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INTRODUCTION

During the past year substantial progress has been made in determin-
the energy-level structure of the valence-type semiconductors, germa-

nium and silicon. This progress has stemmed in turn from three principal
developments:

1. The exploitation of the cyclotron resonance technique by Kittel

and Kip ef al. at Berkeley and by Lax and Dexter et al. at M.I.T.

2. Detailed and relatively accurate calculations of the band struc-

ture of germanium and silicon from first principles by F. Herman and
collaborators at R.C.A.

3. Detailed experimental studies, especially at Naval Research Lab-

oratory, Bell Laboratories, and General Electric, on the location and
properties of the energy levels due to impurities and imperfections in
Ge and Si.
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86 HARVEY BROOKS

The first two items have given us an insight into the structure of the
valence and conduction bands, whereas the last has enabled us to fill in
the picture in the forbidden energy gap. With this picture, it is possible
to present an account of the electrical properties of these semiconductors
from a deductive point of view, proceeding from the energy level struc-
ture as a starting point. It is the aim of this paper to outline such a
presentation, and to summarize our understanding of the physical mech-
anisms underlying the electrical properties of these elements. It will be
evident that many of the general principles apply equally well to other
semiconductors, and can serve as a basis for the discussion of the com-
pounds in the companion paper by Burstein and Egli.

In Section I, we outline in a qualitative and brief fashion the general
principles of energy band theory which are of most relevance to the semi-
conductor problem. Most of these are ideas which were already well
developed in the late 1930’s, but are perhaps not very well known to the
worker in the field of semiconductor applications. In Section II, we dis-
cuss the motion of electrons in energy bands under the influence of exter-
nal electric and magnetic fields, presenting an elementary theory of the
cyclotron resonance experiment as an example. This, in turn, serves as a
natural point to summarize the current picture of the continuous energy
levels of Ge and Si as it has developed quantitatively from the experi-
ments, and in the light of theory.

In Section III, the theory of localized states is discussed with special
emphasis on the influence of the complex structures of the valence and
conduction bands in modifying the simple theory of hydrogen-like impuri-
ties. Qualitative discussion is also given of the localized levels provided
by other than hydrogenic impurities, and of the levels produced by sur-
faces and by dislocations.

In Section IV, we indicate how the energy level picture is to be used
in the statistical mechanical calculation of the equilibrium properties of
semiconductors, Since the Fermi statistics as applied to simple semicon-
ductors has been very adequately covered in well-known texts such as
Shockley’s Electrons and Holes in Semiconductors, we concern ourselves
here mainly with the modifications introduced by complex band struc-
ture, and by the existence of temperature dependent energy levels result-
ing from the interaction between electrons and thermal vibrations.

In Section V, we present the phenomenological theory of the electrical
conductivity, Hall effect, magnetoresistance, and thermoelectric power of
Ge and Si, again stressing the influence of the complex band structure.
In this section we treat the collision time as an empirical parameter with-
out reference to detailed mechanisms of scattering, which are considered
in Section VI. In Section VI, mechanisms of lattice and ionized impurity
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scattering are discussed in some detail, and some new results on scatter-
ing in the valence band are presented.

Finally, in Section VII, we review the optical properties of Ge and
Si in terms of the different classes of allowed and forbidden transitions
which may occur on the energy level diagram.

The choice of topics has been selective, rather than comprehensive.
The basis of selection of particular topics has often been the author’s
own interests, and in general the emphasis has been on those topics for
which treatments are not readily available in the literature.

I. ProrERTIES OF ENERGY BANDS

Many properties of solids can be satisfactorily treated by means of
a physical model in which each electron is considered to move independ-
ently of the others. This does not mean that it is assumed not to inter-
act with the other electrons, but only that the interaction is averaged
over the motions of all the other electrons in the system, when consider-
ing the motion of a given electron. Such a picture was first introduced by
Hartree in connection with the quantum mechanical description of elec-
trons in atoms. The scheme was later modified and improved by Fock,
who showed that most of the simplifications made possible by the Hartree
assumption could be retained in a model which took partial account of
the correlations in the motions of the electrons which were entirely
ignored in the Hartree scheme.

For many purposes, the Hartree-Fock description is quite accurate
for electrons in solids, especially for the description of the least tightly
bound electrons, the ones which are primarily concerned in the electrical
properties. The description is a self-consistent one; that is, each electron
moves in an electrostatic potential which is made up of two contribu-
tions, the potential due to the ions, regarded as fixed charge distribu-
tions, and the potential arising from the charge density of all the elec-
trons which are concerned in the self-consistent calculation. This latter
charge distribution is computed from the wave functions, which in turn
are determined by solution of the Schrodinger equation for each electron
in the potential. Self-consistency is achieved in principle when the poten-
tial at the start and finish of the problem is the same (7).

The reason for the utility of the self-consistent wave functions in the
case of solids is that if the wave function for each electron is the solution
of a one-electron Schrodinger equation in a triply periodic potential, then
the resultant electronic charge distribution, and consequently the poten-
tial, computed from these wave functions is also triply periodic with the
same periods. Thus if we start the problem with a periodic potential, suc-
cessive calculations of wave functions and potentials will always lead to
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a periodic potential. The properties of the solutions of the wave equation
for a single electron in a periodic potential present many special simpliei-
ties and general properties which we can describe independently of the
particular form of the potential, except for its translational periodicity
and other symmetry properties characteristic of the particular erystal
structure being investigated. It is the properties of the eigenfunctions,
and especially the eigenvalues, of the general periodic potential problem
which we now wish to discuss (2).

In the first place, we find that there are additional quantum numbers
(besides the energy itself) which are ‘‘good’’ quantum numbers or ““con-
stants of the motion,” and which can therefore be used to label the vari-
ous energy states. The most important of these is the so-called “‘reduced
wave vector” k. It can be shown that the wave functions for a periodic
potential are all of the form

bk, r) = ulk, r)expik - r (1.1)

where u(k, r) is periodic with the same periodicity as the potential. The
vector k spans a 3-dimensional space, known as reciprocal space. How-
ever, only the vectors in a limited domain of this space actually have a
separate physical significance. This limited region is a unit cell of a lat-
tice in reciprocal space, known as the reciprocal lattice. In the literature,
it is usually called the ‘‘first Brillouin zone.” For our purposes it may be
thought of simply as a polyhedron whose shape is determined by the
crystal lattice being considered. This polyhedron is illustrated for the
diamond lattice, of which Ge and Si are examples, in Fig. 1 (3). Each
point in the first BZ defines a reduced wave vector k, which is a vector
from the center of the BZ to the point. The center can always be defined
because, regardless of whether the original crystal has a center of inver-
sion, the unit cell in reciprocal space does. Each reduced wave vector
within the unit cell or BZ corresponds to a different eigenstate, and usu-
ally a different eigenvalue, for the periodic potential problem. The eigen-
values of the problem are distributed in allowed and forbidden bands of
energies. Within each allowed range of energies, the eigenvalue may be
expressed as a continuous function of k. The different allowed ranges
may be labelled in order of increasing energy (2), so that the complete
set of eigenvalues for the problem may be labelled by the functions

Ea(k)

If we focus attention on one particular value of k, then there will be
an infinite set, ascending in energy, of eigenvalues for this k. Although
there is some degree of arbitrariness in the labelling of eigenvalues, we
can always label them in such a way that if §,(k) < §,-(k) for one par-
ticular value of k, then §,(k) < &.(k) is satisfied for every value of k in
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the BZ. If the eigenvalues are labelled in this way, then it can be shown
that any surface of constant energy in k-space, i.e., a surface whose equa-
tion is

8.(k) = const. (1.2)

has the same symmetry as the reciprocal lattice.* Thus, for example, if

— e fm — -

Fia. 1. First Brillouin Zone for the diamond lattice. The diamond lattice consists
o ao Qo
Ty
relative to each other, where a; is the cube edge. In the Brillouin Zone the centers of
the square faces are at k = (2x/aq, 0, 0) and five other equivalent points; the centers
of the hexagonal faces are at k = (v/aq, 7/ae, 7/ac) and seven other equivalent points.
The total volume of the zone is equivalent to one-half of an electronic energy level
per atom in the crystal.

of two interpenetrating face-centered cubic lattices displaced by the vector

the crystal lattice has cubic symmetry, all the energy surfaces are left
unchanged by any rotation in k-space which leaves a cube centered at the
origin invariant.

The equal sign is quite important in the above inequality. Depend-
ing on crystal symmetry, there will be certain values of k for which two
or more eigenvalues become equal. When this occurs, we have a ‘“degen-
eracy.” Degeneracy usually occurs in the BZ only for points of particu-
larly high symmetry, for example, the center of the zone, the center of a
polyhedral face, or a corner. As we move away from such points in
k-space, the degeneracy is lifted. In terms of energy surfaces, we say
that two or more surfaces touch at certain points in k-space and sepa-

* In general, the symmetry of the reciprocal lattice is the same as that of the
crystal lattice, except that the symmetry group of the reciprocal lattice always
includes the inversion in the origin. In the case of the diamond structure, this means
that the energy surfaces actually have greater symmetry than the original lattice; in
fact they have the same symmetry as a body-centered cubic erystal structure.
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rate as we move away from these points. Actually, surfaces may touch
either at points, along lines, or, in some anomalous cases, even along
whole surfaces. When touching surfaces do occur, they usually have
cusps or sharp angles at the point or line of contact.

At the polyhedral surfaces of the BZ and at the center, it can be
‘shown that the energy functions &,(k) have the property that their deriv-
atives normal to the surface vanish. This statement is true for general
points of polyhedral faces, but if it happens that two energy surfaces
touch at a point on the face, then it breaks down. However, it still fol-
lows that the sum of the normal derivatives of the two degenerate energy
functions is equal to zero. This situation actually represents a very spe-
cial case, and if we either slightly perturb the potential so as to lower
the symmetry of the crystal, or if we move a small distance away from-
the degenerate point, then the normal derivative vanishes again.

The condition that the normal derivative of the energy vanishes on
the zone boundary implies that at some point on the surface of the BZ
there must be either an extremum or a saddle point of the energy. The
simplest case is that of a maximum or a minimum. In this case, the bot-
tom or top edge of an allowed band corresponds to a reduced wave vector
either at a symmetrical point on the surface of the BZ, such as the center
or corner of a face, or at the central point of the BZ. More complicated
situations can occur, however, and in principle maxima and minima of
the energy can occur at interior points of the zone. As we shall see, this
more complex situation seems to be true for both Ge and 8i (4). In such
a case, the band edge occurs, then, at an interior point of the BZ, and if
the reciprocal lattice has cubic symmetry, there will be a number of
equivalent points in the zone having the same maximum or minimum
energy.

In semiconductors, we are always dealing with energy bands which
are nearly full or nearly empty; that is, the number of electrons or missing
electrons (holes) in any band is only a very small fraction of the total
number that could be accommodated. This results in an important sim-
plification of the form of the function &,(k); namely, for the charge car-
riers we are usually interested in, it can be expanded in a Taylor series
about the wave vector ko which gives the maximum or minimum of
&.(k). In other words, since V&.(ko) = 0, &,(k) is a quadratic function
of the components of k — ko, where k; is the value of the wave vector
for which the band edge occurs.

In the most general case we have

Ealk) ~ Eallke) = ) aitity
1 ¥

where E1=ks — kao; b2=1ky — kyo; £3= k. — koo (L.3)
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Equation (1.3) corresponds to energy surfaces which are ellipsoids cen-
tered about the point k = ko. In a cubic crystal, such as Ge or Si, if the

point ko is not on an axis or plane of
symmetry, there will be 48 band edges in the
BZ because of symmetry, and the complete
energy surface for a given energy near the
band edge will consist of 48 ellipsoids cen-
tered about the 48 equivalent points. If ko
is in a (100)-direction, there will be 6 ellips-
oids, each an ellipsoid of revolution about the
(100)-axis on which its center lies. If ko is on
a face of the BZ in the (100)-direction, there
will in effect be only 3 ellipsoids, each con-
sisting of two half-ellipsoids on opposite
faces of the zone. Values of k on opposite
faces of the BZ are actually equivalent to
each other, so that the two half-ellipsoids
are equivalent {0 a single ellipsoid. These two
situations are sketched in two dimensions in
Fig. 2. In the 3-dimensional case, the half-
ellipsoids will be centered on the square faces
of Fig. 1, which shows the BZ siructure for
the diamond lattice. From symmetry it also
follows that the unique axis of each ellipsoid
(two are equal) must lie along the respec-
tive (100)-axis.

Similar situations may arise for ko on
(111) or (110) axes. In the (111) case, there
will be either 8 or 4 ellipsoids of revolution
with their unique axes along the various body
diagonal (111)-directions. In the case of 4
ellipsoids, they will actually consist of half-
ellipsoids centered on the hexagonal faces.*
In the case of (110) ellipsoids, the three
principal axes can be all different.

* An alternative way of visualizing the situation
described above is to consider that the domain of k
is all space rather than just the first Brillouin zone.
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"Fic. 2. Elliptical energy
contours for a two dimensional
simple cubic structure.

(a) Band-edge pointsatan
interior point of the BZ.

(b) Band-edge point at the
center of an edge of the BZ.

(c) Case (b) illustrated for
the extended wave vector
scheme to show continuity of
half ellipsoids.

(d) Distorted energy sur-
faces which result when the
band edge pointsare very close
to the zone boundary. Under
these conditions the energy
ceases to be proportional to k2
for very small excitation above
the band edge.

In this case, the functions &.(k) may be regarded as functions in k-space which are
strictly periodie, i.e. which repeat from cell to cell, each cell being obtained by transla-
tion from the original first BZ. In this picture, when an energy surface intersects the
surface of a BZ, it continues on into the next cell. Thus, for example, when a half
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Fia. 3. Energy as a function of reduced wave vector for (100) and (111) directions,
as deduced from theoretical calculations and from cyclotron resonance and optical
experiments, (A) Germanium; (B) Silicon. The eurves are only approximate. Accu-
rately known energy intervals are dimensioned on the diagrams.

(a) Thermal free energy gap at 300°K.

(b) Deduced from optical data of Dash et al. (67) and of Fan et al. (118).

(¢) Deduced by Kahn (115) from optical data of Briggs and Fletcher (117).

(d) Deduced by F. Herman (private communication to W. Paul) from optical
data on Si-Ge alloys (103).

(e) Symbols denote symmetry type at k = 0 according to the scheme of refer-
ence 2.

If the band edge is a point of degeneracy, that is, if two or more
energy surfaces are coincident at this point, then the energy surfaces

ellipsoid touches the face of a cell, it is seen to be simply half of a complete ellipsoid
which extends an equal distance into the next cell. This situation is also indicated in
the sketch in Fig. 2,
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cannot be described as ellipsoids or spheres, but are warped in such a
way as to retain their cubic symmetry. The energy difference from the
band edge is still proportional to the square of the magnitude of the wave
vector difference, but is a more complicated function of the direction
cosines of the vector k — k.

Examples of several of the cases mentioned above can be found in
Ge and Si. The conduction band in Ge is thought to have prolate ellips-
oids along (111)-directions. The conduction band of Si has ellipsoids in
(100)-directions. The valence bands of both Ge and Si are thought to be
doubly degenerate at their upper edges, corresponding to pairs of warped
surfaces in contact at the point k = 0 (5). The doubly degenerate band
edge in the valence band is nearly triply degenerate, in fact, so that it is
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thought that another energy maximum at k = O lies very nearby, the
separation being determined by spin-orbit interaction.*

The band structure of germanium and silicon as indicated by cyclo-
tron resonance experiments, combined with the extensive theoretical cal-
culations of Herman and his coworkers (), are shown in Fig. 3. What is
actually shown in this figure is the plot of the various &,(k) for k along
certain particular directions in the BZ, Close study of the figure reveals
many of the general characteristics of energy surfaces described above.
We see for example, that the slopes of the & »s. k curves vanish at the
end of each curve, corresponding to the face of the BZ. The one excep-
tion to this generalization occurs for a pair of curves which become degen-
erate in the (100)-direction. It is fairly evident that in this case, the sum
of the two slopes is equal to zero at the zone face.

We need a method for counting the total number of quantum states
which lie between the band edge and a given energy within the energy
band, and from this we can compute the number of states per unit
energy range, or ‘“density of states,” ag it is usually called. To make the
first calculation, we merely compute the volume in k-space contained
inside a given energy surface. For the purposes of this calculation, of
course, the “Interior” of a surface is the side of the surface on which the
edge point of the band lies. The number of states per unit volume of
k-space is just V/8x3, where V is volume of the crystal. Because one
electrons of each direction of spin can be accommodated in each state,
the number of electrons is V/4n3, or in other words, the largest number
of electrons which can be accommodated between a band edge and an
energy &, is given by

_ Ver

= s

where we have written coordinate space volume to distinguish it from

volume in k-space. From the fact that & — &, is proportional to k?, it

follows that the volume Vy is proportional to |& — &%, irrespective of

the shape of the energy surfaces. This relation is always true sufficiently
close to the band edge.

(1.4)

II. MomioN oF ErLEcTRONS IN ExTERNAL FIELDS

The reduced wave vector k is a vector which in many ways behaves
similarly to a momentum (7). If we define

P =k
b =h/2¢ (2.1)
* 8pin-orbit interaction can be of great importance in removing degeneracies in
the band structure. For general considerations on the effect of spin-orbit interaction
on energy bands, see reference éa.
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P is called the reduced momentum, and we can then speak of energy sur-
faces in P-space instead of k-space. The energy for a band may then be
written as &,(P). We know that in ordinary classical mechanics we have
the relations

v=P/m=VHEP,0; &= -VHE,Q 2.2)
where H(P, q) is the Hamiltonian, or total energy expressed as a func-
tion of coordinates and momenta. In the case of solids, we identify the
kinetic energy with the band energy &.(P) and assume that the coordi-
nate derivative V,H (P, q) just gives the negative of the applied external
force. This results in the following relations, which can be demonstrated
to follow for electrons in bands, provided the fields are not too large (7)

v = VpE.(P) (2.3a)

dp e
Equation (2.3a) tells us immediately that at a band edge the electron
velocity vanishes. This is also true at k = 0, and in a direction normal to

the face of a BZ at the BZ surface. Equation (2.3b) can also be written
in terms of acceleration as follows

Z_:' = VeV Ea(P) -% = —VpVrE(P) - [eE + i V8. (P) X H] (2.4)

The tensor quantity VsVpE,(P) behaves like the reciprocal of a mass and
is usually referred to as the effective mass tensor. It can be either posi-
tive or negative, and can indeed be positive and negative for different
directions at the same value of §. At the bottom edge of a band, where &
has a true minimum, the effective mass tensor has its three principal
values all positive, whereas at the top edge of a band, the principal
values are all negative. This implies that electrons near the top of a
band are accelerated in the opposite direction from normal electrons. If
we add up the individual accelerations of all the electrons in a fully
occupied band, we find that the net acceleration of charge vanishes; i.e.
no current can be produced by an electric field acting on a fully occupied
band of electrons. This is why a solid having nothing but full or empty
bands is an insulator at sufficiently low temperatures, in spite of the fact
that the individual electrons in the band are free to move throughout
the crystal. Strictly speaking, this conclusion, like Equations (2.3), is
true only in the limit of weak fields, but for most practical cases it is
valid.
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For an almost full band, it is more convenient to discuss the behavior
of the missing electrons than of those that are present. Since the result-
ant of the accelerations of all the electrons in the band is zero, the result-
ant acceleration of the incompletely occupied band is the negative of the
resultant of the aceelerations of the missing electrons. But since the miss-
ing electrons lie near the top of the band if the solid is reasonably close
to thermal equilibrium, they have negative masses. Thus for electric
fields we have two negatives; that is, the fact that the electrons are miss-
ing and that they have negative mass means that the current is in the
normal direction. However, if we have a magnetic field present also, the
negative mass additionally manifests itself in the velocity in the term
v X H, and this gives us a total of three negatives which reverses the
behavior of an almost filled band of electrons in a magnetic field as com-
pared with an almost empty band. The sign of the Hall voltage thus ob-
served is opposite for nearly full and nearly empty bands. This provides
one method of identifying which situation we are dealing with. These re-
sults may all be summarized in the statement that missing electrons of
negative mass at the top of a band behave in every way with respect to
externa] fields like positively charged particles having mass of the same
magnitude, but positive. Such particles are called holes, and for all prac-
tical purposes may be thought of as real particles in any phenomenon
which does not involve particles leaving the crystal, for this particular
behavior is entirely a product of the periodie potential. The sign of the
various thermoelectric effects in semiconductors is also different for elec-
trons and holes.

