dependence for lattice and ionized impurity scattering and shall 
examine various mechanisms which might explain deviations from the 
simple T-1.6 law for lattice mobility and T+lJ for ionized impurity 
mobility. 

I. Lattice Scattering: The Deformation Potential 

For semiconductors, the concept of a deformation potential intro- 
duced by Shockley and Bardeen ($3) has proved very useful in gaining 
an insight into the mechanism of lattice scattering. We shall begin with 
the consideration of spherical energy surfaces in cubic crystals. In this 
case, the position of the edge of an energy band may be written as a 
linear function of the dilatation 

Ec - Ec, = E,V . u(r) (6.1) 

where Ec is the position of the band edge in the distorted crystal, and Ec, 
that in the undistorted crystal, El  is a constant and u(r) a vector func- 
tion which represents the elastic displacement of the lattice at position r. 
Shockley and Bardeen (94) show that for long-wave vibrations of the 
crystal, the quantity (6.1) may be treated as an effective potential for 
the motion of an electron near the band edge, the electron satisfying an 
eff ective-mass Schrodinger equation in this potential exactly analagously 
to the case of an impurity center discussed in Section 111. The displace- 
ment u(r) may be expanded in terms of elastic waves, and since the 
fluctuations in potential are small, we may consider the scattering effect 
of each elastic wave independently. This is an assumption convention- 
ally made, which amounts to saying that only scattering processes in- 
volving one phonon are of importance. It is not always justified, but the 
results are probably not qualitatively changed by multiphonon effects. 
The perturbation in potential may thus be expanded in Fourier series 

EC - Ec, = El at(d) - d exp (id r - id) (6.2) c 
d , t  
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where d is the wave vector of the phonon and t has three values repre- 
senting the three directions of polarization. The summation is over values 
of d lying in the first Brillouin Zone shown in Fig. 1. If the material were 
elastically isotropic, the summation would be only over longitudinal oscil- 
lations, since a would be perpendicular to d for transverse modes. In prac- 
tice, the transverse modes make some contribution, but we shall ignore 
this for the moment. 

Each term in the potential (6.2) is itself a periodic potential and will 
therefore give rise to diffraction of carriers. However, since each term 
represents a traveling wave, we must solve the diffraction problem in a 
system of coordinates moving with the velocity of the elastic wave, and 
then transform back to the laboratory system. In the moving coordinate 
system, energy is conserved, and it is therefore not conserved in the lab- 
oratory system. In  either system, the diffraction condition is simply 

k - k ' = d  (6.3) 

k - ( m / h w ) U i 2 d ,  k' - ( m / h w ) ~ &  (6.4) 

For spherical surfaces the wave vectors in the moving system are 

where w is the phonon frequency and uz its velocity. Since energies are 
conserved in the moving system, in the fixed system we have 

(h2/2m)(kf2 - k2) = k h w  (6.5) 

the +-arising from the fact that terms such as (6.2) actually occur in 
pairs with both signs of w because the total potential must be real. Equa- 
tion (6.5) just expresses the conservation of energy, hw being the quan- 
tized energy of a phonon. It is easily seen that (6.5) still holds when m. 
is a tensor quantity and is hence equally valid for ellipsoidal surfaces. 
Usually hw is small compared with the electron energy, the condition for 
this being 

4UI/Vk << 1 

i.e., the phonon velocity is much less than the electron velocity. This 
condition may also be written: 

G >> 8mura (6.6) 

and is satisfied so long as & exceeds about 10-8 ev. At this energy, how- 
ever, ionized impurity scattering usually becomes dominant anyway, so 
that we are always justified in neglecting hw in practice. 

With the potential (6.2), the scattering probability per unit time is 
given by 

(2r /h )  [Elal(d) - d[ X density of final states (6.7) 
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Since only rather long wavelength phonons are involved, we may apply 
the equipartition theorem and assume that an energy koT is associated 
with each longitudinal mode. This immediately gives 

lal(d) dI2 N kd"/pu?Vr (6.8) 

where k o  is the Boltzmann constant and p the density of the crystal. We 
thus find for the probability of scattering between P and P' 

W(P + P') = (2~/h)(k,T/p~1~)E1~ dSpt/lVpl&l (l/ha) (6.9) 

where dSpl is the surface element in reduced momentum space. For spher- 
ical energy surfaces the probability (6.9) is seen to be independent of 
the angle of scattering. The same proves to be true even for ellipsoidal, 
surfaces. Thus, the total probability of scattering to all final states of 
energy & is just proportional to the density of states, or the collision time 
becomes 

1 / T  = ( 8n8/h4) (2m)' &$* ( IC 0 T / ~ u ~ * )  E 1' (6.10) 

For ellipsoidal surfaces m4* is replaced by (m1m2m3)s, but otherwise the 
result is unchanged. The value p = used in Section 5 ,  of course, fol- 

TABLE VII. Deformation Potential Theory for n-Type Ge and Si, Assuming 
Dilatational Contributions to the Potential Only 

Ge Si 

Electron mobility at 300°K 3900 cm*/volt-sec 1420 

(m,lm)sr 80.8 20.4 
G c  13.62 12.80 ev 

Mean pula 1.545 X 101* dynes/cm* 1.97 x 10'2 

lows immediately from (6.10), as does the T-l.6-law for mobility. The ex- 
pression for the mobility is, explicitly 

(6.11) 

For spheroidal energy surfaces, it is necessary to replace m according to 

(6.12) 

Relative to the electronic mass the values for n-type Ge and Si are 
(m/m,)-55 = 80.8 and 20.4, respectively. Numerically we may write 

(6.13) 

where p~ is in cm2/volt-sec, El in ev per unit dilation, and put2 in dynes/ 
cm2, having the dimensions of an elastic modulus. We obtain the results 
of Table VII for Ge and Si. These results assume that all the scattering 
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is due to dilatation, and that scattering between different ellipsoids-so- 
called inter-valley scattering-can be neglected, as can scattering by op- 
tical modes of vibration. Actually none of these assumptions are too well 
fulfilled in practice. 

Herring (92) has considered optical mode and inter-valley scattering 
for n-type Ge and Si. The principle involved is the same in both cases. 
In the ordinary case of intra-valley scattering we have seen that only 
long-wavelength lattice waves are involved. These have a small quantum 
energy tio << koT, so that we were able to apply the classical equiparti- 
tion law for computing the mean square amplitude, and furthermore we 
could neglect the energy loss of the electron in the scattering process. 
For inter-valley scattering, on the other hand, the electron changes its 
reduced momentum by a large amount and, in consequence of the selec- 
tion rule (6.3), the scattering process must involve an energetic phonon. 
When the scattering process involves emission of a phonon, i.e., an elec- 
tron giving energy to the lattice, the electron will have less energy in the 
final state, and so will lie on a smaller ellipsoid with a lower density of 
states. In the case where a phonon is absorbed, the density of states will 
be increased in the final state, but, on the other hand, the phonon must 
be initially excited in the lattice, a situation which has a small probabil- 
ity when fiu >> koT. Since the phonons involved in inter-valley scatter- 
ing all have about the same energy, characteristic of the distance be- 
tween valleys in momentum space, and since the scattering matrix ele- 
ment is probably not a strong function of the position of the electron on 
the initial or final ellipsoid, it is a fairly good approximation to write the 
inter-valley scattering in terms of a phonon process involving only one 
frequency. Herring (92) writes the total scattering probability in the 
form 

(6.14) 1/. = wo + w, + we 
where 

(1 ’+ &/hw)% 
exp (hw/koT) - 1 

w, = Wa 

(6.15) 

(6.16) 

f & r h o  (6.17) 
(&/nu - 1)” exp (hw/kT) 

exp ( h w / ~ )  - 1 we = wz 

w, = 0 E < nu 

In (6.14) the first term represents intra-valley scattering, the second inter- 
valley scattering with absorption of a phonon, and the third inter-valley 
scattering with emission of a phonon. The collision time obtained from 
(6.14) has a complex energy and temperature dependence which can give 
rise to temperature variation of the mobility considerably more rapid 
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than the T-1.s-law obtained from (6.11). However, d In p/d In T obtained 
from (6.14) is far from constant with temperature, especially if the inter- 
valley scattering is such as to give rise to a rather large exponent. If 
phonons of several different energies are actually involved the curves 
may resemble more closely the ideal log-log linearity which seems to be 
characteristic of the variation of observed mobility with temperature, 
even for exponents as high as 2.3. Herring has computed the functions 
corresponding to X(p) and ~ ( p )  using the scattering law (6.14) in place of 
the simple exponent behavior. Because the behavior approaches &% for 
low enough energies, the integrals do not diverge, and the functions do 
not reach such large values as when the law (5.13) is used with a cut-off 
by ionized impurity scattering. These questions need more investigation 
by means of Hall effect and magnetoresistance measurements on samples 
of varying impurity content. 