Some confusion has arisen, even in the recent literature, over the
physical significance of the effective mass concept and the derived con-
cept of holes. Experiments designed to observe the motion of holes under
applied fields, such as the drift mobility experiment of Haynes and
Shockley (8), show the expected behavior of positively charged particles,
but experiments designed to measure directly the inertial mass of charge
carriers via the reaction on a solid body due to the acceleration of the
carriers by a collapsing magnetic field (the Barnett experiment), always
measure the true electronic mass (9). The reason is that the apparent
mass of an electron in a periodic potential arises because of the possibil-
ity of Bragg reflection of an electron by the crystal. In this reflection
momentum is transferred to the lattice, but the energy transfer is negli-
gible. Thus the electron gets all the energy, but the lattice takes up just
the momentum necessary to make up for the difference between menv
and m.v, where m.: and m, are the effective and actual masses of the
electron, respectively. In an inertial experiment such as the Barnett ex-
periment, the momentum given in this way to the lattice is measured
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together with the electron momentum. The true momentum of the elec-
tron is just m.v, where v is the velocity given by Equation (2.3a), and
m, is the free electron mass (0).

A convenient illustration of the above ideas is provided by the fol-
lowing somewhat simplified treatment of the cyclotron resonance experi-
ment on semiconductors (17). An electron in a magnetic field will, in
general, spiral around the field with a certain natural frequency given
in Gaussian units by eH/me. If an electric field of this frequency is ap-
plied to the electron in a plane perpendicular to the magnetic field, the
electron will gain energy from the electric field and will travel in ever
increasing orbits. In a solid this situation will result in resonant energy
absorption, provided that the electron can perform quite a number of
orbits before being thrown out of phase with the electric field by a scat-
tering collision, and provided the conductivity is low enough so that the
rf field can penetrate below the surface. These conditions have been real-
ized in Ge and Si at liquid helium temperatures with samples of high
purity and erystal perfection. Under these conditions, the time between
coflisions becomes very long. Although the number of electrons present
is also very small, this can be enhanced sufficiently to produce observ-
able energy absorption either by infrared irradiation of the sample dur-
ing the experiment or by applying sufficiently high rf fields to produce
electron multiplication. For further details of the experimental proce-
dure the reader is referred to the original papers (11).

Let us first consider electrons in the conduction band in Ge. In this
case let us assume we have multiple energy ellipsoids with the energy in
each given by

8,(P) = P,2/2m; + P*/2m, + P32/2m; (2.5)

where P,, P;, and P; are the components of reduced momentum aloug
the principal axes of the ellipsoid relative to the minimum point; the
three axes are in the ratio of m,*%: my*: my*. From (2.3a) it follows that
the components of velocity are

Y = Pl/ml, Vg = Pg/mz, Vg = Pa/ms (26)
The equations of motion of an electron may be written

dvy eH eH s eH,

a mlc +~v8
H
Tr o oy iy, @7

dvg _ 6H2 €H1
T T me T me ™
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Setting vy, vg, v3 = 10, V20, Va0e™, we find the frequency conditions

w=20
_ e2H12 e2H22 62H32 (2.8)
memac?  mimac? - Mimac?
= wi?oy? + wolas? + wslay’

The zero frequency corresponds to motion of the electron along the mag-
netic fleld direction. In the second equation wi, ws, and w; are three fre-
quencies with the field respectively along the three principal axes of the
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F1a. 4. Typical eyclotron resonance spectrum for germanium. Resonances due to
two types of holes and one type of electron are shown. In these experiments the
magnetic field is varied while the frequency of the r-f electric field is held constant.

Taken from fig. 2 of Dresselhaus, Kip, and Kittel, ‘“Cyclotron Resonance of
Electrons and Holes in Silicon and Germanium Crystals,” Phys. Rev. 98, 368 (1955).

ellipsoid, while ay, a2, and s are the direction cosines of the field with
respect to the ellipsoid axes. In an actual experiment, the frequencies re-
sulting from all of the multiple ellipsoids are observed simultaneously,
since there are electrons occupying each of them. For an arbitrary direc-
tion of field, these frequencies will in general be different, so that mul-
tiple peaks are obtained which shift relative to each other as the crystal
orientation is changed relative to the field. A typical ‘“cyclotron reso-
nance spectrum” for Ge is illustrated in Fig. 4. It is obtained by vary-
ing the field at fixed frequency. It is to be noted that resonances due to
holes and electrons can be observed simultaneously. If circularly polar-
ized rf fields are used (12), only one sign of carrier is excited at a time,
and the sign of the carrier can be distinguished by the sense of circular
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polarization relative to the magnetic field direction, thus providing direct
evidence for the physical reality of holes.

In the case of Ge, the experiments indicate that the energy surfaces
are prolate ellipsoids along (111)-directions in the crystal. The experi-
ment cannot distinguish between the model of 8 and 4 ellipsoids. For an
arbitrary direction of field, in general, four frequencies will be observed
with this model, but for the field along a (100)-direction, all the ellipsoids
are equivalently oriented, and the single frequency observed is

w? = 18w + we® + wi?) (2.9)
The principal masses can be determined and are
my = 1.58m,, m, = m; = 0.082m, (2.10)

The anisotropy ratio m,/m, = 19.3 is an important quantity which will
occur in connection with expressions for the de galvanomagnetic effects.

In the case of Si, the energy surfaces are prolate ellipsoids located
along the six (100)-directions. According to cyclotron resonance data, the
effective masses are (11)

my = 0.98m,, me = m; = 0.19m, (2.11)

and the anisotropy ratio m;/m., = 5.15.

The theoretical calculations of Herman (6) suggest that the edge of
the valence band should be triply degenerate at k = 0 with wave func-
tions having symmetry similar to that of atomic p-functions. Including
spin, the degeneracy is actually six-fold. Dresselhaus and Kittel (§) have
pointed out, however, that this degeneracy will be partially removed by
spin-orbit interaction, so that there will be one four-fold degenerate state,
highest in energy and corresponding to an atomic 7 = 34 state and one
doubly degenerate state corresponding to an atomic 7 = 14 state. At
points other than k = 0 the four-fold degenerate state will be split into
two doubly degenerate branches, each of which will give rise to energy
surfaces in the form of warped spheres. The j = 14 state will have spher-
ical energy surfaces so long as the distance in energy from the band edge
is small compared with the spin-orbit splitting. The expressions for the
energy eigenvalues of the two branches are given by

2
&= — -21’”7 [ak? + v/b%k* — c(k,* + K, + k9] (2.12a)

h2
§=—4 g

ak? (2.12b)

8

for the upper and lower band, respectively, the zero of energy being taken
at k = 0 for the upper branch. Equations (2.12) are a good approxima-
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tion when
(a + D)k A (2.13)

An energy function of the form (2.12) is much more difficult to use in
Equation (2.4) than is the case for ellipsoidal energy surfaces. Lax and
co-workers (/1) have carried out the solution by a perturbation method
for the case when the momentum parallel to the magnetic field is zero.
The result may be expressed as follows

2
© = wo IA* + B, (15_32&32—0) } 2.14)

2 2
where A, =a+bF %b; B,=F gcg (2.15)

In these equations, wo is the free electron cyclotron frequency.

For warped energy surfaces, such as occur in the upper branch of the
valence band, the motion in a magnetic field has been discussed by
Shockley (18). The path of the electron in P-space is defined by the in-
tersection of a plane perpendicular to H with a constant energy surface.

TasLe I. Effective-Mass Parameters for the Valence Bands of Germanium and
Silicon

Ge Si
a* 13.0 4.1
b* 12.01 2.83
c* 7.1 2.33
At 23.96 6.45
B,f —0.53 —0.24
A_t 2.04 1.75
B_t +0.53 +0.24

* The parameters shown in Equation (2.12).
t The parameters in the frequency Equation (2.14).

As a result of the warping of the surface, there is a slightly different
cyclotron frequency associated with each value of Py, the component of
reduced momentum along the magnetic field. The observed cyelotron
resonance absorption will be the result of the superposition of the ab-
sorption lines of individual electrons with different values of Pg, so that
the observed line will not have a simple resonance shape. Since the largest
number of electrons will have Py in the neighborhood of zero, it is plau-
sible that the peak of the absorption line should ocecur for the cyclotron
frequency corresponding to Py = 0. This was assumed by Lax and co-
workers in interpreting their data, and was later justified by a detailed
calculation of the line shape. This caleulation predicted an asymmetri-
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cal line whose degree of asymmetry was quantitatively confirmed by
experiment.

The valence band of Si has a structure similar to that of Ge. The con-
stants of Equations (2.14) and (2.12) for both Ge and $i are given in
Table 1.

In addition to the approximations already pointed out, the equations
of motion (2.4) are semiclassical in character and only represent the mo-
tion of the electron when the quantum numbers in the magnetic field are
large. The average number of quanta excited at temperature T is of the

order

n = kT (2.16)
hw

which is of order unity at liquid He temperature. Thus the semiclassical
approach may be barely applicable. At the time of writing, no successful
quantum mechanical approach to the problem has been reported (74).
For the warped energy surfaces of the valence bands, one would ex-
pect to observe not only the fundamental cyclotron frequency given by
(2.14), but also certain higher harmonics of this frequency. Some evi-
dence for such harmonics has been found, but their relative amplitude
appears to be a strong function of the conditions of excitation (15).

III. ProOPERTIES OF LOCALIZED STATES IN SEMICONDUCTORS

The electronic energy levels in bands are the only types of levels
which would appear in a perfect crystal of infinite extent. However, real
crystals always possess various types of impurities and structural imper-
fections which usually give rise to new energy levels in the forbidden
energy gaps. Usually these are not wholly new levels, but represent states
which are split off from the bands. Whereas the wave functions corre-
sponding to the band levels represent charge density which is spread
throughout the crystal, the wave functions associated with energy levels
in the forbidden range are localized in the vicinity of the imperfection
(16). These localized levels can occur at impurities, at line imperfections
or dislocations, and at grain boundaries or free surfaces. The conditions
under which localized levels can occur and their general nature will be
developed in the following paragraphs.

The simplest type of localized level, and the only type which is fairly
well understood in Ge and 8i, is that associated with a substitutional im-
purity from Group III or Group V of the periodic table, i.e., in the col-
umns adjacent on either side to Ge and Si. As an illustration, let us con-
sider the case of As in Ge. The element As contains 5 electrons outside
a closed-shell configuration; it behaves chemically with a valence of 5.
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When located in 2 normal Ge lattice site, the As ion core looks a good
deal like the Ge ion core, so to a first approximation we may regard the
energy level structure of the erystal as not modified by the substitution
of As for Ge in a few positions. However, As does supply an additional
electron which has to be accommodated in the energy level structure.
Since the valence band is just full in the perfect Ge crystal, the extra
electron must go into the otherwise empty conduction band. In this band
level, however, the extra electron is free to wander over the whole crystal,
and since the As atom would have been neutral with the extra electron,
when this electron is lost to the conduction band, the As cell appears as
a site of one positive electronic charge. This charge exerts a force on the
extra electron in the conduction band, tending to attract it back towards
the As cell. This attraction is quite weak in Ge, however, because the
intervening Ge crystal between the As and the extra conduction electron
behaves like a dielectric medium with a dielectric constant roughly equal
to the ordinary macroscopic dielectric constant of Ge, which in this case
has a value of 16. Thus at large distances from the As, the conduction
electron is subject to an attractive potential (77) of magnitude

V(r) = —¢*/Kr (3.1)

where K is the dielectric constant, and ¢ the electronic charge.

Now for fields which are sufficiently slowly varying, it can be shown
that the electron in the conduction band behaves as though the equa-
tions of motion (2.3) could be quantized exactly as are the equations of
motion for an ordinary free particle in quantum theory. The resulting
Schrodinger-like equation is the so-called effective mass equation, whose
solutions, for spherical energy surfaces and the potential (3.1), are wave
functions and energy values analagous to those of the ordinary hydrogen
atom. The wave functions fall off in amplitude exponentially with the
distance from the impurity, with effective radius given by

2
r= -”hL—BzK = Ka,,%‘ (3.2)
where @ is the radius of the first Bohr orbit in hydrogen, a convenient
unit of distance in such problems. With this value of #, the total lowering
of the energy below the conduction band is

AE = — o~ — 75 3.3)

The quantity e2?/2a; is the ionization energy of hydrogen, and is equal
to 13.62 ev. Although the derivation was only approximate, Equation
(3.3) turns out to be nearly exact. Essentially, it expresses the fact that
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an electron from the conduction band behaves exactly like the electron
in a hydrogen atom, except with its mass equal to the effective mass and
the effective charge on the nucleus being reduced by a factor of the dielec-
tric constant. If the effective mass were just equal to the free electron
mass, Equation (3.3) would give 0.053 ev for Ge and 0.094 ev for Si as
the energy required to free an electron from the vicinity of the As im-
purity into the conduction band.

When we have ellipsoidal energy surfaces, the treatment is somewhat
more complex. This problem has been given a semirigorous quantum
mechanical foundation by Kittel and Mitchell, by Lampert, and by
Luttinger and Kohn (18). The complete wave function for the electron
in the field of the impurity may be written

V@) = 3 (e, ) + Voo) - wll, Dlexs @0

1

where the wave function near the edge of the band may be written
bu(k, 1) = e®{uo(k; 1) + ik — k) - ui(k;, 1)} (3.5)

Here the subscript ¢ refers to a particular band-edge point in reduced
wave vector space, and (3.5) is valid for k-vectors only in the immediate
vicinity of the band-edge point —over the same region, in fact, in which
the approximation of ellipsoidal energy surfaces is valid. The functions
up and u, are periodic, i.e., the same in every cell of the crystal except
the impurity cell, whereas the envelope function ¢(r) is slowly varying
from cell to cell. This envelope satisfies the effective mass wave equation
h? 3% h? 3% f? 3%¢
—me—z—mw—%m+v(f)¢=(g~8c)¢ (3.6)
where &, is the energy of the band edge, & is the actual eigenvalue, and
V(r) is the disturbed part of the potential due to the presence of the
impurity.
Equation (3.6) cannot be solved exactly, but has been treated by the
variational method (18) using a trial wave function of the form

2 1%
o(r) = [ﬂ] exp { —[a%2? + b2(y? + 2%)P4/ro} 3.7

‘ll'1‘()3
where ro = Kh?/m,e? (3.8)

The energy is minimized with respect to the parameters a and b, using
the masses given by (2.10) and (2.11). The results for Ge and Si are as
follows:
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Ge Si
a 0.368 0.465
b 0.132 0.270
ro/a 43.5a, 25.8a (3.9)
ro/b 121.1a; 44 4ay
& — &, 0.00905 ev —0.0298 ev

In Equation (3.9), as is the Bohr radius of hydrogen, and the quanti-
ties ro/a and ro/b represent the extension of the wave functions away

4.0~
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Fia. 5. Sketch of the effective potential experienced by an electron in the field of
an impurity. Outside the impurity cell only the part of the potential which differs
from the lattice potential is shown. Inside, the complete potential of the impurity is
indicated, modified by the fact that the impurity is in a cavity in a dielectric medinm
of dielectric constant K. Upper figure for donor, lower figure for acceptor.

from the impurity center. It is seen that (3.3) gives approximately the
numerical results shown in the last row of (3.9), if we take as the effec-
tive mass the geometric mean of the three principal masses.

The ionization energies in (3.9) are extremely small, and in practice
the electron is usually separated from the impurity at all except the very
lowest temperatures.

Similar techniques have been used by Luttinger and Kohn and by
Kleiner (19) for the computation of excited states. The results have been
verified experimentally in an approximate way by Burstein and co-
workers, using optical techniques (20).

The potential energy e*/Kr cannot be valid right down to the origin,
nor can the effective mass equation (3.6) be valid inside the impurity
cell. When the electron is inside the impurity, it moves as though it had
the normal electronic mass and experiences the full unshielded field of
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the impurity ion. Thus the total effective potential experienced by the
electron is somewhat as sketched in Fig. 5.

Outside the impurity cell, this does not include the periodic part of
the potential but only the disturbed part. The complete wave function
for the impurity electron is then obtained by matching a solution of the
form (3.4) to a solution inside the impurity cell. The matching condi-
tions have been treated in detail for various types of band structures by
Brooks and Fletcher (21). The matching conditions alter the eigenvalues
from (3.3) or (3.9). For Group V donors, the effect is almost always to

TasLe IL. Ionization Energy for Group V Impurities in Germanium and Silicon

Impurity Germanium Silicon
Theorys* Experiment Theory®* Experiment
(ev) (ev) (ev) (ev)
Sb 0.012 0.0096 (22, 23) 0.037 0.039 (24)
P 0.012 0.0120 (22, 23) 0.039 0.044 (24)
As 0.012 0.0127 (22, 23) 0.043 0.049 (24)
Hydrogenic 0.012 0.030

* For spherical energy surfaces, based on estimates from spectroscopic data.
o Caleulated for mey = 34m, K = 16.
b Caleulated for mey = Y4m,, K = 12.

increase the impurity ionization energy beyond the hydrogenic value.
Rough estimates are shown for m/m, = 0.2, K = 16, and m/m. = 0.33,
K = 12 in Table II. The first case corresponds roughly to the Ge conduc-
tion band, and the second to the Si conduction band.

Let us now turn to the consideration of Group III impurities. In this
case the impurity atom contains fewer electrons outside a closed shell,
80 that in the first approximation we have the normal electronic energy
level structure of pure germanium with one electron missing from the
top of the valence band. This electron behaves like a hole, or positive
electron. Since in this approximation all the electronic wave functions
are band functions, the corresponding charge is spread uniformly through-
out the crystal, including the impurity cell. Since the impurity atom now
has one nuclear charge less than normal, it appears negatively charged,
and at large distances from the impurity the hole moves in a dielectric
shielded potential exactly analagous to the potential seen by the conduc-
tion electron in the donor case. Thus, so far as motion outside the im-
purity cell is concerned, the treatment of an “acceptor” is precisely
analagous to that of a donor. We have already seen however, that in-
side the cell we have an electron of normal mass and no dielectric con-
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stant. What becomes of the hole concept inside the impurity cell? We
may look at the problem most conveniently in terms of the motion of an
electron in the state of the crystal in which the acceptor level is occupied
by an electron. The electron in the acceptor comes from the top of the
valence band, and is therefore an electron of negative mass. Outside the
impurity cell it moves in the repulsive potential of the impurity cell, but
since it has negative mass, it is nevertheless bound. The wave function
is of the general form of Equation (3.4) with ¢(r) localized. This wave
function must be matched at the surface of the impurity cell to a wave
function inside the cell for a normal electron moving in the field of the
impurity ion plus the negative charge due to the other electrons in the
valence band. The resulting potential inside the cell is indicated in Fig. 2
(upper curve). It is found that the matching of wave functions can be
carried out straightforwardly (21), and again the influence of the impu-
rity cell itself on the hydrogenic eigenvalue is rather small, at least for
the dielectric constant and effective mass of Ge and Si.

The effective mass equation satisfied by the aceeptor electron is that
appropriate to the degenerate valence band. The situation for warped
surfaces and degenerate bands has been considered in an approximate
fashion by Kittel and Mitchell and by Luttinger and Kohn (78). It is
found that (3.6) must be replaced by a system of coupled differential
equations, which result in mixing of the wave functions from the differ-
ent degenerate bands. Recently a variational solution of the coupled
differential equations has been given by Kohn and Schechter (21a). For
Ge the resulting eigenvalue is:

Calculated Experimental (B doped)
& —¢& —0.0089 ev —0.0104 ev (3.10)

The theory agrees with experiment in predicting almost identical ioniza-
tion energies for donors and acceptors in Ge. In both cases the energies
are slightly too small, a fact which can probably be accounted for by the
correction for the central cell. There is not a correspondingly satisfactory
treatment for acceptor states in Si since in this case the ionization
energy of the acceptor is of the same order of magnitude as the spin-orbit
splitting.

So far the treatment has been based on the agssumption that the in-
teraction of impurities could be ignored. Because of the large orbits of
impurity states, however, the orbits begin to overlap for rather low im-
purity concentrations. This effect is further enhanced by the lack of
spherical symmetry of the wave functions, as shown by Equation (3.9).

An approximate condition may be derived for the critical mean dis-
tance between donors at which the ionization energy disappears. At this
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concentration, electrons can jump from impurity to impurity, and the
single impurity level is broadened out into a band. The critical separa-
tion of impurities occurs when the ‘“‘impurity band’’ begins to overlap
the conduction band. The condition is (25)

D D
> —ln6<r—l+ 1) 3.11)

1

giving D/r, = 3.23, where D is the critical spacing and r; is given by
(3.12).
ry = ro/b (3.12)

The critical concentration is 1/D? and takes the values

np = 1.2 X 10Y7 donors/cm? for Ge

np = 1.8 X 10!8 donors/cm? for Si (3.13)

Experimental results for donor ionization energy as a function of donor
concentration for Ge are shown in Fig. 6 (26). The agreement between
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Fia. 6. Ionization energy of donors as a function of donor concentration in n-type
germanium. From P. P. Debye and E. M. Conwell, Phys. Rev. 98, 693, 704 (1954).

theory and experiment is seen to be excellent. Until the conduction band
structures were elucidated by cyclotron resonance experiments, a con-
siderable amount of theoretical work was done to explain the critical
concentration (27), including the effect of the random distribution of
impurities. The present results appear to indicate that the effect is a
perfectly straightforward one of overlap of wave functions, and does not
involve any subtle considerations.

The existence of impurity banding was first suggested on experimen-
tal grounds by Hung (28), and considerable experimental evidence for
it has accumulated since. It results in an unexpectedly large conduectivity
at low temperatures. A number of attempts have been made to calculate
the energy level structure and the electronic transport properties asso-
ciated with impurity bands (29). The difficult feature of the problem
arises from the random locations of the impurity atoms. The estimates
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discussed in Equations (3.11) and (3.13) are based on the assumption of
a regular lattice of impurities, and give surprisingly good values for the
eritical concentration.*

We should expect that, in addition to the ground hydrogenic state
which we have computed in Equation (3.9), there should exist excited
states of the impurity center. Burstein and coworkers have actually found
evidence of such levels in silicon by long wavelength infrared absorption
measurements at liquid helium temperature (30). These results will be
taken up in more detail in Section VII. A theory for excited donor levels
in silicon has been given independently by Luttinger and Kohn and by
W. Kleiner (19). The spacing of the excited levels agrees very accurately
with the theory, as is to be expected from the fact that the excited wave
functions have p-like symmetry and are therefore much less influenced
by the impurity cell than is the ground state.

When we come to consider imperfections other than Group III or
Group V impurities, we must pay more attention to what happens to the
wave functions inside the impurity cell. Almost no theoretical work has
been done on this problem. The simplest case is, perhaps, that of a neu-
tral impurity center which has a very different ion core potential than
the rest of the atoms of the erystal. We will assume that the disturbance
in potential is confined to the impurity cell itself. If the potential is
nearly like the host crystal, there will be no bound level. Rather each
conduction-band electron as it goes by will be scattered and will give rise
to some net localization of charge. As the potential gets deeper compared
with the host crystal, a bound level will eventually split off from the
conduction band. For this to happen in Ge, the mean cell potential has
to be of the order of 5 ev lower than for the surrounding Ge atoms (25).
Since the impurity cell now has a negative charge after it has captured
an electron, this bound level is, by definition, an acceptor level in spite
of the fact that it is closer to the conduction band than to the valence
band. As the impurity potential gets deeper, the bound level gradually
moves towards the valence band until it finally merges with it. At this
point, the valence band accommodates one extra electron. At some stage,
probably before the first level merges with the valence band, a second
bound level may split off from the conduction band. If this second bound
level is occupied by an electron, the impurity cell can become doubly
charged. The case which seems to be most common in practice is that in
which two bound levels exist in the forbidden gap, one near the valence

* It should be noted that an impurity band develops for impurity concentrations
considerably below those given by Equation (3.12). The most important electrical
effects occur when the banding is appreciable, but before the impurity band has
broadened out to overlap the bottom of the conduction band.
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band and the other near the conduction band. Acceptor levels of this
type occur for Au and for many of the iron group transition metals in
Ge (31). In the case of gold in germanium, an additional level about
0.05 ev from the valence band has recently been established by Dunlap
as a donor level (32).

When the potential of the neutral impurity is deep enough to cause
the first bound level to merge with the valence band, there will be local-
ization of negative charge near the impurity cell. This will produce a
long-range Coulomb field which can bind a hole in a normal acceptor
state similar to that of a Group III impurity. This will represent the nor-
mal situation when a neutral impurity of this type is added, since the
valence band can then accommodate one more than the number of avail-
able electrons and will have a hole in it.

Some of the situations which occur experimentally are illustrated in
Table ITI. Not all of these results are established experimentally beyond
question.

In the case of Group II or Group VI impurities, we might expect to
find He ion-like levels. In this case, however, the influence of the poten-
tial in the impurity cell is so great, that it is difficult to find any correla-
tion between observed levels and a hydrogenic model.

It is also possible to imagine a neutral impurity for which the poten-
tial is so shallow that an additional electron would not be bound, but
would go into the conduction band, although its wave function would be
partially localized near the impurity. If we now consider the neutral crys-
tal and examine the energy level of the last electron, we find that the im-
purity becomes positively charged when this electron is removed, but
that the added charge is sufficient to bind the electron locally in a non-
hydrogenic level. Such a level could even approach close to the valence
band, but would still be a donor level, by definition. An example of this
situation seems to be the case of gold in silicon, reported by Taft and
Horn (33). An energy level diagram for Si is shown in Fig. 7. In addition
to the donor levels mentioned, the diagram shows two levels of unknown
origin found in 8i by Haynes and Hornbeck (34). These deep-lying levels,
called traps, have a remarkable property: they accept electrons, but can-
not apparently capture holes directly from the valence band. This sug-
gests that they must be positively charged even when occupied by an
electron; in other words, they are double donors. In this case, a potential
barrier could lie several tenths of a volt above the edge of the valence
band, and the thermal energy of holes would not be sufficient to sur-
mount it. If this energy-level picture is correct, there must exist an ad-
ditional energy level corresponding to a doubly charged impurity which
is merged with the valence band or is split off below it.
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TasLe III, Summary of Observed Impurity Levels in Germanium and Silicon*

Germanium
Element Type Ec — Er{ev) Ep — E, (ev) References
B A 0.0104 G1, C1, D5
Al A 0.0102 G1
Ga A 0.0108 G1
In A 0.0112 G1
P D 0.0120 G1
As D 0.0127 G1, D1, D5
Sb D 0.0096 G1
Li D 0.0093 M3
Zn A 0.029 D2, D4, Bl
Cu(l) AR 0.25 B2, K1, B1, D4, R3
Cu(2) A 0.040 M1, D4, K1
Au(l) D 0.05 D6, D7
Au(?) AR 0.15 D3, N1, K1, K2
Au(3) AT 0.18 D3, N1, D6
Ni(1) AR 0.23 B2, N2, M4, M5
AT
Fe(l) AR 0.34 +0.02 N2, T2, T5
(2) AT 0.27 + 0.02 N2, T2, T5
Co(1) AR 0.25 £ 0.01 N2, T3, T4
@) AT  0.31 +0.01 N2, T2, T3
Mn(1) AR 0.16 + 0.01 T6
2) AT 0.35 + 0.01
Pt A 0.04 D4
“Deathnium” AR ~0.25 Hl, B2, F1
Frenkel defects A 0.2 B3, Ji, L1
Silicon
B A 0.045 M2, B4, M3
Al A 0.057 M2, B4
Ga A 0.065 M2, B4
In A 0.16 M2, B4, N3
P D 0.044 M2
As D 0.049 M2, M3
8b D 0.039 M2
Li D 0.033
Au(1) D 0.33 M2, T1
Electron traps (1) D,T 0.57 H2
@) Db,T 0.79 H2

Key to Symbols: D = donor level, A = acceptor level, B = recombination center,
T = minority carrier trap (probably double donor or acceptor).

* Baged on J. A. Burton, Physia 20, 845 (1954).

Bl Burstein, E., Davisson, J. W., Bell, E. E,, Turner, W. J., and Lipson, H. G.,
Phys. Rev. 93, 65 (1954).
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At the present time, practically no theoretical work has been carried

out to explain the position of impurity levels other than the simple hy-
drogenic ones. We have seen, however, from earlier arguments that the
mean potential of the impurity can vary between rather wide limits and
still give rise to essentially hydrogenic levels. The problem in the general
case is an extremely complicated one quantitatively, although the quali-
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tative features described above can be fairly readily understood and sim-
ple models can be constructed with the properties described.

Some rough qualitative considerations may be adduced to explain
some features of the results with non-hydrogenic impurities. For example,
it appears to be a good empirical generalization that elements which pro-
duce deep-lying acceptor levels in Ge give rise to donor levels in 8i. The
lattice constant of Ge is 4.29, larger than that of 8i, so that an Au atom
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Fia. 7. Energy-level diagram for the forbidden gap in silicon, including trapping
levels of unknown origin: J. A. Hornbeck and J. R. Haynes, Phys. Rev. 97, 311 (1955).
Since energy levels are deduced from thermal activation energies, they must be inter-
preted as energy levels appropriate to 0°K, and the diagram is drawn accordingly.
A = acceptor level, D = donor level, D? = double donor (i.e., when level is oceupied,
it still carries one positive charge).

would be more compressed in Si. Since the gold is compressed anyway,
this will have the effect of raising all the levels for Au in 8Si relative to
those in Ge. Apparently this rise is sufficient to bring the donor level
which is nearly merged with the valence band in Ge well up into the for-
bidden gap in Si and to cause the other two acceptor levels to merge with
the conduction band in 8i. There is one piece of evidence against this
picture. W. Paul has made measurements of the effect of pressure on the
upper of the two gold levels in n-type Au-doped Ge (35). These measure-
ments indicate that an increase in pressure actually causes the gold level
to move away from the conduction band and remain nearly fixed rela-
tive to the valence band. The two pieces of information are hard to rec-
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oncile at the moment. Present theory should make it possible to make
more quantitative calculations on such questions, however.

It seems surprising that so many localized levels corresponding to dif-
ferent states of ionization of Au can exist within the narrow forbidden
gap, since the self-energy of two electrons both localized in the same cell
is many times larger than the size of the gap. However, calculations for
a simplified model (21) show that even for a variation of potential in
the impurity cell up to 10 times the size of the gap, a level remains local-
ized within the gap. Thus the experimental result is at least reasonable.

Isolated impurities constitute only one of the many types of imper-
fections which ean occur in semiconductors as well as metals. Other types
include lattice vacancies and interstitials, line imperfections or disloca-
tions, and surface imperfections such as grain boundaries or, indeed, free
surfaces. All such imperfections can give rise to localized states with
energy levels in the forbidden gap. Practically nothing is known about
such levels from a theoretical standpoint, and experimental information
is in a much hazier state than is the case for impurities and energy bands
themselves. The following facts are pertinent to this discussion:

1. Germanium can be made to flow plastically by a slip mechanism
above about 500°C. Dislocations put into a Ge single crystal by bend-
ing give rise to acceptor levels whose total number is of the order of
magnitude of the number of atomic sites along the dislocations (36).

2. The free surface of Ge probably possesses surface traps whose
density is of the order of at least 10!!/cm?, and which behave essen-
tially like acceptor levels below the center of the forbidden gap (37).

3. Grain boundaries in Ge, which can always be described by suit-
able arrays of dislocations, give rise to acceptor levels most of which
lie very close to the top of the valence band (38). Indeed, in gold-
doped Ge which is nearly insulating at liquid N, temperatures, grain
boundaries act as short-circuit paths of thin p-type layers.

4. Vacancies and interstitials generated by radiation bombardment
or by heat treatment give rise to acceptor levels in Ge, and to paired
donor and acceptor levels in the middle of the forbidden gap in Si
(39, 40).

The level structure produced by dislocations in Ge appears to be
rather complicated. Pearson, Read, and Morin (41) investigated the elec-
trical characteristics of n-type Ge following plastic deformation, and con-
cluded that dislocations produce an acceptor level about 0.2 ev below the
edge of the conduction band. Gallagher and Tweet (36) investigated the
electrical properties of gold-doped Ge in which dislocations had been in-
troduced by bending. The doping was such that the material was high-
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resistivity p-type at low temperatures before treatment. After treatment
the material became lower-resistivity p-type, the data being interpretable
in terms of an acceptor level about 0.05 ev above the top of the valence
band. They also found that plastically bent n-type Ge remained n-type
near the neutral axis, but changed to p-type near the fibers of maximum
strain. This qualitative result again supports the idea that acceptor levels
are introduced which lie below the center of the forbidden gap. The ap-
parent contradiction between the two results seems to originate in differ-
ences in the heat-treatment following deformation. The low-lying acceptor
state near the valence band seems to disappear after extensive annealing
and is probably associated with debris of the plastic deformation in the
form of isolated vacancies generated according to & mechanism originally
suggested by Seitz (42). It is interesting to note that certain orientations
of grain boundary also appear to generate acceptor states at about 0.05 ev
above the valence band, whereas other orientations give acceptors lying
even closer to the valence band (43). The conductivity associated with
grain boundaries probably results from holes in the space-charge region
surrounding the boundary, rather than from conduction by the surface
acceptor states in the boundary itself.

1t is interesting to speculate on the nature of the energy-level struc-
ture produced by extended imperfections such as dislocations. Shockley
has suggested the hypothesis of ‘‘dangling bonds” (44) which, in the
mode of description we have been using, may be regarded as neutral cen-
ters having a potential much deeper than that of the surrounding Ge lat-
tice. The dangling bonds arise essentially from the fact that Ge atoms
near the center of an edge dislocation do not have normal coordination.
Thus the dislocation may be regarded as a linear array of neutral centers
whose linear density depends on the degree of edge character of the dis-
location. These centers are so close together, however, that they influ-
ence one another strongly when they capture electrons and so cannot be
treated like isolated impurities. As they become filled with electrons, they
become charged and repel further electrons, so that they cannot become
fully occupied. The line of negative charge on the dislocation induces a
space charge in the surrounding material, and results in severe disturb-
ance of the whole potential distribution around the dislocation. Shockley
(44, 46) has suggested that extended imperfections may lead to one- or
two-dimensional energy bands. There seems to be little evidence in favor
of such conducting states, however, and it seems more probable that the
electrons are more localized and form, in effect, linear or two-dimensional
lattices of charges. This will be so both because of inevitable irregularities
in the dislocations or surfaces and because of characteristics which are
inherent in the nature of the one- or two-dimensional problem as com-
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pared with the three-dimensional one. Read (44) has considered the na-
ture of the statistical mechanical problem which occurs when we have
dense distributions of acceptors on a line or surface. The general idea may
be stated simply as follows. Suppose — E. is the energy gained when an
electron falls from the conduction band into the first trap. Then when
there are n electrons in traps, the total energy of the system is given by

—nE; + ae*n?*/K (3.14)

where « is a number of order unity, i.e., between 1 and 10. The second
term arises from the electrostatic interaction of the trapped charges.
Minimizing with respect to n, we obtain

n = KE,/2ae?
E.. = —KE?/4ce® (3.15)
Eon/n = —E;/2

This analysis is for a one-dimensional imperfection. Taking E, as 0.2 ev,
we find n = 1.76K/a X 10¢ filled traps per centimeter of dislocation
length.

In (3.14) and (3.15) we have neglected the influence of the positive
charge induced in the surrounding semiconductor by the line of negative
charge. This can be shown merely to alter the effective value of «, how-
ever. Actually « is not quite a constant, but, as shown by Read (44), is
given explicitly by

a = In (n®/r¥Np¥) — 0.866

where Np is the density of donors per cubic centimeter in the bulk semj-
conductor (strictly, the excess of donors over acceptors). This calcula-
tion involves the assumption that the charges are localized at the ac-
ceptor sites.

As an example, we may take Np = 108 donors/cm?, corresponding
to 1.7 ohm-cm material. We find n = 3.7 X 10® trapped electrons per
centimeter of dislocation for the maximum number which can be accom-
modated. Since a decreases with increasing Np, there is an increase in
the number of electrons which can be accommodated with decreasing re-
sistivity of material. For a spacing between acceptor sites of 4 A (a typi-
cal value), the sites will be only 159 occupied in the example given, even
at absolute zero. For this example « is about 3.

For the two-dimensional imperfection, the situation is somewhat more
complicated, the total energy being given by

5re?

—nE; + ae?n®/K — 1 n?/KNp (3.16)
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where Np is the density of ordinary atomic impurities in the bulk of the
n-type semiconductor. Because of the last term, (3.16) does not have an
absolute minimum. Instead, the minimum is determined by the maxi-
mum available number of states. A calculation with plausible numbers,
in fact, shows that the middle term in (3.16) is always negligible com-
pared with the other two, so that the self-energy of the surface charge
is unimportant. Thus, there is a fundamental difference between line and
surface imperfections, The middle term of (3.16) is usually ignored with-
out discussion in the literature dealing with surface states.

A type of localized atomic state which is of great practical impor-
tance is the so-called recombination center. Such centers were first in-
troduced for Ge and Si by Hall (4#) and by Shockley and Read (47).

lec =

sl 1]

§E| [ = = ]
5

e,

2 la) (0) (&) (a)

Fiq. 8. The recombination mechanism of Read, Shockley, and Hall. The basic
processes involved in recombination by trapping: (a) electron capture, (b) electron
emission, (c) hole capture, (d) hole emission. From W. Shockley and W.T. Read, Jr.,
Phys. Rev. 87, 835 (fig. 1) (1952).

They are needed to explain the observed recombination rate of holes
and electrons in semiconductors, since direct recombination appears to
be a relatively improbable process (48). The process envisaged is shown
in Fig. 8. An acceptor center near the middle of the forbidden gap
captures an electron, to become negatively charged, following which it cap-
tures a hole. The process could also occur in reverse order with a donor-
type center. Very little is known about the nature or origin of recombina-
tion traps. Certain elements, dissolved in Ge, are known to increase the
recombination rate drastically (49). Examples are Cu, Ni, Co, Fe, and
Mpn, but they are effective only at temperatures such that the correspond-
ing acceptor centers are singly charged (60). On the other hand, there is
fairly convincing evidence that structural imperfections also affect re-
combination. For example, Ge which is quenched from a high tempera-
ture shows increases in recombination even when great precautions are
taken to keep copper away (39). Other experiments show a good correla-
tion between recombination rate and crystal perfection as determined by
X-ray line broadening (57). Although there may be considerable question
about the validity of the interpretation of the X-ray data in terms of a
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dislocation density, the general correlation with recombination seems un-
questionable. There seems also to be a correlation between recombina-
tion rate and impurity content (562). Little theoretical work has been
carried out on the trapping process itself. Trapping can occur theoreti-
cally either by a radiationless process in which energy is conserved by
the lattice vibrations, or by a radiative process in which the energy is
carried away by one or more light quanta. However, unless the trapping
occurs via excited states of the center in several steps, a multiphonon
process would be involved for the radiationless transition in Ge and Si
(64), and this has very low probability. The possibility that capture in the
center occurs with the emission of radiation has been investigated by
Aigrain (53), who has searched for the recombination radiation associated
with trapping in the Ge recombination level which is 0.2 ev above the
valence band (46) and has found some evidence for itsexistence.* Wannier
(55) has discussed the trapping problem on the basis that the rate deter-
mining process is the slowing down of a conduction electron to essen-
tially zero velocity, in which case it is assumed to be captured with cer-
tainty. With this extreme assumption, a lower limit for the lifetime of
an electron in the presence of empty traps can be set at 10~9 sec. For the
deeper electron traps found in p-type Si (0.79 ev below the conduction
band), Hornbeck and Haynes (34) estimate the mean life of an electron
in the presence of empty traps (density 10'® em—3) at 2 X 102 sec cor-
responding to a cross-section per trap of 3 X 10~!% ¢m?, which in turn
corresponds to an effective trap radius of 60a; or 5Kas.