It is interesting to observe that the theory which gives about the 
right exponent for n-type Ge at room temperature corresponds to about 
equal contributions from intra-valley and inter-valley scattering. How- 
ever, the ratio p ~ / p ~  seems to have a stronger temperature dependence 
for this assumption than is indicated by the experimental results of 
Morin (87). 

Optical phonons are quantized lattice vibrations which can occur in 
structures which possess more than one atom per unit cell: they corre- 
spond to nonequivalent atoms moving in opposite phase to each other, 
but with relatively slow change in phase from cell to cell. These modes 
can give rise to intra-valley scattering, but with a much higher energy 
change of the electron than that which occurs with normal scattering by 
long-wave acoustical modes considered in Equation (6.11). Formally, the 
theory is then almost identical to that for inter-valley scattering, and can 
thus also give rise t o  anomalous temperature dependence of the mobility. 
Optical mode scattering does not lend itself to treatment by the defor- 
mation potential method, and reliable estimates of its relative importance 
are hard to make. 

For the many-valley type of structure which occurs in the conduction 
bands of Ge and Si, the transverse as well as the Iongitudinal modes can 
make an important contribution to normal intra-valley scattering. The 
different energy ellipsoids are not equivalent with respect to the stress 
axis, and so their band edges may:be shifted differently for a given tensile 
stress on the crystal. 

From symmetry considerations it may be shown that the only strains 
which shift a given ellipsoid in a cubic crystal are a pure dilatation, al- 
ready considered, and a shear corresponding to a tension in the direction 
of the vector position of the center of the ellipsoid, with a symmetrical 
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compression in the two directions at right angles. The complete expression 
for the shift may be written 

AEc(i) = fi * [ E l l  f E2(g - g A 1 ) )  . fi (6.18) 

where is the unit vector in the direction of the position of the center of 
the ellipsoid in P-space, 1 is the unit dyadic, A the dilatation, and e the 
strain tensor of the crystal. The scattering probabilities for longitudinal 
and transverse vibrations are 

2?r 

21r 
k 

W,(O) = 

Wt(0) = - Ez2 sin2 O cos2 B(koT/put2) X density of states 

IEI + EZ cos2 O12(koT/pur2) X density of states (6.19) 

(6.20) 

where u1 and u1 are, respectively, the velocities of longitudinal and trans- 
verse waves, and O is angle between the reduced momentum (= P' - P) 

FIG. 12. Scattering process for transverse modes, showing definition of the angles 
used in Equation (6.20). 

of the vibration and the vector PCi) defining the position of the center of 
the ellipsoid and hence one of its principal axes. The situation is sketched 
in Fig. 12. 

Thus, unlike the simple case of (6.7), the scattering has a complex 
angular dependence. I n  such cases, the existence of a collision time is 
doubtful; one should really go back to  a rigorous solution of the Boltz- 
mann transport equation. However, Herring has shown (9.2) that, pro- 
vided the scattering is not too anisotropic, it is still a reasonable approxi- 
mation to replace the complete scattering problem by a collision time. 
In  this case, however, the collision time is defined by the integral 

where W(P -+ P') is obtained from (6.19) and (6.20). Equation (6.21) 
represents the sum of the probabilities of scattering out of the state P 
on the ellipsoid to  all possible final states on the same ellipsoid, weighted 
according to  the relative change in velocity produced by each collision. 
The integral (6.21) may be evaluated simply for the case when P is along 
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the unique principal axis of the ellipsoid. Then the weighting factor be- 
comes simply (1 - cos e), and we have 

1/71 = (8ra/h4) ( 2 m ) ~ & M ( k 0 T / p u ~ ’ ) [ E 1 ~  + &&?ZIE~ + 4 { k ’ 2 2 ]  (6.22) 
1/7t = (8r8/h4)(2112)~GM(JC~T/p~t2)[~5E223 (6.23) 

where 71 and T~ are the collision times associated with longitudinal and 
transverse waves, respectively, and both associated with an initial value 
P along the principal axis. For spheroidal surfaces 112% = (mlm22)s. 

E. Vogt* has carried out numerical calculations of the ratio of the 
collision time for P along the unique axis to that for P along an axis at  
right angles. This should give a good measure of the anisotropy. The 
degree of anisotropy depends, of course, on the relative values of the 
constants E l  and Ez. In general, however, the anisotropy is not large for 
ellipsoids having the shape appropriate to the Ge conduction band, al- 
though it would become much larger if the energy surfaces were spherical, 
as Herring shows (92). 

The value of the constant E z  may be estimated from data on piezo- 
resistance (92, 96). This is an effect of nonhydrostatic strain on the 
electrical resistance, and in extrinsic material arises from two sources. 
In the first place, shearing strain raises some ellipsoids relative to others, 
resulting in different carrier populations in different ellipsoids. In  the 
second place, the change in the ellipsoids influences the inter-valley 
scattering and hence the over-all collision time. If we ignore the second 
effect for the moment, Herring has given (92) a relation which permits 
calculation of Ez. The piezoresistance coefficients are defined in a manner 
analogous to elastic constants. Thus, for example, we have, for n-type Ge 

(6.24) 

and for Si we obtain 

(6.25) 
1E2 K - 1  a u z z  - dQ.2 = - z(m” - m ) = - - 1 

2u (% 2 k 0 T  2K + 1 12 

where uZDl etc. represent components of the conductivity tensor, &,,, etc. 
represent components of the strain tensor, and K is the mass ratio as de- 
fined previously. The unlisted components vanish theoretically in each 
case. The results are as shown in Table VIII. The row labelled Transverse/ 
Longitudinal gives the ratio of the total collision probability for scatter- 
ing by transverse waves to that by longitudinal waves. The last row gives 
the ratio of anisotropies of the relaxation times, taken from Vogt’s (96) 

*Described in reference 92, especially Figure 12. Note that our definitions of 
El  and E z  differ slightly from Herring’s z d  and Z,. 
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calculations for the appropriate ratio E 2 / E I .  It will be noted that there 
are two possible solutions for El depending on whether it has the same 
or the opposite sign from E2. Both results are shown in the table. These 
results must be regarded as no more than crude order-of-magnitude esti- 
mates, in view of the neglect of the anisotropy of the relaxation time and 
of inter-valley scattering. It seems most likely that inclusion of inter- 
valley scattering would result in reduced values of El, and that the neg- 
lect of anisotropy is of relatively little importance for the lower row of 

TABLE VIII. Calculation of BE from Piesoresistance Data and of E l  from Mobility 
Data for n-Ge and n-Si 

~ 

n - Ge n - Si 

uP/uz2 
Transverse 

Longitudinal 

-93.0 

+15.3 
-13.05 

or 
+ 2.85 

0.306 

0.54 

2.5 or 0.8 

-79.5 
+10.8 
-13.8 

or 

0.513 

0.335 

+ 6 . 6  

* In estimating El use was made of Equation (6.22) with anisotropy neglected. 

values in the table, and would result in a smaller El for the upper row. 
A self-consistent calculation, using Vogt's results to estimate the effect of 
anisotropy, gives El = -6.5 instead of -15.7 for the upper row. These 
crude calculations are nevertheless sufficient to indicate that transverse 
and longitudinal effects can be of the same order of magnitude. 

More rigorous theories of scattering by transverse vibrations have 
been discussed by Herring (82, 92) and by Dumke (96), but no detailed 
numerical results have been published. 

The deformation potential approach can also be used to discuss p-type 
Ge. A detailed theory has not been given, but a few general conclusions 
can be reached by relatively simple arguments. For pure dilatations the 
whole band structure is moved up and down as a unit, much as in the 
theory for the conduction band. For a first approach the band structure 
may be approximated by concentric spheres, neglecting the warping of 
the energy surfaces. Even with this simplification, the calculation is 
straightforward but rather involved, and we shall not reproduce it here. 
Since there are four degenerate bands in all, inter-band scattering is im- 
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portant, even when one considers only acoustical modes, so that energy 
conservation may be assumed in the scattering process. An equation 
similar to (6.12) results, except that the mass factor (m,/m)41 is replaced 
as follows 

High mass (zy 4 2 py me + L ( 3 )  2 me (2)’ (6.26) 

(6.27) 
Low mass (;>” + _I_ 18 er m, + ;@) ey 

Here ml is the mass for the high-mass band, about 0.3me for Ge, and 
m2 is that of the low-mass band, about 0.04me. In  each case the first term 
on the right represents the contribution of intra-band scattering and the 
second that of inter-band scattering. In the case of the low-mass holes 
almost the entire scattering by acoustical modes is scattering into the 
high-mass band rather than intra-band scattering. Furthermore, the scat- 
tering depends essentially on the density of final states. Since the final 
state is the same both for low-mass and high-mass holes, namely the high- 
mass band, this implies that the collision times for the two types of holes 
are approximately equal and that the mobilities are in the inverse ratio 
of the masses. For holes in Ge, the effective values in (6.26) and (6.27) are 

(6.28) 
High mass (me/m)4* = 26.5 
Low mass (me/m)yi = 232.0 EI = 12.4 ev 

These are the factors by which the mobility is increased over that for 
electrons of normal mass. The value of EL deduced, of course, neglects 
the influence of shear, but it is based on the contribution to the mobility 
of the high-mass holes. 