Such very large cross-sections appear to be associated only with so-
called minority carrier traps, which are now believed to be double donors
or acceptors and therefore present a strong Coulomb attraction for the
approaching carrier. In the case of recombination centers, the cross-sec-
tions are generally much lower. For Ni in Ge, for example, the cross-sec-
tion for holes is about 4 X 10~'5 ¢m? whereas for electrons, it is about
10-1% cm?, the difference reflecting the fact that Ni is an acceptor and
therefore presents unit negative charge for capture of holes, but is neu-
tral for the capture of electrons (49).

IV. StaTisTicAL MECHANICS OF SEMICONDUCTORS

The application of Fermi statistics to the calculation of the popula-
tion of energy levels in & semiconductor in thermal equilibrium has been
discussed rather completely in the existing literature, and we therefore
refer the reader to these treatments (66) in the interests of brevity. There

* More recent work indicates that the radiation observed may be due to transitions
between the different branches of the valence band (Aigrain, private communication).
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are a few points which have received some attention recently, which are
worth mentioning in this review.

The first point concerns the significance of the energy which occurs
in the Fermi factor when the energy levels of a semiconductor have an
explicit temperature dependence. This question has been discussed by
Rushbrooke in very general terms (§7), and more specifically as applied
to semiconductors by Landsberg (68) and by James (69). The argument
which follows is essentially due to Landsberg.

The concept of individual particle levels, as envisioned in Fermi sta-
tistics, is only an approximation. Actually the energy of each electron
depends also, at least to a slight degree, on the states of all the other
electrons and on the excitation of each of the lattice oscillators, that is,
on the state of vibration of the crystal. We use the subscript s to denote
a given electronic energy level and the subscript j to describe the state
of the rest of the crystal. Thus &, ; represents the energy of an electron in
the state s when the rest of the crystal is in the state j. Then the prob-
ability of occupation of the state s is given by a Fermi factor

f(Ey) = 1/[1 + exp (B, ~ Er)/kT] 4.1)
where E, = —kTn {Z;exp (—8&,;/kT)} (4.2)

The summation is taken over all possible states of the rest of the crystal.

The energy E, which occurs in the Fermi factor is thus related to a
partial statistical sum, or partition function, in precisely the way that
the Helmholtz free energy is related to the normal partition function.
The quantity E. may thus be described as the free energy of the crystal
when one electron is held in a quantum state s. Such a definition, of
course, implies that we may still identify the state s through all the pos-
sible states of the rest of the crystal. In Ge and Si this identification pre-
sents no difficulty, since the effects of the rest of the crystal may be
treated as a relatively small perturbation.

A more careful analysis for a system at constant pressure shows that
the quantity E, actually has the properties of a partial Gibbs free energy.
In this case E, in Equation (4.2) must be replaced by

; aE,
E'=E, -V, <6—V~8>T 4.3)
where V, is the volume available to the electron in state s, essentially
the volume of the crystal.

The second point concerns the statistics of localized levels. Equation
(4.2) or (4.3) applies to states in the allowed energy bands of the crystal.
If we take into account spin degeneracy, the Fermi factor must be mul-
tiplied by 2 in order to compute the total occupation probability of a
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band state. Now, band states have the property that the corresponding
wave functions are spread throughout the crystal. Thus there is prac-
tically no price, in terms of extra electrostatic interaction, for putting
two electrons in the same state. This is the condition for the applicability
of Fermi statistics in its simple form. In the case of localized states, how-
ever, a very different situation obtains. Even though an electron may be
allowed two directions of spin in a localized state, once the state is oc-
cupied by an electron of either spin, it cannot then be occupied by an
electron of opposite spin, because the electrostatic repulsion of the two
localized charge distributions would raise the energy of the second elec-
tron. Nevertheless the statistical analysis must take into account the
double degeneracy of the level. The statistics may be formulated quite
generally, using the free energy concept as before. The Fermi factor for
a discrete level is of the form

f(Ep) = 1/[1 + exp (Ep — Er)/kT] (4.4)
where Ep= —kT [2 g1 exp (—Sl/kT)] (4.5)
I

where g, is the degeneracy of the [t level, and § is its energy. For a sin-
gle level of multiplicity g, the effect of (4.5) is to lower the effective energy
of the level by an amount —k7 ln g, about —0.7kT in the ordinary case
of spin-degenerate levels. The corresponding Fermi factor is

f=1/11 + (1/g) exp (&p — Er)/kT) (4.6)

where §p represents the position of the discrete level.

Before discussing applications of (4.6), we shall consider the popula-
tion of electrons in the band levels. Near the band edge of a semiconduc-
tor, we have seen that the density of states is proportional to (E — Eo)%,
irrespective of the shape of the energy surfaces. Thus, for example, the
number of electrons in the conduction band is given by

ne = L" 1/[1 + exp (E — Ex)/kTICE%IE @7

where E represents energy measured from the edge of the conduction
band. If the number . is known, then Equation (4.7) may be regarded
as an equation for the determination of Er. For small densities, the solu-
tion may be written

exp (—Ep/kT) = (Va/2)(1/n)CRT)*
[1 - (1/2 v/2){(\/7/2)(1/n) C(RT)*)7Y]  (4.8)

The usual approximation in semiconductor statistics corresponds to the
second term in the bracket of (4.8) being negligible.



120 HARVEY BROOKS

The numerical value of the constant C' depends on the energy sur-
faces. For the muitiple ellipsoid structure, as in the conduction bands
of Ge and 8i, we find

(Va/2)C = 2v(2r/h?)% (mamams)¥ (4.9)

where » i3 the number of minima, and spin-degeneracy is taken into ac-
count. Equations (4.8) and (4.9) can also be put in the form

ne = 2(2rMeckT/h%)% exp (Er/kT) (4.10)
where
Mo = (Mymams)¥sr? (4.11)

As an illustration for the Ge conduction band, assuming 4 minima, we
have M. = 0.550m.. The quantity m.x is a ‘‘density-of-states effective
mass,” and must not be confused with the cyclotron effective mass.

TaxsLe 1V, The Ratios A,/Agand A,/A, for Ge and Si

Ge (4 minima) 8i (6 minima)
Electrons 0.412 1.129
Holes (1) 0.2075 0.390
Holes (2) 0.0084 0.068
Total holes 0.216 0.458
Geometric mean of holes and electrons 0.299 0.719

For warped energy surfaces, such as occur with degenerate band
edges, the following treatment is appropriate. The energy surfaces may
always be written in the form

& = (P*/2m.)a(6,9) (4.12)

where «a(8,¢) is a coefficient depending only on the direction of the re-
duced momentum vector P. It is readily shown that

(VA/2C = 2@mm /1% ) (4n) [ lals, o) "a0  (4.13)

the integral being over the complete solid angle in momentum space,
and the summation over the different degenerate surfaces. Numerical re-
sults for Ge and Si are summarized in Table IV, The figures in the table
are in units of A¢, where

Ao = 22rm,/R)B(ET)¥ = 2.436 X 101 at 204°K  (4.14)

The table entry thus represents the ratio v(mmema/m.2)* or 4./ A,.



ELECTRICAL PROPERTIES OF GERMANIUM AND SILICON 121

Quite generally we have the relations

n = A,exp (Er — E.)/kT
p = A,exp (E, — Ep)kT
where n and p are, respectively, the number of electrons in the condue-

tion band and the number of holes in the valence band, and 4, and 4,
are obtainable from Table IV. For intrinsic material, we have

n=p=n = (A A)% exp [—(E. — E,)/2kT] (4.16)

where E, and E, are the conduction and valence band energies, or, more
strictly, free energies. With the aid of (4.16) and the measured intrinsic
resistivity at 294°K, and also a knowledge of electron and hole drift
mobilities at these temperatures (60, 61), we obtain for Ge

Eg = E, — E, = 0.656 ev (4.17)

(4.15)

A similar calculation for 8i gives Eg = 1.089 ev.

It must be emphasized that the energy gaps obtained in this way are
free energy gaps. It is also possible to obtain an enthalpy of activation
from the slope of a graph of In p vs. 1/7. Such graphs usually give good
straight lines, indicating that the enthalpy of activation is nearly a con-
stant. The gaps obtained from them are 0.785 ev for Ge and 1.21 ev for
Si. The discrepancy between these figures and the free-energy gaps per-
mits an estimate of the temperature coefficient of the gap. If the gap
width is assumed to vary linearly with temperature, the variation neces-
sary to explain the discrepancy is 4.4 X 10~4/°C for Ge and 4,1 X 10~4/°C
for Si.

Some, but not all, of this temperature variation can be accounted for
merely by the variation of lattice constant with temperature. The pres-
sure variation of resistivity has been measured for Ge by Paul and Brooks
(62) and by others (63). The equivalent temperature coefficient may be
found from the relation

(0E¢/3T), = (8V/3T)(dp/aV)r(0Ee/dD)r (4.18)

and is —0.78 X 10~ ev/°C for Ge, much less than the observed value.
The difference must be ascribed to an explicit temperature dependence
of the energy gap, arising from the interaction between electrons and lat-
tice vibrations (64). For Si, the pressure coefficient of the gap appears
to be opposite in sign (65), and would predict a temperature coefficient
of +0.26 X 10~*ev/°C. Thus in the case of 8i, we must assume that the
explicit temperature dependence of the gap is by far the dominant effect.

It is of some interest to compare results deduced from resistivity
measurements on intrinsic material with those obtained from optical
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data. Unfortunately, interpretation of optical data is not straightfor-
ward. This is because of uncertainty of how optical absorption data
should be extrapolated to zero absorption coefficient in order to obtain
a true gap width. Furthermore, optical data-do not measure a true
energy difference. The reason for this is that during an optical transi-
tion the lattice remains frozen, as it were, in the same configuration it
had in the initial state, which is not in general a configuration of thermal
equilibrium for the final state. The situation is further complicated by
the fact that the transition between band edge points in k-space is for-
bidden, and can only take place with simultaneous emission of absorp-
tion of a lattice vibration or phonon. Nevertheless, Bardeen and co-
workers have shown (66) that the ‘‘forbidden’ transition is sufficiently
strong in Ge and Si to be observed under the usual experimental condi-
tions, so that the threshold frequency for optical absorption gives a rea-
sonable picture of the gap width. The ‘““‘optical gap widths” are 0.62 ev
for Ge and 1.05 ev for Si, in each case about 0.04 ev smaller than the
corresponding free energy gaps (67). The values for the shift with tem-
perature of the optically determined energy gap are —4.4 X 10~* ev/°C
for Ge, and —4.5 X 1074 ev/°C for 8i, in rather good agreement with
the values deduced from free energy considerations.*

Let us now consider the theory of the energy gap in greater detail.
The energy levels of the system may be written in the form

83',' = 8, + Sj + Ba,j (4:19)

where s stands for electronic quantum numbers and j for all the lattice
quantum numbers. The energy &, ; represents the energy of interaction
of an electron in state s with a lattice in state j. If this interaction can
be treated as a small perturbation, then we may write

05 = Equ(q) (nq + %) (420)

where q is the wave-number vector which identifies a particular lattice
vibration, b,(q) is an interaction coefficient, and nq is the number of
quanta of oscillator ¢ which are excited.

If we substitute (4.20) into the expression for E, we find

E, = & — kTZ,In {34 sinh [(hvq + b,(q))/2kT]} (4.21)

For the free energy gap, i.e. the difference in free energy between two
states, labelled 1 and 2, Equation (4.21) leads to

— . _ sinh (hv 4+ bz(q))/sz
E,—E, =8 — & — kT Zq In [sinh (hv: T bl(q))/ZkT] (4.22)

* That is, using Equation (4.16) and activation energies from reference 61.
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At room temperature, for the lattice frequencies for which the b’s are
appreciable, it suffices to replace the hyperbolic functions by their argu-
ments, leading to the approximate relation

e B — Faoe. — £ hvy + bz(q)]
EG = E1 Ez = 81 82 kT Zq 1!1 [hl'q + bl(Q) (423)

Assuming that the b’s are obtained from a perturbation calculation, it is
readily found that all the b,’s are negative, corresponding to a downward
displacement of the edge of the conduction band, and all the by’s are
positive, corresponding to an upward displacement of the edge of the
valence band. Hence all the logarithmic terms in (4.23) are positive, and
the free energy gap Eg varies linearly with the temperature with a nega-
tive coeflicient, in agreement with observation.

The mean change in energy in an optical transition near the band
edge may be written in the general form

_ Z,(81; — 82;) exp (—&2,/kT)

AE
Ej exp (—gzj/kT)

(4.24)

where the statistical weighting factors are taken as those appropriate to
the lower state for both states involved in the transition. This reflects
the fact that the lattice remains ““frozen’ during the transition. Using
(4.20) in (4.24), we have

A& = 8 — & — kT 2q[bs(q) — bu(Q)]/[hrq + b2(q)] (4.25)

The temperature coefficient in (4.25) agrees with that in (4.24) to the
first order in the ratio b(q)/hv,, a result which has already been men-
tioned by James (69). It is well to emphasize that had A& been computed
by averaging each &, ; with the statistical weight appropriate to the par-
ticular electronic state, rather than the final one, then A& would have
been independent of temperature in the high temperature approximation,
a result which could be obtained directly from thermodynamic relations
between energy and free energy.*

As to actual magnitudes, the expressions (4.23) and (4.25) are iden-
tical for all practical purposes. The part of the temperature coefficient
which is due to explicit temperature dependence of the free energy gap
18 3.6 X 10~¢/°C for Ge, and 4.4 X 10-4/°C for Si, The theory of the b's
has been given by Fan (64). It is subject to modification due to the com-

* This discussion is, strictly speaking, valid only when the form of the normal
modes does not depend on the electronic state. This is probably a good assumption
for valence semiconductors but not for ionic crystals. The author is indebted to M,
Lax for calling his attention to this restriction.
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plex nature of the energy surfaces. This modification will be discussed in
Section VI.

There is nothing in the theory presented so far which would explain
the difference between the thermal and optical gaps. However, it must
be remarked that the optical gap is not accurately given by (4.24). This
arises primarily because the optical transition also involves a phonon (66)
which can supply part of the energy for the transition. Thus the optical
gap should be smaller than the thermal gap by just the energy of a
phonon necessary to scatter an electron from the point P = 0 in the con-
duction band to a minimum point on the (111)-axis. The energy differ-
ence amounts to about 0.035 ev, and this has been used by Marfarlane
and Roberts (109) to deduce that the minima in Ge lie about 24 of the
way out to the BZ boundary along the (111)-axis. This in turn would
suggest an 8-, rather than a 4-minimum model.

Warschauer and Paul (69) have also made measurements of the pres-
sure coefficient of the optical gap. For absorption coefficients between 10
and 70 cm™, the displacement averages about 8.5 X 102 ev/dyne/cm?,
as compared with 5.5 X 10~!2 ev/dyne/ecm? deduced by Paul and Brooks
(62) for the thermal gap from measurements of resistivity as a function
of pressure in the intrinsic range. The discrepancy between the optical
and thermal data can probably be explained in terms of a change with
pressure in the shape of the absorption vs. wavelength curve, such that
extrapolation of the optical data to zero absorption coefficient would pro-
duce a smaller optical gap. As yet, however, the experiments only sug-
gest, but do not quantitatively establish, this explanation.

Returning now to the question of impurity levels and their statistics,
we consider the case of a donor level of degeneracy g below a conduction
band by an energy difference &p. It is necessary to consider also the pos-
sibility that acceptor levels are present which, being way below the donor
level, will be completely filled with electrons captured from the donors.
We then obtain the formula of DeBoer and van Geel (70)

where A4, is the quantity obtained in connection with Table IV. The data
shown in Fig. 6 were obtained by Debye and Conwell (26) by choosing
the constant A, to give the best fit to low-temperature Hall effect data,
on a variety of samples of different purity. They used Equation (4.26) in
8 form which amounted to assuming g = 2. However, they found the
best fit to all data was obtained by taking A, = 0.125 A,. Since this is
only 14 the value of 4, computed from cyclotron data, one would be
tempted to believe that g should be increased to 6, which seems unlikely,
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or that there is a temperature dependence of E, — Ep, which seems
equally unlikely. The latter hypothesis would require a donor ionization
energy which ¢ncreased with temperature at a rate of 2.6 X 10~* ev/°C.
This is highly improbable since it would imply a donor ionization energy
of the order of 0.08 ev at room temperature. It seems most likely that
the criterion of optimum fit is too insensitive actually to determine the
density-of-states mass in this manner.

When we have to deal with holes, a relation analagous to (4.26)
holds. In this case, however, the usual situation is that there are several
types of acceptor level to which an electron may be added, correspond-
ing, for example, to different possible spin orientations of the missing
electron. As a result, the symmetry of Equation (4.26) with respect to
holes and electrons is preserved. If we take as the argument of the ex-
ponential on the right of (4.26), or its hole analogue, the free energy
change resulting from the addition of an electron from the conduction
band or the removal of an electron to the valence band, then we obtain
the correct result. Since the state of the impurity center with four elec-
trons per atom is usually the state of minimum degeneracy, it is usually
most convenient to take this state as the reference for computing free
energy changes, More generally, we can take into account possible ex-
cited levels of the impurity center by replacing the donor energy level in
accordance with Equation (4.5).

Equation (4.26) exhibits three distinct regions. In the first, n is com-
parable to Np — N, and is essentially independent of temperature. This
is the case normally exhibited by Ge and Si at room temperature, and
down to at least liquid nitrogen temperature. In the next region, n is
much less than Np — N4, but larger than N4, so that an approximate
solution of {4.26) is

n = (ND _ NA)V"(An/g)% exp {—(80 — 81))/2’CT} (4:.27)

In this region the ionization energy of the donor is actually twice the ob-
served activation energy for conduction. In the third region, » is less
than both N4 and Np — N4, and the activation and ionization energies
become equal. This will always happen at sufficiently low temperature.
However, because of the smallness of the activation energies, factors of
T% and T* which occur on the right side of (4.27) and its counterpart
tend to conceal the change in apparent activation energy. Mere graphs
of In p vs. 1/T are not reliable for the determination of activation energies
in such cases.

Another case of interest is that which occurs when there exist several
levels for a given center, the most thoroughly studied example being that
of Au in Ge. In this case we will assume that the deeper level corre-
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sponds to the first electron, which may go in with only one direction of
spin, whereas the upper level corresponds to the addition of a second
electron, which may go in with either direction of spin. If Er, and Ep,
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represent energies of the first and second trapped electrons, respectively,

then the Fermi factor for an Au level is given by (71)
2

=TT F 2o B = BEe)/RTI/TL ¥ 4 oxp (Br — Ery/iT] 428
If the Fermi level is well above T'; and above T, then we find
n(n + 2Ny — Np) _ A,
No—n = &p {—(Bo — Er,)/kT| (4.29)

where Ny is the number of trapping atoms, and E¢ the edge of the con-
duction band, while Np is the number of conventional donors. Equation
(4.29) has a solution if 2Nz > Np, and in general the activation energy
will be equal to E¢ — Er, If the Fermi level is below both 7, and T,
then we obtain

N%% = %—” exp {—(E, — Er,)/kT} (4.30)
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where p is the number of holes in the valence band. More generally in
Equations (4.29) and (4.30), Np should be replaced by the excess of
normal donors over normal acceptors. This equation has a solution if
N7 > Np, and in general the activation energy is equal to the energy
Ep, — E,, where E, is the energy of the edge of the valence band. Both
these types of behavior have been reported by Dunlap (31). Typical be-
havior is illustrated in Fig. 9, which shows results for both p- and n-type
gold doping. The type of situation described above has been recently
formulated in more general terms by Landsberg (72).