The existence of a strong piezoresistance effect in p-type Ge and Si 
shows that the band structure is significantly influenced by shearing 
strains, and we should therefore expect transverse vibrations to con- 
tribute to the lattice scattering. From symmetry considerations, the only 
thing a pure shear could do would be to shift the low-mass and high- 
mass bands relative to each other; it cannot shift the band structure as a 
unit. For points in P-space, far enough away from the origin for the sepa- 
ration of the degenerate bands to be large compared with the displace- 
ment of the bands which would be produced by the shear, the two bands 
are displaced up and down relative to each other by an amount which 
depends on the angle between the P-vector and the stress axis. For points 
nearer the origin in P-space, the bands are distorted in a complicated 
way, since the degeneracy is removed at  the origin. However, in the 
piezoresistance experiments of Smith (96), the strains involved were of 
the order of which, with energy shifts of the order of 10 ev per unit 
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strain, would give an energy shift of only 0.001 ev, which is much less 
than koT a t  room temperature and so affects a negligible portion of the 
band. Similarly, it is shown that  the shearing modes which can give rise 
to  deformation potential scattering have a root mean square strain ampli- 
tude of about 5 X 10-4, corresponding to  an energy shift of 0.005 ev, 
which is larger but still reasonably small compared with koT at room 
temperature. 

For points in P-space sufficiently far from the origin, the energy shift 
may be written 

(6.29) 

where the symbols have nearly the same meaning as in (6.18), i.e. ii repre- 
sents the unit vector in the direction of P, g is the strain tensor, and A the 
dilatation, or diagonal sum of the strain tensor. The positive sign corre- 
sponds to the high-mass band and the negative sign t o  the low-mass band, 
To avoid confusion, we shall adopt the sign convention that  E l  or E z  is 
positive when the shift is in a direction into the band, so that  a positive 
E represents an upward shift for a conduction band and a downward 
shift for a valence band. 

Using the result (6.29) to  compute the strains associated with longi- 
tudinal and transverse elastic waves, we may obtain expressions for the 
scattering matrix elements, and finally expressions for the reciprocal col- 
lision time. We may express the final result as follows: For scattering 
within high-mass band 

and for scattering from high-mass to  low-mass band, we have 

and for scattering from low-mass to  high-mass band we have a similar 
expression to  (6.31), but with the sign of Ez reversed and ml and mz inter- 
changed; these results reduce to  the previous ones when we let E z  = 0. 

In  order to  obtain an estimate of E z  it is necessary to  develop a theory 
for the piezoresistance effect in p-type material. Here it turns out that  
the principal effect arises from the anisotropy in the velocity on a sur- 
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face of constant energy which is set up by the strain. The greatest diffi- 
culty in the theory originates from the use of the spherical approximation 
for the energy surfaces in the valence band. This implies that the piezo- 
resistance effect should be independent of orientation and in particular 
that the m-coefficients defined by Herring (92) should satisfy the isotropy 
relation 

m44 = %(mil - m1d (6.32) 

whereas in fact we have m44 = +66.0, X(m11 - m12) = -6.0. The best 
we can do within the framework of the present approximations is to take 
an angular average of the m's. The most appropriate average turns out 
to be: 

mi = %m44 + >6(ml1 - m12) = +38.4 (6.33) 

Setting the theoretical piezoresistance equal to this average, we ob- 
tain the relation 

3 1 1 + 2.285l + 0.83t2 E2 
(mi{) = - - - - = 38.4 (6.34) ( 5  25 1 + 1.2E + 1.48E2 ] lcoT 

where in writing the theoretical expression we have neglected the con- 
tribution of low-mass holes to the mobility and also the contribution of 
inter-band scattering. Of the two terms in brackets in (6.34), the first 
represents the effect of the anisotropy in the velocity introduced by the 
strain and the second represents the effect of the anisotropy in the col- 
lision time itself. This latter effect is very small, and is the only one which 
depends specifically on which band we are dealing with. The symbol 4 is 
simply the ratio E2/E1, so that the shear coefficient Ez is involved im- 
plicitly as well as explicitly in (6.34). Numerical solution of (6.34) in a 
self consistent manner leads to a best value of Et of f l . 66  ev per unit 
strain. 

With the use of (6.30), knowing E2 from the above discussion, we can 
solve for El in terms of the mobility for high-mass holes, which, following 
the discussion of Section 5, we can take as 1640 cm2/volt-sec. This solu- 
tion gives the following alternative values of El for the valence band of Ge 

El = -13.3 ev or El = +11.3 ev 

where, according to the previously adopted conventions, the first case 
represents an upward shift of the band edge position with dilatation, and 
the second represents a downward shift. With either alternative solution 
the contribution of shear to the total scattering is small; for example, for 
the first solution, the total contribution of transverse waves to  the scat- 
tering is only about 2.5% of the total scattering. This conclusion finds 
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some support in experiment, since, as may be seen by reference to Equa- 
tions (6.30) and (6.31), the conclusion that the mobilities of the two types 
of holes are in the inverse ratio to their masses depends upon the fact 
that most of the scattering arises from dilatation. 

The values of El shown in Table VIII were computed from Equations 
(6.22) and (6.23) directly, without taking into account the anisotropy in 
the scattering. This can be taken into account rather crudely for n-Ge, 
taking as the true collision time 3+(90") + ~ T ( O " ) ,  where the two col- 
lision times are those calculated by Vogt (92) for the appropriate value of 
E 2 / E 1 ,  and the appropriate effective masses and elastic anisotropy. With 
all these assumptions, we obtain the following numerical results for Ge 

Shift in conduction band edge 4- 4.5 or - 6.5 
Shift in valence band edge +13.3 or -11.3 (6.35) 
Difference - 8.8 + 4.8 

The difference in the two band shifts provides an independent check 
on the deductions, since it can be compared with the observed pressure 
shift of the band gap. For Ge this is equivalent to -4.3 ev per unit 
dilatation. The combination which comes closest to agreeing with the 
pressure shift is that shown in the first column of (6.35). The agreement 
is not very good. 

Since the mobility does not obey the T-1,6-law for either electrons or 
holes, there is an ambiguity in interpretation depending on what temper- 
ature is chosen to match the deformation potentials. If liquid nitrogen is 
chosen, Equation (6.35) is replaced by (6.35') 

Shift in conduction band edge +2.33 - 5.8 
Shift in valence band edge +8.04 -6.04 (6.35') 
Difference -5.71 +0.24 

Here the agreement with the pressure shift is somewhat improved. Con- 
sidering the many omissions and approximations made in these estimates* 
the agreement is fairly satisfactory, and probably sufficient to fix the 
choice of matching sets of values in these equations. 

The calcuIations for p-type Ge fail completely to provide an under- 
standing of the temperature dependence of hole mobility in Ge, since all 
the mechanisms discussed lead to an &)$ dependence of the collision prob- 
ability. Furthermore, since it is believed that all the band edges lie at  
P = 0, we cannot invoke inter-valley scattering as a possible mechanism. 

* A theory for scattering in p-type Ge has also been given by H. Ehrenreich and 
A. W. Overhauser, Bull. Am. Phys. SOC. 80, 10 (1955), abstract D8. It differs in its 
conclusions in important respects from the present analysis, especially with regard 
to the magnitude of scattering by transverse modes. 
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In  the case of Ge, as we shall see in Section VII, strong evidence indi- 
cates that  the third valence band lies 0.28 deeper than the band edge, 
so that scattering to  or from this band cannot be important at ordinary 
temperatures. Moreover, it is probably sufficiently far away in energy so 
that it cannot significantly affect the curvature, at least of the high mass 
band. I n  addition to the deformation potentials already discussed, there 
exists the possibility of a potential associated with alterations in curva- 
ture of the bands with strain (92-94). This could give rise to  a contribu- 
tion to  the collision probability which is proportional t o  Es instead of E M .  