So far we have excluded from consideration the case in which classical
statistics is not a good approximation. Many cases occur in which the
electron concentration in the conduction band or hole concentration in
the valence band becomes high enough to bring about a transition to
Fermi statistics, the so-called degenerate case. This situation has been
considered extensively, especially by Lark-Horovitz and co-workers (56).

V. THEORY OF TRANSPORT PROPERTIES OF SEMICONDUCTORS

In the present section we shall present an elementary derivation of
formulas for electrical resistance, Hall effect, and magnetoresistance ef-
fects. A more rigorous derivation would involve the use of the Boltzmann
equation, which we shall omit here. The present derivation has the ad-
vantage of keeping the physics in evidence at each step, although the
chain of reasoning is not complete.

We shall consider first the case of a single type of charge carrier with
spherical energy surfaces. The electric field is taken in the z-direction,
the magnetic field in the z-direction, and the Hall voltage or field is
measured in the y-direction. The equations of motion may be written

dv,/dt = (e/m)E, + wuy
dv,/dt = (e/m)E, — wov, (5.1)
wo = eH /mc

For convenience we have taken the carrier as a hole, and m stands for
the effective mass. The solution of (5.1) may be written in the complex
form

v, + v, = (U, + ) g7t - (e/m)(E, + {E,)(1 — exp [—iwdl]) [iwe (5.2)

where (v, + iv,), is the initial condition. We assume that each collision
completely randomizes the direction of motion of the carrier. For con-
duction problems we are only interested in acquired motion, so hereafter
it will be legitimate to omit initial conditions. If we focus attention on
any particular carrier, the probability that it has survived collision for a
time ¢ is exp (—¢/r), where 7 is the collision time and in this example will



128 HARVEY BROOKS

be assumed to be a function only of the energy of the carrier. The mean
acquired velocity is then obtained simply by averaging (5.2) with respect
to the normalized probability (1/r) exp (—t/r). The mean contribution
to the electric current is then obtained by multiplying the mean acquired
velocity by the charge e, and this must be averaged over all the electrons
in the distribution in order to obtain the total current according to the
relation 7 = ne(v)av. The result is

je + 1, = (net/m)(E, + iE,)r/(1 + iwor))av (5.3)

where 7 is the total number of carriers. The average is taken with the
distribution function

4
(e de =

2 exp (—zx) dz
T
where x = §/kT (5.4)

This is similar to a Maxwell distribution, but contains an extra weight-
ing factor of the energy. Hereafter, unless otherwise specified, all aver-
ages used in this section will be with respect to the distribution (5.4).
The result (5.3) must be rearranged by separating into real and im-
aginary parts.
. ne? / 72 \ / 73 \
Jz = m lEx<T>AV + Eywo \1 F 0-’021'2/Av — B0 \1‘_+ cl,02,’.2/‘“/} (5.5)
() Yy
E,

ay — T Y~ E. /_1_
m \1 + wor?/ sy CINT F wor?/ av

Measurements are usually made in such a way that the Hall probes,
measuring E,, are effectively open cireuit; hence in (5.5) we must set
Jv = 0. When this is done we finally obtain the relations

Ey _ (7'2/(1 + w021'2)>AV

ju=

E. @o /(1 4+ wor?))av 6.6
2 2 W’ )av?
i B o [ — v o
5.7)

If r is independent of energy, the averages may be dropped and we have
the simple results

ne?r
="TEg,

E, = (1/nec)j.H (5.8)

Thus the electrical resistance is independent of magnetic field, whereas
the Hall constant (which is the coefficient of j.H in the second Equation
(5.8)) directly measures the density of carriers, n.

Il
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In general, of course, 7 does depend on energy, and we cannot make
the above simplification. However, it is often a good approximation to
assume that wer is small, so that we can expand the denominators in (5.6)
and (5.7). The result is

E. = jupo {1 + wo? (TS)AV<T><:;A; (T’)sz] (5.9)
_ 1 (TZ>AV .
By = ree a1

oo = 1/po = (ne?/m)(r)av

With the aid of the Schwarz inequality, it may be shown that the cor-
rection term always represents an increase of resistance with magnetic
field. The so-called magnetoresistance is given by

3 — 2 2
Ap/poH2 = (ez/m202) <7 >AV<TZ-“V . <T >,AV (510)
T)av
It is also useful to define an auxiliary coefficient
Ap/poR?%*H? = (r)av(r)av/(mhav? — 1 (5.11)

The theory of = will be discussed in Section VI. Here we shall give
only the results necessary for the purposes of calculating the averages in
Equations (5.6)—(5.11). There are two principal sources of scattering in
Ge and 8i:

1. Scattering by lattice vibrations. This is the dominant form of
scattering in pure materials and at high temperatures. For this type
of scattering, the collision time r decreases uniformly with increasing
energy, inversely as the square root of the energy for the simplest
theory.

2. Ionized impurity scattering. This is the dominant form of scat-
tering in impure semiconductors and at low temperatures. For this
type of scattering, the collision time varies as a positive power of the
energy, the +34 power in the simplest theories. The coefficient of this
power is actually a slowly varying function of energy, but this varia-
tion can be neglected for the purposes of the present analysis.

The two types of scattering will occur simultaneously at some ener-
gies, and they combine according to the law

1/7(8) = 1/7(8) + 1/7:1(8) (5.12)

where 7.(8) is the mean free time for lattice scattering, and 7;(8) that for
impurity scattering, each considered alone,
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Under some circumstances neutral impurity scattering also occurs for
which 7(8) is independent of energy.

It must be emphasized that the existence of a 7 is itself an approxima-
tion. For spherical energy surfaces centered at P = 0, it always exists,
provided energy loss in collisions can be neglected, but for nonspherical
surfaces and surfaces centered at other than P = 0, there is no case in
which the assumption of a 7 is entirely justified. These points will be dis-
cussed in Section VI,

In many cases it is convenient to assume that = varies according to a

power law of the form
T = 79/8P (5.13)

For example, for the simplest theory p = 14 for scattering by lattice
vibrations, and p = —34 for scattering by ionized impurities. When this
scattering law is substituted into Equation (5.9), we obtain the follow-
ing relations

oo = (ne?/m)ro(kT)~*T' (%4 — p)/T(34) (5.14)
R = (1/nec){T(35 — 2p)T(34)/IT (3¢ — p)I*} (5.15)

£ = Ap/poR%o*H* = {T(34 — 3p)T(34 — p)/['(3%5 — 2p)I*} — 1 (5.16)

where I'(z) is the gamma function (73). The combination of gamma func-
tions which occurs in (5.15) will be called A(p), whereas that in (5.16)
will be called 5(p). These functions will be found to be useful even for
nonspherical energy surfaces. However, a difficulty occurs because A(p)
blows up as p approaches %4, and n(p) blows up as p approaches 5¢. This
is an important problem because, as we shall see, experiments indicate
that the lattice collision time varies as § %% in n-type Ge, and as §1-8
in p-type Ge. The divergence of the integrals for A\(p) and #(p) is, of
course, merely the result of the approximation used in arriving at (5.13)—
(5.15). This approximation can actually break down in three ways.

1. The lattice scattering cannot be approximated by a simple power
law down to the lowest energies, but always approaches an &% be-
havior for sufficiently slow electrons (see Equations (6.15) and (6.16)
in the next section).

2. The scattering law (5.13) is not valid down to zero energy, but
is cut off at a certain energy by the onset of ionized impurity scatter-
ing, which varies as a positive power of the energy. Hence the inte-
grals involved in {(").v do not actually diverge as § — 0.

3. The terms in w¢®? in the denominators of the averages in (5.6)
and (5.7) become important and cannot be neglected for sufficiently
small & They can also be seen to prevent the divergence of the integrals.
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Which case occurs depends on whether the term in wo’? is smaller or
larger than unity at the energy for which r reaches its maximum when
impurity scattering is taken into account. If it is smaller, then the values
of the three coefficients remain independent of magnetic field, whereas if
larger, the coefficients show field dependence down to quite low fields.

The exact evaluation of the r-averages would require lengthy numer-
ical integration using the composite r of Equation (5.12). The only case
which can be integrated in terms of tabulated functions is the case of no
impurity scattering with r(8) «= &*. However, H. Jones (74) and John-
son and Lark-Horovitz (75) have evaluated the integral for the r-aver-
ages corresponding to A(p) for the case p = ¥4 and variable amounts of
impurity scattering. If lattice scattering predominates heavily, then the
averages may be approximated fairly well with incomplete gamma func-
tions, or by simple power series in the value of the variable £ = xp for
which 7(8) has its maximum. This variable is given by

2o = [(¢/D)T (4 + T (G4 — )]V *+2 D /uPVE+d - (5.17)

where p and g are the energy exponents of lattice and impurity scatter-
ing, respectively, and ™, ur™ are actual mobilities which would exist
due to lattice and impurity scattering at the temperature T at which z,
is evaluated.

As an illustration of the sensitivity of the results even to small
amounts of impurity scattering, we show, in the table below values of
the functions A (p) and 5(p) for various ratios u.™/ur™ and for the case
p =064 ¢g=15

Ratio B = ppDp,D A(p) 7(p)
0.02 1.21 0.95
0.01 1.22 1.19
0.002 1.27 1.25
0.001 1.27 1.34
104 1.32 1.45
10-8 1.34 1.56
10-¢ 1.34 1.63
0 1.35 1.74

For comparison, it is interesting to note that when we have lattice
scattering alone with p = 14, we obtain A(p) = 3=x/8 = 1.1781,

7(p) = 4/ = 1.274

while for ionized impurity scattering alone, with ¢ = 34, we obtain
A(p) = 3157/512 = 1.931 and n(p) = 32768/6615x = 1.572.
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Curves for the composition of lattice and impurity scattering in the
calculation of {r)ay have been given by Johnson and Lark-Horovitz (75)
and by Conwell (60).

Two further generalizations of the above results are possible and must
be carried out before the formulas can be applied to Ge and Si. The two
effects which must be considered are the influence of anisotropic effective
mass, and the simultaneous presence of electrons or holes originating in
different energy bands. The fundamental idea to be applied in each case
is that the different electrons in the distribution are effectively in paral-
lel, so that their contributions to the conductivity are additive. This is
in contrast to the different scattering mechanisms, which are effectively
in series. )

Equation (5.5) may thus be generalized immediately, simply by sum-
ming terms similar to those in brackets for all the bands involved, that is

.\ ne? ' VRS \
Jz = 2 o lEz<‘ﬁ>Av + Eyw'n \ﬁ—z/AV

w; 27'1'

<

3
- E,wﬁ <ﬁ2—i>‘“’} (5.18)

o ni62 / T \ / T’i2 \ }
o 2 B~ B

1

where it must be remembered that the cyclotron frequencies w; have a
sign which will be taken as positive for holes and negative for electrons.
As a typical illustration of the application of (5.18), we may consider the
case of three bands, each with spherical energy surfaces, two being hole
bands and one an electron band. We will also write the equations for the
case of small magnetic field, where the denominators in (5.18) may be
taken as unity. Then the Hall constant is given by

_ _n1<l-"12)AV + n2<ﬂ22)Av + na(uaZ)Av
R, =

[nilu)ay + ne(ug)av + nalus)avl®
and the magnetoresistance coeflicient £ is given by

£ = [n1<#1>Av + nz(#z)Av + na(ﬂs)av][nl(ms)w + n2<u23>w + na(#33>Av]
["M(le)w + n2(ﬂ22)Av + na(ﬂ32>Av]2

(5.19)

-1 (5.20)

where n,, 72, and n; are the numbers of electrons and of each type of
hole, respectively; uy = e(r1/m,), ete. are the carrier mobilities as a func-
tion of energy for each band, and are averaged over the appropriate dis-
tribution of the form (5.4) for each band. The well-known formula for
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the Hall effect in a semiconductor with minority carriers present is a spe-
cial case of (5.19). The general theory has been developed for the multi-
band model by Johnson and Whitesell (76), and its application to Ge has
been discussed by Willardson, Harman, and Beer (77). Both groups of
authors have extended the analysis to high magnetic fields, but have
confined their attention to an energy dependence of r corresponding to
p=1Yorp=—3%.

The limiting case of very large magnetic fields is especially simple,
although it cannot be achieved in practice except in some cases at liquid
nitrogen temperature or lower. In this case, for the 3-band situation used
as an illustration above, the Hall constant directly measures the total
charge density, independent of any mobility averages, i.e.,

RBs = (1/ec)[1/(—n1 + n2 + ng)] (5.21)
The effect of magnetic field on the resistance is given by
P/ po =

[”h(l/ﬂl)w + nz(l/M)Av + na(l/u3>Av][n1<ﬂ1>Av + nz(ﬂz)Av + na(ﬂ3>Av]
[—n + ne + 1)t

(5.22)

where p«/po 1s the ratio of the resistance at effectively infinite magnetic
field to that at zero field. It is of interest that the resistance at high fields
is independent of the field, and depends on the sum of the reciprocals of
the mobilities. This means that in the high-field case, the different scat-
tering mechanisms, as well as the different electrons, contribute addi-
tively to the resistance, and thus the treatment of simultaneous impurity
and lattice scattering is greatly simplified. The same simplification re-
sults if measurements are conducted at sufficiently high frequency, so
that wr >> 1. In the absence of a magnetic field, in fact, the expression
for the current at high frequency becomes

et /1N 5.23
. My%e0? \Il-i/Av ( )

jz=Ez

The theory for ellipsoidal energy surfaces has been given by Meiboom
and Abeles (78). Here we shall present only a very oversimplified deriva-
tion along the lines of Equations (5.2) and (5.5). We consider the equa-
tions of motion of a carrier only for the very special case of the electric
fields and the magnetic field along the three principal axes of one ellips-
oid—the electric fields in the z- and y-directions, and the magnetic field
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in the z-direction. The equations of motion are then

dv,/dt = (e¢/m)E. + (e/msc)v,H
dv,/dt = (e/m2)E, — (e/mac)v.H

where m,; and m; are the masses for the 2- and y-directions, respectively.

Solving these equations and carrying out appropriate averages, as in the

spherical case, we obtain finally

vy = (E2E/m){rhay — (B H2/mmo){rav + (2B H/mma){rDav
(5.25)

(5.24)

6(vy>.w = —(e*HE,/ mima)(rav + (e2E,/ m2)<T>AV

Here we have made the approximation that the magnetic field is smail,
which results in the criterion

(eHr//mmyc) K 1 (5.26)

We must sum the expressions on the right of (5.25) over the equivalent
ellipsoids. For simplicity, we shall take the ellipsoids along the cubic axes,
so that the different ellipsoids correspond merely to permuting the masses
in (5.25) and (5.26). When this is carried out, we obtain the following ex-
pression for the Hall coefficient

Ro = L (v mi + my + mg 3
nec (r)ar? [(1/m1) + (1/ma) + (1/m3)]* mymaems
It can be shown that this expression is completely general and is valid

for any arrangement of ellipsoids which has over-all cubic symmetry.
Equation (5.27) can also be put in the form

Ro = (1/nec)M(p)[BK(K + 2)/(2K + 1)? (5.28)

m,
= — Mys = M3
Mo

(5.27)

The theory for the magnetoresistance is somewhat more complicated,
because for a cubic crystal there are actually three independent magneto-
resistance coefficients at low magnetic fields (85). The simplified theory
may be used to obtain two of them for the case of ellipsoids along the
cubic axes, which is the case of the silicon conduction band. For the
transverse case we obtain

100 = [Dav(Dav/GEOu? (K2 + K + 1)(2K + 1)/K(K +2)% — 1
=9p)(K*+ K+ 12K + 1)/K(K +2)] - 1 (5.29)
by means of (5.25). For the longitudinal magnetoresistance, correspond-

ing to a magnetic field parallel to the electric current, the coeflicient
vanishes in this particular orientation, as it does in all orientations for
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spherical energy surfaces. The reason for this is that when the electron is
accelerated along the electric field, it moves parallel to the magnetic
field, and its motion is therefore unaffected. This is not generally true in
the anisotropic case simply because, for an electric field not along a prin-
cipal axis, there is & component of acceleration perpendicular to the mag-
netic field, and the motion is therefore modified. Thus when the ellipsoids
are in (111)-directions, as in Ge, there is no direction of electric field for
which the longitudinal magnetoresistance vanishes. In this case the mag-
netoresistance coefficient, defined in analogy with (5.16), is given by

g0 = 10K — 1)*(2K + 1)/K(K +72)"] (5.30)

The corresponding transverse magnetoresistance coefficient for (111)-el-
lipsoids is given by

10 = 12K + 1)?/3K(K +2)] — 1 (5.31)
with the symmetry relations

o = (A&

10 = (G4)E00 + o (5.32)
001 ___ 001
110 — 100

Simple relations may also be derived for the case of very large mag-
netic fields. For the Hall effect we have

R = 1/nec (5.33)
valid for either (100) or (111)-ellipsoids. For the transverse magnetore-

sistance we obtain, in the case of ellipsoids along the cube axes

o= = <1> (v (4)(ma + ma + ma) (1/ma + 1/ma + 1/ma)
= (I/mhav{na[(K + 2)(2K + 1)/9K] (5.34)
In the case of (111)-ellipsoids we obtain, along cubic axes

Poll _ [(2K + 1)(K + 2)/9K]

po
8%%3 = (1/Dalrad(2K + 1)Y/3K(K + 2)] (5.35)
&%’ = [(2K + 1)¥/3K(K + 2)]

Numerical values for the mass factors in (5.28), (5.29), (5.30), (5.31),
(5.34), and (5.33) are shown in Table V. The ratios on the left of (5.35)
are the ratio of resistivity at high field to the zero-field resistivity. If the
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collision times behave with energy according to a power law like (5.13),
then we find

(Uit = v(p) = {T(34 + p)T(% — p)/ITGHI*}  (5.36)

This factor has the value 32/9r = 1.131 for p = 14, and 32/3r = 3.39
for p = 34, corresponding to ideal lattice and impurity scattering, re-
spectively. A similar factor occurs in connection with high-frequency con-
ductivity. The basic relation is

Iui/0as = v(p) (€2 wpac?) /Mete®
1/me = (38)(1/my + 1/my + 1/ms)

where u4, is the mobility calculated from the de conductivity, ou.

(5.37)

TasrLe V. Mass Factors in Expressions for Magnetoresistance and Hall Constant
for Various Examples*

Ge Si

K=193 K =145 K =516 K=45

Mass factors only

Ry (5.28) 0.782 0.797 0.865 0.878
£l (5.29) 1.402 1.854
%9 (5.31) 1.280 1.256

£190 (5.30) 1.010 0.923 1.00 1.00
Patao/po (5.34) 1.746 1.605
Perte/po (5.35) 1.280 1.256

po1%/04 (5.35) 4.83 3.79 1.000 1.000
pl1l (5.35) 1.280 1.256 1.330 1.286

* For low fields, each factor in the table must be multiplied by A (p) for Hall con-
stant, and by »(p) for both longitudinal and transverse magnetoresistance. For high
fields, the factor in the table must be multiplied by 1 for longitudinal magnetoresist-
ance and by n(p) for transverse magnetoresistance (for a more general tabulation of
mass factors, see reference 92).

In the absence of a magnetic field the theory of electrical resistivity
may be extended rather simply to cover the case of a » which depends
on direction as well as on energy. In this case, the weighting function is
proportional to

(v*) exp (—&/kT)dSe/|Vr6(P)| (5.38)

where dSp is an element of surface in P-gpace on the energy surface.
It might be thought that since, for small magnetic fields, the change
in direction of a carrier is small between collisions, the collision time for
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a particular carrier will depend only on its initial velocity, and that there-
fore the averages involved in AM(p) and 4(p) could be carried out by using
the weighting factor (5.38) and including the directional dependence of 7.
This procedure is only approximate, however, since the correct treatment
of the problem by means of the Boltzmann equation gives rise to addi-
tional terms, which involve the gradient of = tangentially to the energy
surface. Although the more general theory has been given in principle by
Wilson and others, it has never been applied in detail to an explicit semi-
conductor model.

Shockley (79) and Seitz (80) have given, in principle, general solu-
tions applicable to cases when the approximation of small magnetic field
is no longer suitable. These solutions are good for arbitrary energy sur-
faces and arbitrarily large fields, provided only that & collision time
exists. In the general case, since the carrier changes its direction of mo-
tion significantly in one mean free path, the averaging of the collision
time is very complicated. The general solutions have never been applied
to the semiconductor problem.

In the case of the energy surfaces appropriate to the valence bands
of Ge and Si, the simple analysis for quadric energy surfaces is no longer
strictly applicable. Again, although the problem has been solved in prin-
ciple (81), the solution has never been applied in detail to the semicon-
ductor problem. Actually, however, the energy surfaces do not deviate
too much from spheres, and so we might expect the multiband theory of
Equation (5.18) to be applicable.

Another theoretical quantity of considerable importance in correlat-
ing electrical properties and band structures is the thermoelectric power.
The theory of the thermoelectric power of semiconductors has recently
been reviewed by Herring (82). In terms of the notation used in discuss-
ing the galvanomagnetic effects, a general expression for thermoelectric
power § may be written

eTQ = {(& — Er)r)av/{T)av (5.39)
or for a multiband situation

_ Zi(ni/m){(& — Er)rav

elQ = () ay (5.40)
where n; is the number of carriers in band ¢, and m; is the mass, which
in the case of ellipsoidal surfaces must be taken as the reciprocal mean
mass as given, for example, by (5.37). Equation (5.40) may be inter-
preted by the statement that the thermoelectric powers arising from each
band combine as though they were voltage sources connected in parallel,
each having an internal resistance appropriate to the corresponding con-
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tribution to the conductivity from that band. The sign of the contribu-
tion depends, of course, on whether the band edge is above or below the
Fermi energy. Equations (5.39) and (5.40) may also be readily general-
ized to include the effect of a directional dependence of 7, in the same
manner as indicated by Equation (5.38), except that in this case the cor-
rection is rigorously valid.

The theory outlined above gives only the electronic contribution to
the thermoelectric power. At low temperatures there is another and more
significant contribution, which arises from the lattice vibrations (§3).
The theory is discussed in detail in reference 82. The basic idea is the
following. At low temperatures, the electrons give momentum to the lat-
tice vibrations (phonons) at a sufficient rate for the latter to be unable
to come to equilibrium among themselves. In consequence, there is a net
flow of energy in the lattice, related to the electric current, but carried
by the phonons rather than the electrons. Since the thermoelectric power
is directly related to energy transport by the electric current, the phonons
give rise to a big increase of thermoelectric power at low temperatures.
The extensive analysis of Herring (52) has demonstrated that the experi-
mental results can be explained in almost all detail by the theory.

For purposes of illustration, we shall now discuss the application of
the above theories to n-type Ge, the material which has, perhaps, been
most extensively explored from the experimental standpoint. For the
galvanomagnetic effects, we shall discuss some measurements made on
n-type Ge by G. Benedek (84) at 0°C. The experimental results were

un = Rooo = 4480 cm?/volt sec
£100 = 1.086 (5.41)
e = 0.477

The dependence of these coefficients on magnetic field was checked care-
fully and found to be negligible up to 2000 Gauss, and so the small field
theory is applicable. As a further test of this assumption and of the va-
lidity of the theory, we show the test of the symmetry relations (5.32)

14£100 = 0.543 £ = 0.492
o = 1.006 14£0% + &0 = 1.021

Since this symmetry would only apply for ellipsoids along the (111)-
directions, the good agreement is striking confirmation of the cyclotron
resonance data. More detailed confirmation of the angular dependence of
the coefficients has been obtained by Pearson and Suhl (85).

It is possible to eliminate #(p) from (5.30) and (5.31) to obtain an ex-
perimental value for the mass ratio K. The best fit is given by K = 14.5,

(5.42)
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which is somewhat less than the cyclotron resonance value, but barely
outside the experimental error. If we take this result, we can compute
the individual coefficients if we know A and 5. Taking p = 0.66 to fit the
drift mobility data of Morin and Maita (86), we must still make some
assumption regarding the cut-off due to impurity scattering, as in Equa-
tion (5.17). It is found that the best fit is obtained for this particular
sample by taking ur®/ur™ as 3499 at 0°C. Under these conditions, we
obtain

£100 = 1.090
e = 0.481 (5.43)
wr/up = 0.980

Since the impurity scattering was adjusted to give agreement in this
case, the only physical significance of (5.43) lies in the fact that the
amount of impurity scattering required is not unreasonable. As good a
fit of the experimental data cannot be obtained without including impu-
rity scattering. Morin (8?) reports a value of the Hall-to-drift mobility
ratio which is somewhat larger than 0.98, actually about 1.05. However,
his samples were somewhat purer, and taking this into aceount would
raise the theoretical value to about 1.05 also.

An analysis of magnetoresistance data on n-type silicon has been
made along similar lines by Pearson and Herring (89). They report a
mass ratio of 4.6 to 4.9, which is in excellent agreement with the value
of 5.2 obtained from cyclotron resonance data. Values of 4 ran from 1.12
at liquid air temperature to 1.21 at room temperature. This is to be com-
pared with a value of 1.18 for Ge at room temperature.

For n-type Ge Equation (5.39) for the thermoelectric power may be
written

—(e/k)Q = (Ec — Er)/kT + 3% — p
=In(4./n) +5% —p (5.44)
=In (Ao/n) +1In (4./40) + 3% — p

where A, and A, are the quantities defined in connection with Table IV,
n is the number of electrons in the conduction band, and p is the mobil-
ity exponent. The only unknown in this expression is the ratio 4,/4.,.
This has been determined by Geballe and Hull (90) to be 0.65, which is
larger than the theoretical value of Table IV by a factor of 1.65. Such a
discrepancy suggests that there may be 8 minima instead of 4 for the con-
duction band, since otherwise an exponent of p = 0 would be required
in the scattering,.

When we come to deal with p-type Ge or either n- or p-type Si, the
kind of analysis discussed above runs into difficulties, for in all these
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cases the temperature dependence of the conductivity or drift mobility,
which is proportional to (r)av, is much stronger than 715, Results for all
the cases are summarized in Table VI. Possible explanations for these
anomalies will be discussed in the next section. The point we are con-
cerned with here is the implications of these temperature dependencies
for the galvanomagnetic coefficients. In all except the case of n-type Ge,
if we interpret the drift-mobility results directly in terms of a mean free
time r « &7, where p = r — 1, r being the temperature exponent in
Table VI, then we find that all the integrals for the galvanomagnetic ef-
fects diverge. If we correct for impurity scattering, of course they con-
verge, but the precise values of A and 4 become very sensitive to the

TasrLe VI. Temperature Dependence of Drift and Conduetivity Mobility in
Germanium and Silicon

n P
Germanium (91) 3.5 X 107718 9.1 X 108723
Silicon (61) 4.0 X 109728 2.5 X 108723

behavior of 7(8) in the immediate vicinity of the point where it has a
maximum, and are accordingly very sensitive to temperature and impu-
rities and are quite large in magnitude. The greater the relative impor-
tance of impurity scattering, the smaller will be both A and %, so that
these quantities will increase with temperature and decrease with impu-
rity content,* even when the impurity mobility calculated separately is
many orders of magnitude larger than the lattice mobility. Trends of
this sort have been observed in Si and Ge (61, 86, 91), but at the moment
it is difficult to say whether they have any real significance.

Most theoretical explanations of the temperature dependence of mo-
bility have the property in common that they require the energy depend-
ence of the lattice mobility to flatten out at sufficiently low energies.
This avoids the convergence difficulty, but does not essentially alter the
conclusion that large values of A and » would be predicted. Thus any
reasonable hypothesis for n-type Si would require A\ between 3 and 4,
whereas the observed value is only slightly greater than 1 (61). For
p-type Ge, similar conclusions apply. In this case, in a typical sample, a
A of 2.5 is anticipated, whereas the observed value is in the neighborhood
of 2. However, as is explained below, this value of 2 is entirely accounted
for by the two-band model, so that the extra factor due to the energy
dependence of r would make the factor too large by far. In the case of

* Provided, of course, we remain in the range where scattering is predominantly
due to the lattice,
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n-type Si, analysis shows that even with the large exponent one should
not expect appreciable dependence of A and 5 on the magnetic field. In
the case of p-type Ge, owing to the presence of high-mobility holes in
one of the degenerate bands, one would expect some field dependence of
these ratios, even at 0°C, but this would not be enough to bring the
values of A and 5 into agreement with observation. From these considera-
tions, we are forced to the conclusion that the anomalous temperature
dependence of mobility cannot be associated to any substantial extent
with an energy dependence of the mean free path; it must rather be as-
sociated principally with an explicit temperature dependence of the mo-
bility, probably through the effective mass, at least in p-type Ge and 8i,
and in n-type Si.* In this connection, more extensive Hall and magneto-
resistance measurements in Ge and Si as a function of impurity content
and at several temperatures would be very desirable.

C. Herring (92) has carried out similar calculations using an explicit
model for the scattering. Although the factors of increase for A are some-
what smaller than indicated by the present analysis, the essential conclu-
sions of the preceding paragraph are not changed.

The case of p-type Ge has been analyzed in detail by Willardson,
Harman, and Beer (77), and is of special interest. Here it is important
to take into account the simultaneous presence of holes of two different
masses, as outlined in Equations (5.19)-(5.22). However, it is probably
also a reasonable first approximation to take the energy surfaces as spher-
ical. Calculations in Section 6 will show that to a good approximation
the mobilities of the two types of holes are in inverse ratio to their ef-
fective masses, which gives a mobility ratio of 7.5 to 1. Willardson et al.
find that their data can best be fitted by assuming ni/n, = 0.02 and
u3/p2 = 7.5. By assuming pure lattice scattering with p = 14, it is pos-
sible to evaluate the integrals in the exact expressions (5.18) and (5.19),
and so to compute the Hall effect and transverse magnetoresistance coef-
ficients as functions of magnetic field. The results of comparison of the-
ory and experiment are shown in Figs. 10 and 11. In the case of the
magnetoresistance, the dotted curve of Fig. 11 shows the computed coef-
ficient for the case in which only one type of hole is assumed. The dra-
matic influence of the 29, of high-mobility holes is thus indicated. The
reason for this drastic behavior, of course, lies in the fact that in the Hall
effect the mobility occurs squared, whereas in the magnetoresistance it
occurs cubed. The result may be described by saying that the effect of
low-mass holes is to increase the apparent value of A from 1.18 to 1.93

* It should be emphasized that this conclusion is far from securely established.

Recent evidence from high field magnetoresistance measurements in several labora-
tories is not entirely consistent with it.
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and the apparent value of 5 from 1.274 to 3.04, the latter resulting in a
20-fold increase in magnetoresistance at low fields over that for a spher-
ical surface having the mobility of the high-mass holes. It is to be empha-
sized again that these results are obtained with the assumption that
p = % for the lattice scattering. The value of 1.93 for A(p) = um/uo
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Fia. 10. Variation of Hall constant with magnetic field for p-type germanium. The
solid curve is the theoretical curve computed with ng/n, = 0.02 and ps/us = 7.5,
agsuming the mean free path to be independent of energy. Taken from fig. 1, p. 1515
of reference 77,

agrees well with the result quoted by Morin (87) for holes at high tem-
peratures, based on Prince’s drift mobility measurements (91). A much
larger value would be obtained if a larger p had been taken.

According to the interpretation of Willardson et al., Morin’s (87)
anomalous temperature dependence of up/up for holes is simply the re-
sult of the strong field dependence of the Hall coefficient, which is
produced by the low-mass holes. As the temperature is lowered, the
product wr becomes rapidly larger and results in the low-field approxi-
mation being less and less valid. These results illustrate the necessity of
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always studying field dependence in any measurements of Hall effect or
magnetoresistance,

While the mobility ratio found by Willardson et al. is in good agree-
ment with theory, the percentage of low-mass holes is about two times
too small, as can be seen by reference to Table IV. In fact, if we use the
values of number and mobility ratio deduced from Table IV, we would
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Fia. 11. Variation of magnetoresistance coefficient Ap/pH? with magnetic field in
p-type Ge. The solid curve is the theoretical curve computed with the same constants
ag in fig. 10. The dotted curve is the result which would be obtained on a one-band
model. From fig. 4, page 1517 of reference 77. '

abtain an effective A\ of 2.66, an effective 4 of 2.87, and an increase of the
magnetoresistance over the one-mass value by a factor of 35. This dis-
crepancy is difficult to explain, since rough arguments suggest that tak-
ing into account the warping of the energy surfaces would serve to in-
crease the theoretical values of A and 4 still more. It is interesting to note
that the density-of-states mass deduced by Geballe and Hull (90) from
thermoelectric power would agree much better with the interpretation of
Willardson et al., if we assumed that the low mass is given correctly by
the cyclotron resonance data, but that the high mass is that deduced
from thermoelectric power. This also suggests an explicit mass variation
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with temperature which is in the right direction and of the correct order
of magnitude to explain the deviation of the mobility law from 718,

VI. MECHANISMS OF SCATTERING

In the previous section we have introduced a phenomenological pa-
rameter (&), the collision time. It was indicated that r has various sorts
of energy variation, depending on the mechanism of scattering. In the
present section, we shall discuss the validity of the concept of collision
time and discuss detailed calculations of the scattering probability. In
the course of the presentation, we shall indicate the derivation of the
energy dependence for lattice and ionized impurity scattering and shall
examine various mechanisms which might explain deviations from the
simple T—!6 law for lattice mobility and 7+'5 for ionized impurity
mobility.

1. Lattice Scattering: The Deformation Poiential

For semiconductors, the concept of a deformation potential intro-
duced by Shockley and Bardeen (93) has proved very useful in gaining
an insight into the mechanism of lattice scattering. We shall begin with
the consideration of spherical energy surfaces in cubic crystals. In this
case, the position of the edge of an energy band may be written as a
linear function of the dilatation

Ec — Eg, = E\V - u(r) (6.1)

where E¢ is the position of the band edge in the distorted crystal, and E¢,
that in the undistorted crystal, E; is a constant and u(r) a vector func-
tion which represents the elastic displacement of the lattice at position r.
Shockley and Bardeen (94) show that for long-wave vibrations of the
crystal, the quantity (6.1) may be treated as an effective potential for
the motion of an electron near the band edge, the electron satisfying an
effective-mass Schrodinger equation in this potential exactly analagously
to the case of an impurity center discussed in Section IIT. The displace-
ment u(r) may be expanded in terms of elastic waves, and since the
fluctuations in potential are small, we may consider the scattering effect
of each elastic wave independently. This is an assumption convention-
ally made, which amounts to saying that only scattering processes in-
volving one phonon are of importance. It is not always justified, but the
results are probably not qualitatively changed by multiphonon effects.
The perturbation in potential may thus be expanded in Fourier series

E¢ — E¢, = B z a;(8) -dexp (18 .1 — 2wi) (6.2)

d,¢
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where ¢ is the wave vector of the phonon and ¢ has three values repre-
senting the three directions of polarization. The summation is over values
of ¢ lying in the first Brillouin Zone shown in Fig. 1. If the material were
elastically isotropic, the summation would be only over longitudinal oscil-
lations, since a would be perpendicular to é for transverse modes. In prac-
tice, the transverse modes make some contribution, but we shall ignore
this for the moment.

Each term in the potential (6.2) is itself a periodic potential and will
therefore give rise to diffraction of carriers. However, since each term
represents a traveling wave, we must solve the diffraction problem in a
system of coordinates moving with the velocity of the elastic wave, and
then transform back to the laboratory system. In the moving coordinate
system, energy is conserved, and it is therefore not conserved in the lab-
oratory system. In either system, the diffraction condition is simply

k—k =3 (6.3)
For spherical surfaces the wave vectors in the moving system are
k — (m/ho)w?, k' — (m/hw)u?8 (6.4)

where w is the phonon frequency and wu,; its velocity. Since energies are
conserved in the moving system, in the fixed system we have

(h2/2m)(k'* — k*) = tho (6.5)

the + arising from the fact that terms such as (6.2) actually occur in
pairs with both signs of w because the total potential must be real. Equa-
tion (6.5) just expresses the conservation of energy, hw being the quan-
tized energy of a phonon. It is easily seen that (6.5) still holds when m
is a tensor quantity and is hence equally valid for ellipsoidal surfaces.
Usually Aw is small compared with the eleetron energy, the condition for
this being
dur/e K 1

i.e., the phonon velocity is much less than the electron veloeity. This
condition may also be written:

& > Bmu,? (6.6)

and is satisfied so long as & exceeds about 10~3 ev. At this energy, how-
ever, ionized impurity scattering usually becomes dominant anyway, so
that we are always justified in neglecting fiw in practice.
With the potential (6.2), the scattering probability per unit time is
given by
(2r/h) |E:au(8) - 8|* X density of final states 6.7)
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Since only rather long wavelength phonons are involved, we may apply
the equipartition theorem and assume that an energy ko7 is associated
with each longitudinal mode. This immediately gives

|ai(8) - 8|2 = koT'/pu?V, (6.8)

where kq is the Boltzmann constant and p the density of the crystal. We
thus find for the probability of scattering between P and P’

WP —P) = @r/h)(kT/pw*)Er* dSp/|Ve8| (1/h%)  (6.9)

where dSp is the surface element in reduced momentum space. For spher-
ieal energy surfaces the probability (6.9) is seen to be independent of
the angle of scattering. The same proves to be true even for ellipsoidal,
surfaces. Thus, the total probability of scattering to all final states of
energy & is just proportional to the density of states, or the collision time

becomes
1/r = (87%/h%) (2m)* & (kT /pw,2) E 2 (6.10)

For ellipsoidal surfaces m* is replaced by (m;m.m3)*, but otherwise the
result is unchanged. The value p = 14 used in Section 5, of course, fol-

TasLe VII. Deformation Potential Theory for n-Type Ge and Si, Assuming
Dilatational Contributions to the Potential Only

Ge Si
Electron mobility at 300°K 3900 cm?/volt-sec 1420
Mean pu;? 1.545 X 10! dynes/cm? 1.97 X 1012
(m,/m)¥t 80.8 20.4
E\¢ 13.62 12.80 ev

lows immediately from (6.10), as does the T—!-5-law for mobility. The ex-
pression for the mobility is, explicitly

_ 2(2m)Yehtour?
BE = i (e TV E, 2

For spheroidal energy surfaces, it is necessary to replace m according to

m = (mma?) A5 (mit + 2my) (6.12)

(6.11)

Relative to the electronic mass the values for n-type Ge and Si are
(m/m,)~% = 80.8 and 20.4, respectively. Numerically we may write

uz = 3.0 X 10~5(pus?/ T*E %) (m,/m)% (6.13)
where uz is In em?/volt-sec, E; in ev per unit dilation, and pu,? in dynes/

cm?, having the dimensions of an elastic modulus. We obtain the results
of Table VII for Ge and Si. These results assume that all the scattering
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is due to dilatation, and that scattering between different ellipsoids—so-
called inter-valley scattering—can be neglected, as can scattering by op-
tical modes of vibration. Actually none of these assumptions are too well
fulfilled in practice.