However, this type of scattering would have to  predominate over the 
normal scattering in order to  explain a T-2.3- la~ for mobility. Scattering 
by optical modes could produce something resembling the observed tem- 
perature dependence. However, according to  Ehrenreich and Overhauser, 
this type of scattering is much too small t o  explain the observed result.* 
Furthermore, all the mechanisms discussed lead to  a large energy depend- 
ence of the collision time, and we have already seen in connection with 
Section V that it is hard to  reconcile the galvanomagnetic results with 
other than a nearly normal energy dependence of the collision time. At  
the present time the anomalous temperature dependence of mobility in 
p-type Ge must be regarded as a major unsolved problem. It is interesting 
to note that the temperature law is extremely sensitive to  strain, as shown 
by the experiments of Lawrence (97). This is mainly a consequence of the 
fact that according to  the theory, the piexoresistance effect should be in- 
versely proportional to  the temperature. Lawrence’s results are in quali- 
tative agreement with this conclusion. 

2. Ionized Impurity Scattering 

We have seen in Section I11 that impurities different in valence from 
the host lattice give rise to  long-range Coulomb fields in the semiconduc- 
tor with a potential of the form V ( r )  = e2/Kr where K is the macroscopic 
dielectric constant. If we neglect what happens in the central cell this 
potential gives rise to a scattering probability 

(6.36) 

where P, P’ are the initial and final reduced momentum vectors, and the 
probability shown is the total probability of scattering into a volume 

* These calculations were made with the deformable ion model of Bloch (113). 
This model severely overestimates the mobility in Ge due to the fact that  it actually 
omits an important part of the perturbation in the potential resulting from the lattice 
vibrations. This part of the perturbation is included in the deformation potential 
model. 
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dP’ of reduced momentum space. When (6.36) is integrated over all final 
states to obtain the total collision probability, the integral diverges. This 
is true even when the collisions are weighted with the velocity change in 
accordance with (6.21). The divergence arises from the small-angle scat- 
tering characteristic of a Coulomb potential. In  order to obtain a finite 
result, it is necessary to “cut off ” the Coulomb field of the impurity at 
some distance. In  the original treatment of Conwell and Weisskopf (88) 
this was done by omitting scattering processes from (6.36) which arose 
from encounters between the incident particle and the impurity, corre- 
sponding to distances of closest approach greater than half the mean dis- 
tance between impurity ions in the crystal. A later more rigorous formu- 
lation by Brooks and by Herring (88) introduced a shielding factor into 
the potential. This arises from the fact that the other electrons in the 
conduction band distribute themselves around the impurity in such a way 
as to cancel its field at  large distances. When only one sign of impurity is 
present, the distance at  which cancellation occurs is of the same order of 
magnitude as the mean distance between impurities, so that this more 
rigorous treatment gives about the same result as the Conwell-Weisskopf 
analysis. To obtain the scattering probability taking into account shield- 
ing, it is necessary to replace P - P’ in (6.36) by 

2 

(6.37) 

where n is the number of electrons in the conduction band and NO is the 
number of ionized donors. Equation (6.37) is valid when only one type of 
carrier is present; otherwise N D  should be replaced by NO - NA, the ex- 
cess of donors over acceptors. If the donors are completely ionized, the 
factor (2  - n/ND) = 1. For material in which holes and electrons are 
present simultaneously, n is replaced by n + p ,  the total number of 
carriers. 

We may integrate (6.36), putting in the velocity weighting factor and 
taking into account the conservation of energy in the scattering process. 
If the ionized impurities are randomly arranged in the lattice, they scatter 
independently, and the total scattering is proportional to the number of 
impurities. Thus we have for a spherical energy surface 

In the usual situation b is very large, so that the bracket may be re- 
placed by In b. From (6.38) and (6.39), the mobility may be calculated 
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as in Section V. In making this calculation, the logarithm is taken out- 
side the integral, and its argument is replaced by the value assumed when 
the rest of the integrand has a maximum. This value is & = 3koT, and 
the mobility is then given by 

In the case of intrinsic material, or if donors and acceptors are present 
simultaneously, n-l before the bracket is replaced by the reciprocal of 
the sum of the number of ionized donors and acceptors, and in the argu- 
ment of the logarithm n is replaced by the total number of carriers. Since 
impurity scattering is mainly important a t  relatively low temperatures, 
the case of greatest interest is that in which there is only one type of 
carrier, but both donors and acceptors are present in the crystal. In  this 
case n must be replaced by the total number of ionized donors n + N A  
outside the bracket, whereas inside the bracket it is replaced by 

n + n +  ( 1 - -  iDNA) ( n  + N A )  (6.41) 

= (1 - f o 2 ) N o  - N A  

where j D  is the Fermi factor for the donor levels, ie., the probability that 
the donor is occupied, and N A  is the number of acceptors, assumed com- 
pletely occupied at  all times. It is interesting to note that (6.41) does not 
vanish as the number of carriers approaches zero in the conduction band, 
since some shielding of the donor potential results from repopulation of 
adjacent bound levels. The limiting value of (6.41) is 

(1 - NA/ND)NA (6.42) 

The potential distribution inside a semiconductor due to random dis- 
tributions of impurity has been discussed by James and co-workers (98). 

The result of Equation (6.40) has already been used in the discussion 
of combined lattice and impurity scattering, in Section V, above. 

It is now of importance to inquire what sort of modifications will be 
introduced by nonspherical energy surfaces or by degenerate bands. This 
problem has not been considered in the literature, and we shall content 
ourselves here with some order-of-magnitude estimates. We take advan- 
tage of the fact that the dominant contribution to the scattering comes 
from very small scattering angles, and use the approximation that a re- 
laxation time exists which is defined in accordance with Equation (6.21). 
This integral can be evaluated easily only for the special cases in which 
the initial state P is along one of the principal axes of the ellipsoid. The 
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result may be represented by replacing the effective mass factor in (6.38) 
according to 

m+-, (%)mP( l /m2 + 1/md (6.43) 

where ml is the principal mass in the direction of P, and m2 and m3 are 
the other two principal masses. For germanium this gives collision prob- 
abilities, one of which is roughly 14.1 times larger than that for the free 
electron mass, and the other two of which are about 1.83 times that for 
the free electron mass. Knowing only the collision times for the principal 
directions, it is not certain how they should be averaged to obtain a mo- 
bility, but two different plausible averaging methods indicate that the 
mobility for Ge should lie between 2.6 and 3.7 times the free electron 
value, corresponding to a mobility effective-mass from >$' to x4 the free 
electron mass. This is to be compared with a value of 1 / 1 2  estimated 
earlier from magnetoresistance data. It also represents a value somewhat 
larger than that which best fits Hall mobility data according to Debye 
and Conwell (24,SS). One must conclude that the observed impurity scat- 
tering is somewhat higher than might be anticipated from theory. For 
silicon, the collision probabilities are 5 times and 1.34 times the free elec- 
tron values, and the mobility is probably less than 2.25 times the free 
electron value. The above theory is very crude because the collision-time 
approximation is bad when the anisotropy is as large as indicated above. 

For scattering of holes in the valence band, we need consider only the 
scattering within a single degenerate band. This is because the scattering 
comes so largely from small momentum changes, and there is a minimum 
momentum change for interband scattering. The quantitative criterion 
that interband scattering is negligible turns out to be exactly that the 
quantity b, defined by Equation (6.39) be much greater than unity, a 
condition which is always fulfilled in practice except under conditions 
where the semiconductor becomes degenerate at  low temperature or for 
high carrier concentrations. The impurity scattering formula does not 
appear to have been critically tested for holes in Ge or Si. The conse- 
quence of all this is that the ionized impurity scattering can be computed 
for a single spherical band, and that the mass factor does not include the 
factor 36 which we found in the case of lattice scattering in Equation 
(6.26). 

One consequence of this conclusion is that, in the impurity scattering 
regime, the mobility of low-mass holes is about 2.8 times that of high- 
mass holes, and therefore the influence of the low-mass holes on Hall 
effect and magnetoresistance should be considerably less than in the 
lattice scattering range. No experiments bearing on this question are 
available. 
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It may be remarked that all the treatments of impurity scattering 
are relatively crude. In  the first place, use is made of the so-called Born 
approximation, in which the scattering is treated as a small perturbation 
on the motion of the incident carrier; and in the second place, effects 
originating in the impurity cell or in its immediate vicinity have been 
ignored. The impurity cell would tend to increase the magnitude of the 
scattering and make it less strongly dependent on energy. This may 
possibly account for the observation of Debye and Conwell (26) that the 
ionized impurity mobility for electrons in Ge depends on temperature 
less strongly than 7'1.6 as predicted by Equation (6.40). 