Herring (92) has considered optical mode and inter-valley scattering
for n-type Ge and Si. The principle involved is the same in both cases.
In the ordinary case of intra-valley scattering we have seen that only
long-wavelength lattice waves are involved. These have a small quantum
energy hw < k¢T, so that we were able to apply the classical equiparti-
tion law for computing the mean square amplitude, and furthermore we
could neglect the energy loss of the electron in the scattering process.
For inter-valley scattering, on the other hand, the electron changes its
reduced momentum by a large amount and, in consequence of the selec-
tion rule (6.3), the scattering process must involve an energetic phonon.
When the scattering process involves emission of a phonon, 1.e., an elec-
tron giving energy to the lattice, the electron will have less energy in the
final state, and so will lie on a smaller ellipsoid with a lower density of
states. In the case where a phonon is absorbed, the density of states will
be increased in the final state, but, on the other hand, the phonon must
be initially excited in the lattice, a situation which has a small probabil-
ity when %iw >> k¢T. Since the phonons involved in inter-valley scatter-
ing all have about the same energy, characteristic of the distance be-
tween valleys in momentum space, and since the scattering matrix ele-
ment is probably not a strong function of the position of the electron on
the initial or final ellipsoid, it is a fairly good approximation to write the
inter-valley scattering in terms of a phonon process involving only one
frequency. Herring (92) writes the total scattering probability in the
form

1/r = Wo+ Wo + W, (6.14)
o kT (&
where Wo = Wlm (;l:o) (6.15)
%
W, = W, L+ &/ha) (6.16)

*exp (hw/kol) — 1

_ (8/fo — 1)% exp (hw/kT) _
We=W, oxp Gha/bT) —1 " &S ko (6.17)

We=0 & < hw

In (6.14) the first term represents intra-valley scattering, the second inter-
valley scattering with absorption of a phonon, and the third inter-valley
scattering with emission of a phonon. The collision time obtained from
(6.14) has a complex energy and temperature dependence which can give
rise to temperature variation of the mobility considerably more rapid
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than the 7-!-5-law obtained from (6.11). However, d In x/d In T obtained
from (6.14) is far from constant with temperature, especially if the inter-
valley scattering is such as to give rise to a rather large exponent. If
phonons of several different energies are actually involved the curves
may resemble more closely the ideal log-log linearity which seems to be
characteristic of the variation of observed mobility with temperature,
even for exponents as high as 2.3. Herring has computed the functions
corresponding to A(p) and n(p) using the scattering law (6.14) in place of
the simple exponent behavior. Because the behavior approaches &% for
low enough energles, the integrals do not diverge, and the functions do
not reach such large values as when the law (5.13) is used with a cut-off
by ionized impurity scattering. These questions need more investigation
by means of Hall effect and magnetoresistance measurements on samples
of varying impurity content.

It is interesting to observe that the theory which gives about the
right exponent for n-type Ge at room temperature corresponds to about
equal contributions from intra-valley and inter-valley scattering. How-
ever, the ratio ug/up seems to have a stronger temperature dependence
for this assumption than is indicated by the experimental results of
Morin (87).

Optical phonons are quantized lattice vibrations which can occur in
structures which possess more than one atom per unit cell: they corre-
spond to nonequivalent atoms moving in opposite phase to each other,
but with relatively slow change in phase from cell to cell. These modes
can give rise to intra-valley scattering, but with a much higher energy
change of the electron than that which occurs with normal scattering by
long-wave acoustical modes considered in Equation (6.11). Formally, the
theory is then almost identical to that for inter-valley scattering, and can
thus also give rise to anomalous temperature dependence of the mobility.
Optical mode scattering does not lend itself to treatment by the defor-
mation potential method, and reliable estimates of its relative importance
are hard to make.

For the many-valley type of structure which cccurs in the conduction
bands of Ge and Si, the transverse as well as the longitudinal modes can
make an important contribution to normal intra-valley scattering. The
different energy ellipsoids are not equivalent with respect to the stress
axis, and so their band edges may:be shifted differently for a given tensile
stress on the crystal.

From symmetry considerations it may be shown that the only strains
which shift a given ellipsoid in a cubic crystal are a pure dilatation, al-
ready considered, and a shear corresponding to a tension in the direction
of the vector position of the center of the ellipsoid, with a symmetrical
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compression in the two directions at right angles. The complete expression
for the shift may be written

AE® = i {B\] + Eale — %A1} -4 (6.18)
where fi is the unit vector in the direction of the position of the center of
the ellipsoid in P-space, ] is the unit dyadic, A the dilatation, and ¢ the
strain tensor of the crystal. The scattering probabilities for longitudinal
and transverse vibrations are
Wi(8) = 2%- |Ey + E,cos? 02(koT/pwi?) X density of states (6.19)
W.(6) = 2hl" E;? sin? 0 cos? 0(koT/pu,?) X density of states  (6.20)

where u; and u, are, respectively, the velocities of longitudinal and trans-
verse waves, and 6 is angle between the reduced momentum (= P’ — P)

0]

F1a. 12. Scattering process for transverse modes, showing definition of the angles
used in Equation (6.20).

of the vibration and the vector P® defining the position of the center of
the ellipsoid and hence one of its principal axes. The situation is sketched
in Fig. 12.

Thus, unlike the simple case of (6.7), the scattering has a complex
angular dependence. In such cases, the existence of a collision time is
doubtful; one should really go back to a rigorous solution of the Boltz-
mann transport equation. However, Herring has shown (92) that, pro-
vided the scattering is not too anisotropic, it is still a reasonable approxi-
mation to replace the complete scattering problem by a collision time.
In this case, however, the collision time is defined by the integral

— (1/h3 n W(P) — v(@P)]-v(®) dS
1/7(P) = (1/h)/W(P—+P) Tk |Vp'8(1;’/)l (6.21)

where W(P — P’) is obtained from (6.19) and (6.20). Equation (6.21)
represents the sum of the probabilities of scattering out of the state P
on the ellipsoid to all possible final states on the same ellipsoid, weighted
according to the relative change in velocity produced by each collision.
The integral (6.21) may be evaluated simply for the case when P is along
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the unique principal axis of the ellipsoid. Then the weighting factor be-
comes simply (1 — cos 6), and we have

1/ = (8w3/he) (2m)¥e% (ko T/pw?)[E? + 34E.\Ey + YE?  (6.22)
/7 = (8%/h)(2m)%e* (ko T/ pu,?)[2{ 5 E?] (6.23)

where r; and 7, are the collision times associated with longitudinal and
transverse waves, respectively, and both associated with an initial value
P along the principal axis. For spheroidal surfaces m* = (mm,2)*,

E. Vogt* has carried out numerical calculations of the ratio of the
collision time for P along the unique axis to that for P along an axis at
right angles. This should give a good measure of the anisotropy. The
degree of anisotropy depends, of course, on the relative values of the
constants E, and E,. In general, however, the anisotropy is not large for
ellipsoids having the shape appropriate to the Ge conduction band, al-
though it would become much larger if the energy surfaces were spherical,
as Herring shows (92).

The value of the constant E, may be estimated from data on piezo-
resistance (92, 95). This is an effect of nonhydrostatic strain on the
electrical resistance, and in extrinsic material arises from two sources.
In the first place, shearing strain raises some ellipsoids relative to others,
resulting in different carrier populations in different ellipsoids. In the
second place, the change in the ellipsoids influences the inter-valley
scattering and hence the over-all collision time. If we ignore the second
effect for the moment, Herring has given (92) a relation which permits
calculation of E,. The piezoresistance coefficients are defined in a manner
analogous to elastic constants. Thus, for example, we have, for n-type Ge

_ _léoy _ _1E KE—1
M T %,  3ET3K ¥ 1 (6.24)
and for Si we obtain
1 _ _ _1(d0s; 0,5\ _ 1 Ey K—1
g (M = mu) = — 5 (as,,, asw> =~ " orr2kF1 629

where ¢4, etc. represent components of the conductivity tensor, &, ete.
represent components of the strain tensor, and K is the mass ratio as de-
fined previously. The unlisted components vanish theoretically in each
case. The results are as shown in Table VIII. The row labelled Transverse/
Longitudinal gives the ratio of the total collision probability for scatter-
ing by transverse waves to that by longitudinal waves. The last row gives
the ratio of anisotropies of the relaxation times, taken from Vogt’s (92)

* Deseribed in reference 92, especially Figure 12. Note that our definitions of
E, and E, differ slightly from Herring’s 24 and =..
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calculations for the appropriate ratio E./E,. It will be noted that there
are two possible solutions for ¥, depending on whether it has the same
or the opposite sign from E;, Both results are shown in the table. These
results must be regarded as no more than crude order-of-magnitude esti-
mates, in view of the negleet of the anisotropy of the relaxation time and
of inter-valley scattering. It seems most likely that inclusion of inter-
valley scattering would result in reduced values of E,, and that the neg-
lect of anisotropy is of relatively little importance for the lower row of

TasLe VIII. Calculation of E, from Piezoresistance Data and of E, from Mobility
Data for n-Ge and n-Si

n — Ge n—8i
M —-93.0
14 (myy — mig) —79.5
By (ev) +15.3 +10.8
E, (ev)* —13.05 —~13.8

or or

+ 2.85 + 6.6
ul/w? 0.306 0.513
Transverse
Longitudinal 0.54 0.335
7(0°)
7(90°) 2.5 or 0.8 —

* In estimating F, use was made of Equation (6.22) with anisotropy neglected.

values in the table, and would result in a smaller E, for the upper row.
A self-consistent caleulation, using Vogt’s results to estimate the effect of
anisotropy, gives £; = —6.5 instead of —15.7 for the upper row. These
crude calculations are nevertheless sufficient to indicate that transverse
and longitudinal effects can be of the same order of magnitude.

More rigorous theories of scattering by transverse vibrations have
been discussed by Herring (82, 92) and by Dumke (96), but no detailed
numerical results have been published.

The deformation potential approach can also be used to discuss p-type
Ge. A detailed theory has not been given, but a few general conclusions
can be reached by relatively simple arguments. For pure dilatations the
whole band structure is moved up and down as a unit, much as in the
theory for the conduction band. For a first approach the band structure
may be approximated by concentric spheres, neglecting the warping of
the energy surfaces. Even with this simplification, the calculation is
straightforward but rather involved, and we shall not reproduce it here.
Since there are four degenerate bands in all, inter-band scattering is im-



152 HARVEY BROOKS

portant, even when one considers only acoustical modes, so that energy
conservation may be assumed in the scattering process. An equation
similar to (6.12) results, except that the mass factor (m./m)* is replaced

as follows
5 5 %
. m 1 my 1 my me
High mass (E) -3 (ﬁ) + 5 (ﬁ,) (517,) (6.26)
% 5 34
m 1 {m, L{ma\ {my
Low mass (E) - 1_8 ('ﬂz) + '2 (—m:) ("”Te) (6.27)
Here m, is the mass for the high-mass band, about 0.3m, for Ge, and
my is that of the low-mass band, about 0.04m,. In each case the first term
on the right represents the contribution of intra~-band scattering and the
second that of inter-band scattering. In the case of the low-mass holes
almost the entire scattering by acoustical modes is scattering into the
high-mass band rather than intra-band scattering. Furthermore, the scat-
tering depends essentially on the density of final states. Since the final
state is the same both for low-mass and high-mass holes, namely the high-
mass band, this implies that the collision times for the two types of holes

are approximately equal and that the mobilities are in the inverse ratio
of the masses. For holes in Ge, the effective values in (6.26) and (6.27) are

High mass (m./m)* = 26.5

Low mass (m,/m)* = 232.0 Ey =124 ev (6.28)

These are the factors by which the mobility is increased over that for
electrons of normal mass. The value of E; deduced, of course, neglects
the influence of shear, but it is based on the contribution to the mobility
of the high-mass holes.

The existence of a strong piezoresistance effect in p-type Ge and Si
shows that the band structure is significantly influenced by shearing
strains, and we should therefore expect transverse vibrations to con-
tribute to the lattice scattering. From symmetry considerations, the only
thing a pure shear could do would be to shift the low-mass and high-
mass bands relative to each other; it cannot shift the band structure as a
unit. For points in P-space, far enough away from the origin for the sepa-
ration of the degenerate bands to be large compared with the displace-
ment of the bands which would be produced by the shear, the two bands
are displaced up and down relative to each other by an amount which
depends on the angle between the P-vector and the stress axis. For points
nearer the origin in P-space, the bands are distorted in a complicated
way, since the degeneracy is removed at the origin. However, in the
piezoresistance experiments of Smith (95), the strains involved were of
the order of 104, which, with energy shifts of the order of 10 ev per unit
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strain, would give an energy shift of only 0.001 ev, which is much less
than %oT at room temperature and so affects a negligible portion of the
band. Similarly, it is shown that the shearing modes which can give rise
to deformation potential scattering have a root mean square strain ampli-
tude of about 5 X 10—4, corresponding to an energy shift of 0.005 ev,
which is larger but still reasonably small compared with k.7 at room
temperature.

For points in P-space sufficiently far from the origin, the energy shift
may be written

AE® = 4 - [EILA + H, <§ - 1%)] ‘A (6.29)
where the symbols have nearly the same meaning as in (6.18), i.e. fi repre-
sents the unit vector in the direction of P, ¢ is the strain tensor, and A the
dilatation, or diagonal sum of the strain tensor. The positive sign corre-
sponds to the high-mass band and the negative sign to the low-mass band.
To avoid confusion, we shall adopt the sign convention that E, or E, is
positive when the shift is in a direction into the band, so that a positive
E represents an upward shift for a conduction band and a downward
shift for a valence band.

Using the result (6.29) to compute the strains associated with longi-
tudinal and transverse elastic waves, we may obtain expressions for the
scattering matrix elements, and finally expressions for the reciprocal col-
lision time. We may express the final result as follows: For scattering
within high-mass band

1/7 = (8x3%/h*)(2m,)¥EH {M (% E:? + gEsz + i E22>

pu®
koT
+ = <~2% Ef)} (6.30)

pus
and for scattering from high-mass to low-mass band, we have

kT 11 1 3 my
— 340 3 ¢ 70 | © + s+ = =
U = (8r/h0) (2ma)¥e {Pu;2 [2 By (4 20 \/m2 EIEZ)

7,03 Jm\ gl L kT(9 .,
and for scattering from low-mass to high-mass band we have a similar
expression to (6.31), but with the sign of E; reversed and m, and m, inter-
changed ; these results reduce to the previous ones when we let £, = 0.
In order to obtain an estimate of E, it is necessary to develop a theory

for the piezoresistance effect in p-type material. Here it turns out that
the principal effect arises from the anisotropy in the velocity on a sur-
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face of constant energy which is set up by the strain. The greatest diffi-
culty in the theory originates from the use of the spherical approximation
for the energy surfaces in the valence band. This implies that the piezo-
resistance effect should be independent of orientation and in particular
that the m-coefficients defined by Herring (92) should satisfy the isotropy
relation

My = Y5(my — mya) (6.32)

whereas in fact we have my = +66.0, 15(my; — my) = —6.0. The best
we can do within the framework of the present approximations is to take
an angular average of the m’s. The most appropriate average turns out
to be:

My = 35my + Y5(mu — my) = +38.4 (6.33)

Setting the theoretical piezoresistance equal to this average, we ob-
tain the relation

3 11+ 2.285¢ + 0.83£2| E,

(mg) = [3 T 95 T F 1.2F F 1488 | kol = 38.4 (6.34)

where in writing the theoretical expression we have neglected the con-
tribution of low-mass holes to the mobility and also the contribution of
inter-band scattering. Of the two terms in brackets in (6.34), the first
represents the effect of the anisotropy in the velocity introduced by the
strain and the second represents the effect of the anisotropy in the col-
lision time itself. This latter effect is very small, and is the only one which
depends specifically on which band we are dealing with. The symbol £ is
simply the ratio E,/E,, so that the shear coefficient E, is involved im-
plicitly as well as explicitly in (6.34). Numerical solution of (6.34) in a
self consistent manner leads to a best value of E; of +1.66 ev per unit
strain.

With the use of (6.30), knowing E. from the above discussion, we can
solve for E, in terms of the mobility for high-mass holes, which, following
the discussion of Section 5, we can take as 1640 cm?/volt-sec. This solu-
tion gives the following alternative values of E, for the valence band of Ge

E,= —133evor E; = +11.3 ev

where, according to the previously adopted conventions, the first case
represents an upward shift of the band edge position with dilatation, and
the second represents a downward shift. With either alternative solution
the contribution of shear to the total scattering is small; for example, for
the first solution, the total contribution of transverse waves to the scat-
tering is only about 2.5%, of the total scattering. This conclusion finds



ELECTRICAL PROPERTIES OF GERMANIUM AND SILICON 155

some support in experiment, since, as may be seen by reference to Equa-
tions (6.30) and (6.31), the conclusion that the mobilities of the two types
of holes are in the inverse ratio to their masses depends upon the fact
that most of the scattering arises from dilatation.

The values of E; shown in Table VIII were computed from Equations
(6.22) and (6.23) directly, without taking into account the anisotropy in
the scattering. This can be taken into account rather crudely for n-Ge,
taking as the true collision time 247(90°) + 147(0°), where the two col-
lision times are those calculated by Vogt (92) for the appropriate value of
E,/E,, and the appropriate effective masses and elastic anisotropy. With
all these assumptions, we obtain the following numerical results for Ge

Shift in conduction band edge + 45 or — 6.5
Shift in valence band edge +13.3 or —11.3 (6.35)
Difference — 8.8 + 4.8

The difference in the two band shifts provides an independent check
on the deductions, since it can be compared with the observed pressure
shift of the band gap. For Ge this is equivalent to —4.3 ev per unit
dilatation. The combination which comes closest to agreeing with the
pressure shift is that shown in the first column of (6.35). The agreement
is not very good.

Since the mobility does not obey the T-!5-law for either electrons or
holes, there is an ambiguity in interpretation depending on what temper-
ature is chosen to match the deformation potentials. If liquid nitrogen is
chosen, Equation (6.35) is replaced by (6.35’)

Shift in conduction band edge +2.33 —5.8
Shift in valence band edge +8.04 —6.04 (6.35")
Difference —5.71 +0.24

Here the agreement with the pressure shift is somewhat improved. Con-
sidering the many omissions and approximations made in these estimates*
the agreement is fairly satisfactory, and probably sufficient to fix the
choice of matching sets of values in these equations.

The calculations for p-type Ge fail completely to provide an under-
standing of the temperature dependence of hole mobility in Ge, since all
the mechanisms discussed lead to an &* dependence of the collision prob-
ability. Furthermore, since it is believed that all the band edges lie at
P = 0, we cannot invoke inter-valley scattering as a possible mechanism.

* A theory for scattering in p-type Ge has also been given by H. Ehrenreich and
A. W. Overhauser, Bull. Am. Phys. Soc. 80, 10 (1955), abstract D8, It differs in its
conclusions in important respects from the present analysis, especially with regard
to the magnitude of scattering by transverse modes.
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In the case of Ge, as we shall see in Section VII, strong evidence indi-
cates that the third valence band lies 0.28 deeper than the band edge,
so that scattering to or from this band cannot be important at ordinary
temperatures. Moreover, it is probably sufficiently far away in energy so
that it cannot significantly affect the curvature, at least of the high mass
band. In addition to the deformation potentials already discussed, there
exists the possibility of a potential associated with alterations in curva-
ture of the bands with strain (92-94). This could give rise to a contribu-
tion to the collision probability which is proportional to &% instead of &§*.
However, this type of scattering would have to predominate over the
normal scattering in order to explain a T—23-law for mobility. Scattering
by optical modes could produce something resembling the observed tem-
perature dependence. However, according to Ehrenreich and Overhauser,
this type of scattering is much too small to explain the observed result.*
Furthermore, all the mechanisms discussed lead to a large energy depend-
ence of the collision time, and we have already seen in connection with
Section V that it is hard to reconcile the galvanomagnetic results with
other than a nearly normal energy dependence of the collision time. At
the present time the anomalous temperature dependence of mobility in
p-type Ge must be regarded as a major unsolved problem. It is interesting
to note that the temperature law is extremely sensitive to strain, as shown
by the experiments of Lawrence (97). This is mainly a consequence of the
fact that according to the theory, the piezoresistance effect should be in-
versely proportional to the temperature. Lawrence’s results are in quali-
tative agreement with this conclusion.