Another essentially classical effect is neglected in the simple treat- 
ment of ionized impurity scattering. Although collisions between elec- 
trons have no direct effect on the resistivity if the energy surfaces are 
spherical, they can influence it indirectly by altering the momentum of 
the electrons between successive collisions with the lattice. When the 
scattering is by ionized impurities, the faster electrons acquire more mo- 
mentum from the electric field, since they have longer mean free paths. 
Part of this acquired momentum tends to become redistributed among 
all the electrons between collisions, with the consequence that a fast elec- 
tron does not actually acquire as much momentum from the field on the 
average as it would have in the absence of electron-electron collisions. 
The resulting decrease in electron mobility has been calculated in the 
classical limit by Spitzer et. al. (99) and results in ionized impurity scat- 
tering which is 60% of that given by the Brooks-Herring formula (6.40).* 
A similar effect occurs with any mechanism of scattering which is energy 
dependent, but in the case of lattice scattering it is very much weaker.t 

If the energy surfaces are non spherical, or when two types of carriers 
are present simultaneously, scattering of carriers by carriers can con- 
tribute to the total resistance. Ordinarily this can occur only under con- 
ditions of carrier density and temperature for which ionized impurity 
scattering is the dominant mechanism. Electron-hole scattering has been 
discussed by Prince (91). 

3. Other Types  of Scattering 

In  addition to lattice scattering and ionized impurity scattering, there 
exist two types of neutral impurity scattering. It was first pointed out by 
Bardeen and Pearson (100) that neutral donors, owing to the large orbit 
of the bound electron, could present a rather large cross section for scat- 
tering in which the bound and free electron exchange places. A strictly 

* For an elementary discussion of these effects, see reference 86, p. 698. 
t This correction reduces the theoretical impurity mobility and slightly improves 

agreement between theory and experiment. 
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analagous effect occurs in the scattering of electrons by hydrogen atoms. 
The effect has been studied by Erginsoy (101) who gives the formula 

(6.44) 

where the first factor is the radius of the hydrogenic orbit of the bound 
electron on the impurity, and N ,  is the number of neutral impurities per 
cubic centimeter. The neutral impurity scattering is proportional to the 
dielectric constant, while ionized impurity scattering is inversely propor- 
tional to the square of the dielectric constant. Thus neutral impurity 
scattering becomes of much greater importance in high dielectric con- 
stant semiconductors. Neutral impurity scattering is independent of tem- 
perature, and the collision time is independent of energy. Neutral im- 
purity scattering only becomes of importance a t  very low temperatures 
when n << N,, i.e., when almost all the impurities are un-ionized. It is 
probably the factor which determines the line width in cyclotron reso- 
nance experiments. For ellipsoidal surfaces, the mass in the first factor of 
(6.44) should be replaced by the geometric mean mass (mlm22)35, and in 
the second factor by the mobility mass (%)(ml-l + 2mz-I). The theory 
has not been worked out for the valence band, but since the scattering is 
approximately isotropic it is probable that the intra-band and inter-band 
scattering are related as in the case of lattice scattering. 

Another type of neutral impurity scattering can occur in Si-Ge alloys. 
A theory of this scattering has been worked out by Brooks (102) using 
the idea that statistical fluctuations in the composition of an alloy result 
in random displacements of the band edges much as in the deformation 
potential approach to lattice scattering. The order of magnitude of the 
band displacements can be guessed very roughly from the change in en- 
ergy gap with composition, which has been studied by several workers 
(103). The principal predictions are (1) that in the range where alloy 
scattering predominates, the mobility should vary as T+, corresponding 
to a mean free path which is independent of carrier energy and temper- 
ature, and ( 2 )  that alloy scattering should become comparable with lattice 
scattering a t  room temperature in the composition range of 5 to 15 atom 
percent Si in Ge or vice versa.. Little quantitative experimental work has 
been done to verify these relations, although a few percent of Si in Ge 
does appear to reduce the room-temperature mobility. 

Another type of scattering is that arising from dislocations. This has 
been considered by W. T. Read (104) in its most important aspect, and 
earlier by Dexter and Seitz (105). The latter authors considered only the 
scattering resulting from the strain field of a dislocation, and found it 
was so small as to be of no importance in good quality Ge or Si. Read, 
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however, called attention to another type of effect which could occur in 
n-type Ge. We have already seen that the dislocation line can act as an 
electron acceptor and can thus give rise to a large space-charge cylinder 
in n-type Ge. This cylinder will have a different potential from its sur- 
roundings and can act as a very powerful scattering center. Electron mo- 
bilities in bent n-type Ge have been measured, and are in a t  least quali- 
tative agreement with the predicted effect (41). 

4. Other Efects of Lattice Vibrations 

In Section I11 we discussed the shift in band edges due to the per- 
turbing influence of the lattice vibrations. A quantitative theory of this 
effect has been given by Fan (64). This theory must be modified to take 
into account the ellipsoidal energy surfaces in the conduction band and 
the degeneracy of the valence band. For the conduction band, a theory 
analagous to Fan’s gives the following expression for the downward shift 

where ml and mz are the principal masses and D is the atomic volume. 
The theory has been worked out on the assumption that only dilatation 
contributes to the lattice interaction and that only acoustical type modes 
are involved. If we include optical modes, assuming the same interaction 
constant E l  (which is of doubtful validity), the expression (6.45) would 
be doubled. For the valence band, in view of the crudeness of the cal- 
culation, it will suffice to use (6.45) with ml = r n z .  We use the values 
El  = 14.3 ev for the conduction band in Gel and El = 8.9 ev for the 
valence band. The number for the valence band differs from that used in 
(6.28) in order to take account of the factor due to angular depend- 
ence which occurs in (6.26). From (6.45) we obtain for Ge 

AE = 0.79 X 10-4 ev/”C for electrons dT (6.46) 

= 0.46 X 10-4 evpC for holes 

Thus the total band-edge shift becomes 1.25 X lo-‘ ev/OC, which is 
about one third the value which best fits the experiments, but is of the 
right order of magnitude. 

It is rather easy to see, however, that the above method of calculation 
would tend to underestimate the shift. Thus, for example, it is assumed 
that the energy of an electron continues to increase parabolically away 
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from the band edge. Since this is not the case, as shown by Fig. 3, and 
since modes of high wave-number make an important contribution to AE,  
it is seen that the actual value will be substantially larger for electrons, 
and somewhat larger for holes. In  particular, scattering into the (100) 
minima, which are probably not more than 0.18 ev above the (111) 
minima in Ge, and which have a higher effective mass, will make an 
important contribution. 

In principle the interaction between electrons and lattice vibrations 
can lead to a change of curvature and hence of effective mass a t  the 
band edge. The effect is in the direction of lower effective mass (greater 
curvature) but can be shown to be less than 1 % in practical cases. 

Two other effects which involve the interaction of electrons with 
lattice vibrations are worth mentioning. The optical absorption process 
which is responsible for the absorption edge corresponding to the band 
gap in Ge and Si is an indirect process which involves a phonon as well 
as a photon (66). The theory of this type of transition will be discussed 
in Section VII (process 2 in Fig. 13 and in the text), and the predicted 
absorption coefficients are there shown to be in order-of-magnitude agree- 
ment with the observed values. 

A second effect is the broadening of the energy levels of an impurity 
center due to the interaction of the localized electron with the lattice 
vibrations. This effect has recently been discussed by Lax and Burstein 
(106). As discussed further in Section VII these states appear to be very 
nearly hydrogen-like in their behavior, in spite of the complexity of the 
valence band edge from which they are derived. The mechanism of broad- 
ening may be described as follows. As a lattice wave passes over an ac- 
ceptor center, a local distortion of the lattice occurs, and if the wavelength 
is long enough so that the distortion has constant phase over the dimen- 
sions of the impurity wave function, the energy level will be shifted by 
an amount which is equal to the local shift in the band edge by the de- 
formation potential appropriate to that particular strain. For short wave- 
length vibrations the shifts induced in different parts of the impurity 
region cancel in phase, so that only phonons whose frequency corresponds 
to a temperature of less than 100°K will make an appreciable contribu- 
tion to the broadening. Furthermore, most of the broadening will be in 
the ground level, since the effective radius of the impurity orbits increases 
as the principal quantum number, and the number of lattice modes of 
wavelength greater than the critical value thus decreases as the inverse 
cube of the principal quantum number of the excited state. Below about 
50°K the broadening is due entirely to zero-point vibrations, and is hence 
temperature independent. The observation that the broadening begins to 
increase above about 50°K is direct experimental evidence for the idea 
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that it is only the long wavelength oscillations which play a significant 
role. 

Lax and Burstein give a theoretical estimate of the width at  half- 
absorption as 0.003 ev, which is to be compared with the observed width 
of 0.001 ev. In making this estimate the complexity of the valence band 
was neglected, and it was treated as a single spherical band with an effec- 
tive mass such as t o  give the correct ionization energy for the ground 
state. The deformation potential for the lattice vibrations was taken as 
purely dilatational and adjusted to give the correct magnitude for the 
hole mobility a t  room temperature in Si. It was also found necessary to 
take into account roughly the ‘ I  motional narrowing l1  which arises be- 
cause the frequency of the important lattice vibrations is comparable 
with the frequency of motion of the hole in its orbit. The disagreement 
between the theoretical and experimental line width is possibly not sur- 
prising in view of the approximations involved. Also it is possible that 
some of the scattering for the mobility is contributed by optical modes, 
which would have little or no influence on the broadening. This idea is 
supported by the fact that if the deformation potential is computed from 
the hole mobility a t  liquid nitrogen temperature, the ratio of theoretical 
to experimental line width is brought down to 1.7. 

6. Conclusions 

The account set forth in Sections V and VI does not represent a fully 
worked out story, either from the theoretical or from the experimental 
view. On the theoretical side the approximation of using a collision time, 
and the incomplete working out of the consequences of elastic anisotropy 
and of anisotropy of the energy surfaces make all the quantitative con- 
clusions regarding deformation potentials crude and tentative. The tenta- 
tive conclusions which do emerge may be summarized roughly as follows: 

1. Magnetoresistance data on n-type Ge and Si support the idea of 
(111) and (100) minima for the conduction band edges in these two 
materials, respectively, This conclusion, and the deduced mass ani- 
sotropies are reasonably consistent with the cyclotron resonance data. 

2. In the case of n-type Gel departures from the theoretical T-l.6-law 
for lattice mobility are slight, and can probably be accounted for by 
inter-valley scattering. 

3. The thermoelectric power provides a means of estimating the 
density of states near the band edges, but gives values which are about 
twice too large for both n and p Ge as compared with the values de- 
duced from the cyclotron effective masses. 
4. The Hall effect and magnetoresistance in p Ge can only be ac- 
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counted for by a model involving two types of holes, with a scattering 
law having a normal &->‘-dependence in the lattice scattering range. 
It seems most likely that the observed T-2.8-dependence of the hole 
mobility must be accounted for by an explicit temperature dependence 
of the effective mass for the high-mass holes, probably arising from 
interaction with phonons. This is also consistent with the thermoelectric 
data on p Ge. 

5. Scattering by the shear component of the deformation potential 
is quite important in n-type Ge and Si, but is relatively unimportant 
in p-type Ge. Of the possible dilatational components of the defor- 
mation potentials which can be deduced from piezoresistance data, 
there is one set which is also consistent with the independently meas- 
ured pressure coefficient of the band gap. The fit is best if low tem- 
perature mobilities are used. 

6. For n Ge the theoretical ionized impurity scattering seems to be 
smaller than observed by at least a factor of 2. 

7. The part of the shift in the band gap with temperature which is 
due t o  electron-lattice interaction is about 2 to 3 times larger than 
given by the simple theory, but the deviations can be accounted for 
qualitatively in terms of the detailed structure of the conduction bands. 

8. The broadening of impurity levels in p Si is somewhat less than is 
consistent with the deformation potentials deduced from hole mobility 
on a simplified one-band model of the valence band. 

VII. OPTICAL PROPERTIES 
It is convenient to classify the optical transitions which may occur in 

Ge and Si according to the general scheme shown in Fig. 13. This diagram 
shows schematically a series of &(P)-curves for the conduction and va- 
lence bands, the direction of P being taken as that which includes the 
band edges, in particular the lowest point in the conduction band. Im- 
purity levels are also indicated on the diagram as horizontal lines. Since 
from Equation (3.11) we have seen that any localized level may be ex- 
pressed as a linear combination of band wave functions, the extent of the 
horizontal line for a localized state is an indication of the different values 
of P which enter appreciably into the linear combination. If the degree of 
localization is slight, as with the hydrogenic impurity levels near the band 
edges, then only a small range of P in the vicinity of the band edge point 
is needed to describe the state. On the other hand, if the localized state 
is a trapping center deep in the forbidden gap, then it is highly localized 
and requires nearly all the values of P in the band for an adequate de- 
scription. Thus in the diagram, nonhydrogenic states are shown with 
great extension. 
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The possible transitions are indicated by arrows in the diagram. For 
simplicity we have considered only absorption processes. Arrows which 
join continuously represent two-step processes. These are processes in 
which a transition takes place via an intermediate state in such a way 
as to conserve energy in the over-all process, but not in the individual 
transitions. They are only of practical importance when the direct tran- 
sition between initial and final states is forbidden by a selection rule (66, 
lor, 10s). 

1 .  Allowed Transitions (Process 1 )  

For allowed transitions in solids we have the selection rule 

P - P‘ = (h/X)s (7.1) 

where X is the optical wavelength and s is a unit vector in the direction of 
propagation of the electromagnetic wave. For a wavelength of 2 X 10-4 
cm, the momentum on the right of (7.1) corresponds to an electronic 
energy of 3.5 X 10-7 ev, which is entirely negligible; hence, for practical 
purposes we may take the right side of (7.1) as equal to zero. Thus an 
allowed transition is one which can be represented by a vertical arrow in 
Fig. 13. 

There are two cases of allowed transitions to be distinguished. The 
vertical transition at the point P = 0 may be either forbidden or allowed, 
depending on the symmetry of the wave functions corresponding to  the 
initial and final bands. The transition is allowed only if the wave func- 
tions are, respectively, even and odd with respect to reflection in the 
origin, i.e., if the initial and final states are of opposite parity. This is 
believed to  be the case for the valence and conduction bands of Ge and Si. 
Under these conditions the transition probability is approximately con- 
stant as a function of P for vertical transitions near P = 0. Since the 
total absorption at frequency Y is proportional to the total numbers of 
pairs of initial states having this frequency, it is easily shown that the 
absorption coefficient near the threshold varies according to 

(7.2) 

where m, and m, are the effective masses corresponding to the curvatures 
at the points P = 0 of the conduction and valence bands, respectively, 
n is the refractive index, c is the velocity of light, vt is the threshold ab- 
sorption frequency, v is the actual frequency, and fi/ is the oscillator 
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strength for the transition-a pure number of order unity. If the tran- 
sition were a forbidden one, the selection rule would be violated away 
from the point P = 0, and the transition would be roughly proportional 
to P2, and hence to an additional power of ( v  - vt). Such a transition is 

FIG. 13. Graph of energy v8. P for germanium, showing possible optical processes. 
(1 )  Allowed vertical transition from the valence band to the conduction band. 
(2) Indirect transition from near the edge of the valence band to near the edge of 

the conduction band (optical followed by phonon transition). 
(3) Indirect transition from near the edge of the valence band to near the edge of 

the conduction band (optical transition from deep in the valence band, followed by 
phonon transition from the edge of the valence band into a hole). 

(4) Indirect transition within the conduction band. 
(4') Indirect transition within the valence band. 
(5 )  (5')  (5")  Direct transitions between components of the valence band. 
(6) Transition from a normal donor level into the conduction band. 
(7) Transition from a deep trap to the conduction band. 

still considered as allowed in the sense used hereafter because it satisfies 
the selection rule (7.1). 

A curve of absorption coefficient vs. hv as determined by Dash et al. 
on very thin single crystals of Ge (67) is shown in Fig. 14. The plateau 
beyond hv = 0.81 ev is interpreted as the beginning of the allowed ab- 
sorption. The absorption coefficient has been followed to above lo6 cm-I 
and appears to be increasing at  a rate considerably faster than would be 
suggested by (7.2). In fact, the increase is more like the %-power of 
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(Y - YI), suggesting a forbidden absorption. In  any case, the minimum in 
the conduction band at  P = 0 appears to lie about 0.18 ev above the 
conduction band edge. In Si the edge for allowed absorption is more diffi- 
cult to locate, but seems to be between 2.0 and 2.5 ev, and again the 
absorption coefficient appears to vary more nearly like (v - vt)+$) although 
the magnitude of the absorption, as well as other evidence discussed be- 
low, strongly indicates that the transition is an allowed one. 

- - 
5 - 

20" c 

I I 

3 0.80 0.90 
h I, (e.v.) 

FIG. 14. Absorption coefficient of germanium as a function of frequency (W. C. 
Dash and R. Newman). 

1. Forbidden Absorption (Processes 2 and 3) 

As Fig. 14 shows, there is very strong absorption on the long wave 
side of the allowed threshold, and this has been interpreted by Bardeen 
et at. (66) in terms of a two-step process, as shown in Fig. 13. In  the 
first step the light produces a vertical transition to a point near P = 0 
in the conduction band, and in the second step, a phanon scatters the 
excited electron to a position near the band edge. Another two-step proc- 
ess which would lead to the same final state is the process 3, in which the 
electron is first raised directly from the valence band to the final state in 
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the conduction band by an optical transition, and the resulting hole in 
the valence band is then scattered by a phonon to a position near the 
top of the valence band. The latter process is thought to be somewhat 
less probable than process 2. 

The transition probability for any two-step quantum mechanical proc- 
ess is given by a formula of the general form (108) 

where the summation is over all possible intermediate states, and where 
M i  and M z  are operators representing the constituent processes, Er and 
EZ are, respectively, the energies of the intermediate and final states, and 
p ( E f )  is the density of final states. For the processes which we are con- 
sidering, M I  represents the operator for an optical transition and satisfies 
the selection rule (7.1), whereas M z  represents the operator for the phonon 
which has the appropriate momentum to carry the electron from P = 0 
to one of the energy minima in the conduction band. Bardeen et al. (66) 
have evaluated (7.3) for the process 2 shown in Fig. 13 and obtain the 
formula 

Here mv and m, are the “density-of-states” effective masses for valence 
and conduction band edges, respectively, fir is an oscillator strength, 
M a 2  is a phonon matrix element squared, ng is the number of quanta 
excited of the appropriate phonon wave length, and EI - Et is the dif- 
ference in energy between the actual quantum energy and the threshold 
energy for this type of absorption, i.e., the band gap. 

Bardeen et al. attempt to  estimate the phonon factor in (7.4) by means 
of the resistivity mobility. For frequencies near threshold (EI - EJAV 
cancels hw in the denominator, and EI - Ej = EO - Ec, where Eo is the 
energy at the point P = 0, and Ec is the energy of the conduction band 
edge. Using EO - Ec = 0.18 ev for Gel and 1.0 ev for Si, and assuming 
an allowed transition a t  the band center, they obtain 

pi = 100 cm-l at 0.72 ev for Ge 
pi = 300 cm-I at 1.45 ev for Si (7.5) 

These results are to be compared with 30 cm-I for Ge and 700 cm-l for Si 
found by Dash et al. Considering the uncertainty in estimating the 
magnitude of the phonon matrix element, the theory is in quite good 
agreement with experiment. Actually, of course, since the change in mo- 
mentum of the electron is rather large, the same phonons are not involved 
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in this transition as are involved in ordinary lattice scattering. If we use 
the deformation potential approach to estimate Me2 in (7.5)-a question- 
able procedure for short wavelength phonons-we find 

M,"2n, + 1) E E l l s  Pula 6 coth 5 

where coth 4 reduces to 1 for the phonons that participate in ordinary 
lattice scattering. This factor is of order unity for room temperature in 
Ge, but may be somewhat larger for Si. For low temperatures, however, 
the factor becomes large, and the phonon factor tends to become tem- 
perature independent at low temperatures. * 

3. Free Carrier Absorption (Processes 4 and 4') 
In the preceding paragraphs we considered processes in which the 

electron makes an optical transition between bands. Processes are also 
possible in which the electron makes an optical transition within a band 
and then reaches the final state via a phonon transition exactly as pre- 
viously. The possibility of such processes arises essentially because the 
velocity operator for band states has a finite expectation value, so that 
nearly diagonal matrix elements for the optical transition exist. Such 
processes can be treated by means of Equation (7.3), and this has been 
done by Bardeen (110,111) and by Rosenberg and Lax ( I f d ) .  However, 
somewhat similar results may be obtained by a semiclassical approach. In 
fact the absorption coefficient may be obtained from the high-frequency 
conductivity given in Equation (5.37). 

The observed absorption in the forbidden gap has been studied by a 
number of workers (114). It is, of course, much weaker than the inter- 
band absorption, because the initial states are only very sparsely occu- 
pied compared with the initial states in the valence band for inter-band 
absorption. The actual transition probabilities from a given initial state 
are of the same order of magnitude as for the forbidden inter-band ab- 
sorption discussed above (process 2). It is found experimentally that the 
absorption is proportional to the number of carriers, and that in intrinsic 
material the contributions of the electrons and holes are additive. Further- 
more, the absorption varies about as the square of the wavelength, as is 
required by (5.37). In n-type Ge the magnitude of the absorption coef- 
ficient is many times that predicted for free electrons of the appropriate 
dc mobility. This is accounted for by the factor y ( p ) / m d  in (5.37), which 

* This discussion ignores the effect of the phonon energy on the energy gap. For a 
more complete treatment see reference 109. 
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is about 72 for Ge (116). Rosenberg and Lax ( l l d )  have shown that addi- 
tional absorption could be accounted for by inter-valley phonon induced 
transitions, which are not as severely limited by conservation of energy 
considerations as in the do case, owing to the energy supplied by the 
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FIG. 15. Free electron absorption in n-germanium. From Seventh Quarterly 
Report, Purdue University, Project DA 36-039-SC-15339, fig. 15, p. 59. 

photon. Another possibility is that for the photon energies involved ac- 
count must be taken of the changes in the curvature of the energy sur- 
faces away from the minimum at  the band edge. One would expect, how- 
ever, that such an effect would lead to a slower variation of absorption 
with wavelength than X2, whereas actually the X2-law seems to be well 
satisfied for n-type Ge and Si. 

It is also predicted by (5.37) that the infrared absorption should vary 
inversely with the dc mobility. This relation has been tested experimen- 
tally by Fan and co-workers (116), and is found to be fairly well obeyed 
in the lattice scattering regime, but the behavior in the impurity scat- 
tering regime is not understood. Typical curves for n-type Ge are shown 
in Fig. 15. 
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4. Free Hole Absorption (Processes 6, 6’, and 6”) 

Another type of transition which can occur involves an allowed type 
of optical jump between different branches of the same degenerate band 
structure, as indicated by process 5 in Fig. 13. Although this is really a 
special case of process 1, it is much weaker and is proportional to  the 
hole density near the top of the valence band. Two factors account for 
the weakness of the transition. First, the transition is forbidden at  P = 0, 
and the transition probability is proportional to P2 and therefore to  

FIG. 16. Optical absorption in p-type Gel from Briggs and Fletcher, reference l i 7 .  

(&, - &) for states near, but away from, the band edge. This is an in- 
evitable feature of transitions within a degenerate band structure, be- 
cause the different degenerate branches have the same parity a t  P = 0. 
Secondly, and more important, a transition can only occur, consistent 
with the exclusion principle, if the final state is empty, so that the total 
absorption is proportional to the hole density in the upper state of the 
transition pair. 

All this leads to an absorption which behaves like free hole absorption 
in that it is proportional to  the number of conducting holes, but which 
does not show the characteristic X 2  dependence of the electronic absorp- 
tion, and is also about 10 times stronger. In fact, as was shown by Briggs 
and Fletcher (ll7), and as is illustrated in Fig. 16, the free hole absorp- 
tion in Ge shows considerable structure, which is, moreover, very tem- 
perature dependent. The structure has been explained quite well by 
Kahn (116), using the model of a three-fold degenerate valence band, 
split by spin-orbit effects into an upper doubly degenerate and a lower 
singly degenerate branch. Kahn found that the data were consistent with 
the effective masses obtained from cyclotron data, and the short wave- 
length peak could be properly explained if the spin-orbit splitting at  
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P = 0 were taken to give a separation of 0.28 ev. The transition prob- 
abilities can be computed completely in terms of the effective mass pa- 
rameters, so that in principle there are no undetermined constants in the 
calculation other than the spin-orbit splitting. However, this calculation 
program has not been completely carried out. Also, there are some minor 
discrepancies between theory and experiment which are difficult to ac- 
count for. In particular the absorption at  long wavelengths appears to be 
less than predicted by theory. 

Similar measurements on free hole absorption in Si have revealed no 
evidence of structure out to 12 microns (118), and furthermore the X2 re- 
lation is fairly well fulfilled. Although the spin orbit splitting is probably 
less than 0.05 ev for Si, and therefore one would expect the structure to  
appear at  much longer wavelengths than in Ge, there is rather surprisingly 
no evidence of structure at  all. 

TABLE IX. Comparison of Optical and Thermal Ionization Energies for Donors 
and Acceptors in Silicon 

Impurity Thermal Optical 

B Acceptor 0,045 (23)" 0.046 (20) 
Al '( 0.057 (23) 0.067' 
Ga " 0.065 (83) 0. 071b 
In  " 0.16 (23) 0.16b 
P Donor 0.044 (IS) 0.046b 
As (( 0.049 (23) 0. 056b 

Numbers in parentheses are reference numbers. 
b Burstein, Henvis, Picus, and Shulman, unpublished results quoted in reference 30. 

6. Absorption by Group 111 and V Impurities (Processes 6 and 6') 

Direct transitions between hydrogenic impurities and the appropriate 
conduction bands were first observed in p-type Si by Burstein and co- 
workers (20).  This observation can only be made at low temperatures, 
where the acceptors are appreciably de-ionized. In this way it was possi- 
ble to measure the ionization energy of acceptors quite accurately and to 
compare it with that determined from Hall and resistivity data a t  low 
temperatures. For boron the agreement was excellent. A more complete 
comparison is shown in Table IX, which also shows results for n-type Si 
obtained by the same authors. Such discrepancies as appear are probably 
experimental and have no theoretical significance. The optical data may 
be considered the more reliable. There are no optical results for Ge be- 
cause of the longer wavelengths involved and attendant experimental 
difficulties. 
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An interesting biproduct of these results was the observation of tran- 
sitions to excited states of the impurity centers. The positions of the ex- 
cited states seem to give a rather striking confirmation of the hydrogenic 
model. This is shown in Table X (2U). 

TABLE X. Comparison of Optical Data on p-Type Silicon with the Hydrogenic 
Model 

Hydrogen Modelo B A1 Ga In* 

1s 0.0460 ev 0.0460 ev 0.067 0.071 0.156 
2P 0.0115 0,0116 0.012 0.013 0 * 019 
3P 0.0051 0,0062 0.007 0.009 0.010 
4P 0.0029 0.0029 0,003 0.003 0.004 

Spherical energy surfaces with m,fj = 0.45ms. 
b Note that energy of excited states is less reliable in this case. Data taken from 

thermal ionization energy. 

Similar results have been obtained for donor levels. It is unfortunate 
that there is not a good theory with which to compare the experiments 
on p-type silicon; in fact, the simple hydrogenic model appears to work 
surprisingly well except for the ground state, despite the fact that here 
we have to deal with a degenerate band structure in which, furthermore, 
the spin-orbit splitting is insufficient to minimize the influence of the 
split-off band. Theoretical transition probabilities have also been com- 
puted on the hydrogenic model with spherical symmetry. The observed 
transition probabilities are in rough agreement with theory, except that 
the 18-2~ transition is relatively very much weaker than it should be, 
by a factor of the order of 30 (2%). 

The structure of the absorption corresponding to transitions from the 
acceptor level to the valence band is also of considerable interest. A theory 
for this for Ge has been given by Teitler, Burstein, and Lax (119). Since 
the acceptor level is comprised of band wave functions corresponding to 
values of P very close to the band edge, where P = 0, the structure of 
this absorption, and the theory for it, is quite similar to that developed by 
Kahn for the inter-band transitions (116), except that the momentum 
distribution of holes in the final state is determined by the nature of the 
impurity level rather than by a Maxwell distribution. 

6. Absorption by Other Types  of Impurities (Processes ?' and 8) 

Transitions may take place directly from deep-lying trap levels to 
either the valence or conduction bands. Because of the high degree of 
localization in the trap level, the selection rule for allowed inter-band 
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transitions has no relevance in this case. Also the solubilities of gold and 
the iron-group transition elements, which produce deep lying levels in 
Ge, is so small that absorption cannot be observed directly. The tran- 
sitions are rather observed through the photoconductivity produced, that 
is, from the conductivity resulting from the excited electron or hole (31, 
60). 

The process is illustrated in Fig. 17 for germanium doped with iron 
(60). The photoconductive response is the change in resistance of the 

u 
IO-’ 0.2 0.3 0.4 0.5 0.6 a7 0.8 

PHOTON ENERGY (ev) 

FIQ. 17. Photoconductive response of iron-doped germanium, illustrating corre- 
spondence between optical and thermal thresholds, from W. W. Tyler, R. Newman, 
and H. H. Woodbury, Phys Rev. S6, 882 (figs. 1 and 2) (1954). 

sample per watt of incident light energy, a meaningful quantity, since 
the illuminated samples obey Ohm’s law and show a response which is 
proportional to the intensity. The position of the thermal activation en- 
ergy, as determined from resistivity data, is indicated on the response 
curves. In n-type material at liquid Nz temperature, the upper Fe level is 
partially occupied and the photoconduction originates in the excitation 
of an electron into the conduction band. The threshold energy for such a 
process should and does correspond roughly to the thermal “ionization 
energy” of this level, although response is so broad that an accurate com- 
parison is not possible. In p-type material, the photoconduction is due to  
excitation of an electron from the valence band into an empty lower iron 
level, and again the threshold is roughly correct. 
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There is an interesting contrast in the behavior of n and p photo- 
conduction, however. As seen from the figure, the n-type material is much 
more sensitive; also it shows very much longer recovery times after the 
illumination is removed. This behavior may be possibly correlated with 
the fact that in n-type material it is difficult for electrons to  retrap in 
the upper l e  iron level because the center is already negatively charged 
and hence possesses a “potential barrier” for electrons. No such situ- 
ation occurs in p-type material, since there is no charge barrier against 
recapture of holes. It is found that the strong photoconductivity may 
also be “quenched” by simultaneous illumination in the proper wave- 
length band. All these effects occur a t  liquid Nz temperature, where both 
the Fe Ievels are filled. This is believed to be associated with the satu- 
ration of minority carrier (hole) traps, but a detailed explanation is not 
available. At room temperature, where the upper level is only partially 
occupied, the principal effect of the Fe is to reduce the recombination 
lifetime for carriers injected by light and hence to reduce the photo- 
sensitivity. Under these circumstances the deep Fe level is thought to 
act as a recombination trap by first capturing a hole and then an electron. 
Unfortunately, although most of these effects may be explained quali- 
tatively in terms of a model involving singly and doubly charged acceptor 
states for the iron, it has so far not been possible to use such a simple 
model for quantitative interpretation of the photoconductivity results.* 

7, Other Optical Processes 

So far the discussion has concerned itself entirely with absorption. It 
is clear, however, that whenever absorption is possible there must exist a 
converse emission process. Often the emission is difficult to observe be- 
cause competing processes make it very weak. So far evidence has been 
found for three types of emission processes: 

1. Direct recombination of holes and electrons with emission of a 
single photon, momentum being conserved by Iattice vibrations. This 
effect has been observed by Haynes and Briggs (48) and by Newman 
(120). It is essentially the inverse of process 2 in Fig. 13, and hence 
the probability and spectral distribution of the emission can be pre- 
dicted from absorption data with the use of the principle of detailed 
balancing. This has been done by van Roosebroeck and Shockley (48). 
They show that the spectral distribution should be extremely sharply 

* Since the above paragraph was written, substantial progress has been made by 
Tyler and his collaborators. In particular they have succeeded in explaining most of 
the photoconduction and quenching properties of Mn doped Ge in terms of the two 
known levels introduced by the Mn impurity. 
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peaked at the long-wave limit of the absorption curve, and that  the 
recombination rate a t  300°K corresponds to  a lifetime for holes of 
0.22 sec. This is much longer than observed life-times, which are 
thought to  arise from a two-step process (47).  This value, however, 
seems to  be in accord with the experimental results (120) as does the 
spectral distribution. 

2. Recombination in Ge via a deep trap a t  about 0.2 ev above the 
valence band. 

3. Recombination radiation observed (1.91) when a Si p-n junction 
is operated a t  very high back voltage beyond avalanche break-down 
(122).  Since, in the high field, both electrons and holes will acquire suf- 
ficient energy from the field to  produce secondaries, it is energetically 
possible for radiation to  be emitted which is three times the forbidden 
gap, or about 3.5 ev. Nearly constant radiation output is actually ob- 
served (121) out to  2.4 ev, after which it falls off but is still measurable 
out t o  3.4 ev. This explanation, however, is not established and involves 
some theoretical difficulties. 

I n  this review we have been mainly concerned with electronic proc- 
esses in semiconductors and have therefore confined our discussion to  
optically induced electronic transitions. It should be mentioned, how- 
ever, that absorption in the far infra red has been found which appears 
to  be nearly independent of carrier concentration or type and is accord- 
ingly ascribed to  lattice vibrations. Since germanium and silicon are va- 
lence crystals, their lattice vibrations do not interact strongly with an 
external field, and hence the resulting absorption is quite weak, compara- 
ble in strength to  the absorption by impurities at low temperatures (123). 
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