2. Ionized I'mpurity Scattering

We have seen in Section III that impurities different in valence from
the host lattice give rise to long-range Coulomb fields in the semiconduc-
tor with a potential of the form V(r) = ¢*/Kr where K is the macroscopic
dielectric constant. If we neglect what happens in the central cell this
potential gives rise to a scattering probability

et 4

WP — P)(dP'/h%) = P =P dP’ (6.36)

where P, P’ are the initial and final reduced momentum vectors, and the
probability shown is the total probability of scattering into a volume

* These calculations were made with the deformable ion model of Bloch (113).
This model severely overestimates the mobility in Ge due to the fact that it actually
omits an important part of the perturbation in the potential resulting from the lattice
vibrations. This part of the perturbation is included in the deformation potential
model.
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dP’ of reduced momentum space. When (6.36) is integrated over all final
states to obtain the total collision probability, the integral diverges. This
is true even when the collisions are weighted with the velocity change in
accordance with (6.21). The divergence arises from the small-angle scat-
tering characteristic of a Coulomb potential. In order to obtain a finite
result, it is necessary to ‘“cut off”” the Coulomb field of the impurity at
some distance. In the original treatment of Conwell and Weisskopf (88)
this was done by omitting scattering processes from (6.36) which arose
from encounters between the incident particle and the impurity, corre-
sponding to distances of closest approach greater than half the mean dis-
tance between impurity ions in the crystal. A later more rigorous formu-
lation by Brooks and by Herring (88) introduced a shielding factor into
the potential. This arises from the fact that the other electrons in the
conduction band distribute themselves around the impurity in such a way
as to cancel its field at large distances. When only one sign of impurity is
present, the distance at which cancellation occurs is of the same order of
magnitude as the mean distance between impurities, so that this more
rigorous treatment gives about the same result as the Conwell-Weisskopf
analysis. To obtain the scattering probability taking into account shield-
ing, it is necessary to replace P — P’ in (6.36) by

_ pi2 e*h’n o 2

[lP Pz + ZKhT (2 ]—V—D>} (6.37)
where 7 is the number of electrons in the conduction band and Np is the
number of ionized donors. Equation (6.37) is valid when only one type of
carrier is present; otherwise N p should be replaced by Np — N4, the ex-
cess of donors over acceptors. If the donors are completely ionized, the
factor (2 — n/Np) = 1. For material in which holes and electrons are
present simultaneously, n is replaced by n -+ p, the total number of
carriers.

We may integrate (6.36), putting in the velocity weighting factor and
taking into account the conservation of energy in the scattering process.
If the ionized impurities are randomly arranged in the lattice, they scatter
independently, and the total scattering is proportional to the number of
impurities. Thus we have for a spherical energy surface

1 T 1 en b
; = ;'—n—% (28)% F 1n (1 + b) - m} (638)
_ SrmKk,T
where b= i [ (6.39)

In the usual situation b is very large, so that the bracket may be re-
placed by In b. From (6.38) and (6.39), the mobility may be calculated
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as in Section V. In making this calculation, the logarithm is taken out-
side the integral, and its argument is replaced by the value assumed when
the rest of the integrand has a maximum. This value is § = 3k,7, and
the mobility is then given by

ém(koT)2K |
1re2h2n(2—n/ND)] (6.40)

ur = %%k T)% K 2%e—3m~Yin ! [ln

In the case of intrinsic material, or if donors and acceptors are present
simultaneously, n~! before the bracket is replaced by the reciprocal of
the sum of the number of ionized donors and acceptors, and in the argu-
ment of the logarithm # is replaced by the total number of carriers. Since
impurity scattering is mainly important at relatively low temperatures,
the case of greatest interest is that in which there is only one type of
carrier, but both donors and acceptors are present in the crystal. In this
case n must be replaced by the total number of ionized donors n + N4
outside the bracket, whereas inside the bracket it is replaced by

n—>n+<1—"“'];,;VA>(n+N,,) (6.41)

= (1~ fp)Np — N4

where fp is the Fermi factor for the donor levels, i.e., the probability that
the donor is occupied, and N4 is the number of acceptors, assumed com-
pletely occupied at all times. It is interesting to note that (6.41) does not
vanish as the number of carriers approaches zero in the conduction band,
since some shielding of the donor potential results from repopulation of
adjacent bound levels. The limiting value of (6.41) is

(1 — N4/Np)N4 (6.42)

The potential distribution inside a semiconductor due to random dis-
tributions of impurity has been discussed by James and co-workers (98).

The result of Equation (6.40) has already been used in the discussion
of combined lattice and impurity scattering, in Section V, above.

It is now of importance to inquire what sort of modifications will be
introduced by nonspherical energy surfaces or by degenerate bands. This
problem has not been considered in the literature, and we shall content
ourselves here with some order-of-magnitude estimates, We take advan-
tage of the fact that the dominant contribution to the scattering comes
from very small scattering angles, and use the approximation that a re-
laxzation time exists which is defined in accordance with Equation (6.21).
This integral can be evaluated easily only for the special cases in which
the initial state P is along one of the principal axes of the ellipsoid. The
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result may be represented by replacing the effective mass factor in (6.38)
according to
mH— (34)m*(1/my + 1/ma) (6.43)

where m, is the principal mass in the direction of P, and m. and ms are
the other two principal masses. For germanium this gives collision prob-
abilities, one of which is roughly 14.1 times larger than that for the free
electron mass, and the other two of which are about 1.83 times that for
the free electron mass. Knowing only the collision times for the principal
directions, it is not certain how they should be averaged to obtain a mo-
bility, but two different plausible averaging methods indicate that the
mobility for Ge should lie between 2.6 and 3.7 times the free electron
value, corresponding to a mobility effective-mass from 19 to 144 the free
electron mass. This is to be compared with a value of 1/1.8 estimated
earlier from magnetoresistance data. It also represents a value somewhat
larger than that which best fits Hall mobility data according to Debye
and Conwell (24, 26). One must conclude that the observed impurity scat-
tering is somewhat higher than might be anticipated from theory. For
silicon, the collision probabilities are 5 times and 1.34 times the free elec-
tron values, and the mobility is probably less than 2.25 times the free
electron value. The above theory is very crude because the collision-time
approximation is bad when the anisotropy is as large as indicated above.

For scattering of holes in the valence band, we need consider only the
scattering within a single degenerate band. This is because the scattering
comes so largely from small momentum changes, and there is 8 minimum
momentum change for interband scattering. The quantitative criterion
that interband scattering is negligible turns out to be exactly that the
quantity b, defined by Equation (6.39) be much greater than unity, a
condition which is always fulfilled in practice except under conditions
where the semiconductor becomes degenerate at low temperature or for
high carrier concentrations. The impurity scattering formula does not
appear to have been critically tested for holes in Ge or 8i. The conse-
quence of all this is that the ionized impurity scattering can be computed
for a single spherical band, and that the mass factor does not include the
factor 14 which we found in the case of lattice scattering in Equation
(6.26).

One consequence of this conclusion is that, in the impurity seattering
regime, the mobility of low-mass holes is about 2.8 times that of high-
mass holes, and therefore the influence of the low-mass holes on Hall
effect and magnetoresistance should be considerably less than in the
lattice scattering range. No experiments bearing on this question are
available.
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It may be remarked that all the treatments of impurity scattering
are relatively crude. In the first place, use is made of the so-called Born
approximation, in which the scattering is treated as a small perturbation
on the motion of the incident carrier; and in the second place, effects
originating in the impurity cell or in its immediate vicinity have been
ignored. The impurity cell would tend to increase the magnitude of the
scattering and make it less strongly dependent on energy. This may
possibly account for the observation of Debye and Conwell (26) that the
ionized impurity mobility for electrons in Ge depends on temperature
less strongly than 7% as predicted by Equation (6.40).

Another essentially classical effect is neglected in the simple treat-
ment of ionized impurity scattering. Although collisions between elec-
trons have no direct effect on the resistivity if the energy surfaces are
spherical, they can influence it indirectly by altering the momentum of
the electrons between successive collisions with the lattice. When the
seattering is by ionized impurities, the faster electrons acquire more mo-
mentum from the electric field, since they have longer mean free paths.
Part of this acquired momentum tends to become redistributed among
all the electrons between collisions, with the consequence that a fast elec-
tron does not actually acquire as much momentum from the field on the
average as it would have in the absence of electron—electron collisions.
The resulting decrease in electron mobility has been calculated in the
classical limit by Spitzer ef. al. (99) and results in ionized impurity scat-
tering which is 60%, of that given by the Brooks-Herring formula (6.40).*
A similar effect occurs with any mechanism of scattering which is energy
dependent, but in the case of lattice scattering it is very much weaker.}

If the energy surfaces are non spherical, or when two types of carriers
are present simultaneously, scattering of carriers by carriers can con-
tribute to the total resistance. Ordinarily this can occur only under con-
ditions of carrier density and temperature for which ionized impurity
scattering is the dominant mechanism. Electron~hole scattering has been
discussed by Prince (91).

3. Other Types of Scattering

In addition to lattice scattering and ionized impurity scattering, there
exist two types of neutral impurity scattering. It was first pointed out by
Bardeen and Pearson (100) that neutral donors, owing to the large orbit
of the bound electron, could present a rather large cross section for scat-
tering in which the bound and free electron exchange places. A strictly

* For an elementary discussion of these effects, see reference 26, p. 698.

T This correction reduces the theoretical impurity mobility and slightly improves
agreement between theory and experiment.
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analagous effect occurs in the scattering of electrons by hydrogen atoms.
The effect has been studied by Erginsoy (101) who gives the formula
2

1_ KR 20h (6.44)

T me: m
where the first factor is the radius of the hydrogenic orbit of the bound
electron on the impurity, and N, is the number of neutral impurities per
cubic centimeter. The neutral impurity scattering is proportional to the
dielectric constant, while ionized impurity scattering is inversely propor-
tional to the square of the dielectric constant. Thus neutral impurity
scattering becomes of much greater importance in high dielectric con-
stant semiconductors. Neutral impurity scattering is independent of tem-
perature, and the collision time is independent of energy. Neutral im-
purity scattering only becomes of importance at very low temperatures
when n <« N, i.e., when almost all the impurities are un-ionized. It is
probably the factor which determines the line width in cyclotron reso-
nance experiments. For ellipsoidal surfaces, the mass in the first factor of
(6.44) should be replaced by the geometric mean mass (mm,?)*, and in
the second factor by the mobility mass (14)(m;~! + 2m,~"). The theory
has not been worked out for the valence band, but since the scattering is
approximately isotropic it is probable that the intra-band and inter-band
scattering are related as in the case of lattice scattering,.

Another type of neutral impurity scattering can occur in Si-Ge alloys.
A theory of this scattering has been worked out by Brooks (702) using
the idea that statistical fluctuations in the composition of an alloy result
in random displacements of the band edges much as in the deformation
potential approach to lattice scattering. The order of magnitude of the
band displacements can be guessed very roughly from the change in en-
ergy gap with composition, which has been studied by several workers
(108). The principal predictions are (1) that in the range where alloy
scattering predominates, the mobility should vary as T—*, corresponding
to a mean free path which is independent of carrier energy and temper-
ature, and (2) that alloy scattering should become comparable with lattice
scattering at room temperature in the composition range of 5 to 15 atom
percent Si in Ge or vice versa. Little quantitative experimental work has
been done to verify these relations, although a few percent of Si in Ge
does appear to reduce the room-temperature mobility.

Another type of scattering is that arising from dislocations. This has
been considered by W. T. Read (104) in its most important aspect, and
earlier by Dexter and Seitz (105). The latter authors considered only the
scattering resulting from the strain field of a dislocation, and found it
was 80 small as to be of no importance in good quality Ge or Si. Read,
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however, called attention to another type of effect which could occur in
n-type Ge. We have already seen that the dislocation line can act as an
electron acceptor and can thus give rise to a large space-charge cylinder
in n-type Ge. This cylinder will have a different potential from its sur-
roundings and can act as a very powerful scattering center. Electron mo-
bilities in bent n-type Ge have been measured, and are in at least quali-
tative agreement with the predicted effect (41).

4. Other Effects of Lattice Vibrations

In Section IIT we discussed the shift in band edges due to the per-
turbing influence of the lattice vibrations. A quantitative theory of this
effect has been given by Fan (64). This theory must be modified to take
into account the ellipsoidal energy surfaces in the conduction band and
the degeneracy of the valence band. For the conduction band, a theory
analagous to Fan’s gives the following expression for the downward ghift

koT o, , 2 (3x2\"* [sin! ——

_my — M
m

(6.45)
where a

where m, and m, are the principal masses and Q is the atomic volume.
The theory has been worked out on the assumption that only dilatation
contributes to the lattice interaction and that only acoustical type modes
are involved. If we include optical modes, assuming the same interaction
constant E; (which is of doubtful validity), the expression (6.45) would
be doubled. For the valence band, in view of the crudeness of the cal-
culation, it will suffice to use (6.45) with m; = m,. We use the values
E, = 14.3 ev for the conduction band in Ge, and E; = 8.9 ev for the
valence band. The number for the valence band differs from that used in
(6.28) in order to take account of the factor 14 due to angular depend-
ence which occurs in (6.26). From (6.45) we obtain for Ge

%—? = 0.79 X 10~¢ev/°C for electrons (6.46)

= 0.46 X 10~* ev/°C for holes

Thus the total band-edge shift becomes 1.25 X 10~4 ev/°C, which is
about one third the value which best fits the experiments, but is of the
right order of magnitude.

It is rather easy to see, however, that the above method of calculation
would tend to underestimate the shift. Thus, for example, it is assumed
that the energy of an electron continues to increase parabolically away
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from the band edge. Since this is not the case, as shown by Fig. 3, and
since modes of high wave-number make an important contribution to AE,
it is seen that the actual value will be substantially larger for electrons,
and somewhat larger for holes. In particular, scattering into the (100)
minima, which are probably not more than 0.18 ev above the (111)
minimsa in Ge, and which have a higher effective mass, will make an
important contribution.

In principle the interaction between electrons and lattice vibrations
can lead to a change of curvature and hence of effective mass at the
band edge. The effect is in the direction of lower effective mass (greater
curvature) but can be shown to be less than 19, in practical cases.

Two other effects which involve the interaction of electrons with
lattice vibrations are worth mentioning. The optical absorption process
which is responsible for the absorption edge corresponding to the band
gap in Ge and Si is an indirect process which involves a phonon as well
as a photon (66). The theory of this type of transition will be discussed
in Section VII (process 2 in Fig. 13 and in the text), and the predicted
absorption coefficients are there shown to be in order-of-magnitude agree-
ment with the observed values.

A second effect is the broadening of the energy levels of an impurity
center due to the interaction of the localized electron with the lattice
vibrations. This effect has recently been discussed by Lax and Burstein
(106). As discussed further in Section VII these states appear to be very
nearly hydrogen-like in their behavior, in spite of the complexity of the
valence band edge from which they are derived. The mechanism of broad-
ening may be described as follows. As a lattice wave passes over an ac-
ceptor center, a local distortion of the lattice occurs, and if the wavelength
is long enough so that the distortion has constant phase over the dimen-
sions of the impurity wave function, the energy level will be shifted by
an amount which is equal to the local shift in the band edge by the de-
formation potential appropriate to that particular strain, For short wave-
length vibrations the shifts induced in different parts of the impurity
region cancel in phase, so that only phonons whose frequency corresponds
to a temperature of less than 100°K will make an appreciable contribu-
tion to the broadening. Furthermore, most of the broadening will be in
the ground level, since the effective radius of the impurity orbits increases
as the principal quantum number, and the number of lattice modes of
wavelength greater than the critical value thus decreases as the inverse
cube of the principal quantum number of the excited state. Below about
50°K the broadening is due entirely to zero-point vibrations, and ishence
temperature independent. The observation that the broadening begins to
increase above about 50°K is direct experimental evidence for the idea
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that it is only the long wavelength oscillations which play a significant
role.

Lax and Burstein give a theoretical estimate of the width at half-
absorption as 0.003 ev, which is to be compared with the observed width
of 0.001 ev. In making this estimate the complexity of the valence band
was neglected, and it was treated as a single spherical band with an effec-
tive mass such as to give the correct ionization energy for the ground
state. The deformation potential for the lattice vibrations was taken as
purely dilatational and adjusted to give the correct magnitude for the
hole mobility at room temperature in Si. It was also found necessary to
take into account roughly the ‘‘motional narrowing” which arises be-
cause the frequency of the important lattice vibrations is comparable
with the frequency of motion of the hole in its orbit. The disagreement
between the theoretical and experimental line width is possibly not sur-
prising in view of the approximations involved. Also it is possible that
some of the scattering for the mobility is contributed by optical modes,
which would have little or no influence on the broadening. This idea is
supported by the fact that if the deformation potential is computed from
the hole mobility at liquid nitrogen temperature, the ratio of theoretical
to experimental line width is brought down to 1.7.

8. Conclusions

The account set forth in Sections V and VI does not represent a fully
worked out story, either from the theoretical or from the experimental
view. On the theoretical side the approximation of using a collision time,
and the incomplete working out of the consequences of elastic anisotropy
and of anisotropy of the energy surfaces make all the quantitative con-
clusions regarding deformation potentials crude and tentative. The tenta-
tive conclusions which do emerge may be summarized roughly as follows:

1. Magnetoresistance data on n-type Ge and Si support the idea of
(111) and (100) minima for the conduction band edges in these two
materials, respectively. This conclusion, and the deduced mass ani-
sotropies are reasonably consistent with the cyclotron resonance data.

2. In the case of n-type Ge, departures from the theoretical 7—1-5-law
for lattice mobility are slight, and can probably be accounted for by
inter-valley scattering.

3. The thermoelectric power provides a means of estimating the
density of states near the band edges, but gives values which are about
twice too large for both n and p Ge as compared with the values de-
duced from the cyclotron effective masses.

4. The Hall effect and magnetoresistance in » Ge can only be ac-
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counted for by a model involving two types of holes, with a scattering
law having a normal & *-dependence in the lattice scattering range.
It seems most likely that the observed T-%3#-dependence of the hole
mobility must be accounted for by an explicit temperature dependence
of the effective mass for the high-mass holes, probably arising from
interaction with phonons. This is also consistent with the thermoelectric
data on p Ge.

5. Scattering by the shear component of the deformation potential
is quite important in n-type Ge and 8i, but is relatively unimportant
in p-type Ge. Of the possible dilatational components of the defor-
mation potentials which can be deduced from piezoresistance data,
there is one set which is also consistent with the independently meas-
ured pressure coefficient of the band gap. The fit is best if low tem-
perature mobilities are used.

6. For n Ge the theoretical ionized impurity scattering seems to be
smaller than observed by at least a factor of 2.

7. The part of the shift in the band gap with temperature which is
due to electron-lattice interaction is about 2 to 3 times larger than
given by the simple theory, but the deviations can be accounted for
qualitatively in terms of the detailed structure of the conduction bands.

8. The broadening of impurity levels in p Si is somewhat less than is
congistent with the deformation potentials deduced from hole mobility
on a simplified one-band model of the valence band.

VII. Optican PROPERTIES

It is convenient to classify the optical transitions which may occur in
Ge and 8i according to the general scheme shown in Fig. 13. This diagram
shows schematically a series of &(P)-curves for the conduction and va-
lence bands, the direction of P being taken as that which includes the
band edges, in particular the lowest point in the conduction band. Im-
purity levels are also indicated on the diagram as horizontal lines. Since
from Equation (3.11) we have seen that any localized level may be ex-
pressed as a linear combination of band wave functions, the extent of the
horizontal line for a localized state is an indication of the different values
of P which enter appreciably into the linear combination. If the degree of
localization is slight, as with the hydrogenic impurity levels near the band
edges, then only a small range of P in the vicinity of the band edge point
is needed to describe the state. On the other hand, if the localized state
is a trapping center deep in the forbidden gap, then it is highly localized
and requires nearly all the values of P in the band for an adequate de-
scription. Thus in the diagram, nonhydrogenic states are shown with
great extension.
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The possible transitions are indicated by arrows in the diagram. For
simplicity we have considered only absorption processes. Arrows which
join continuously represent two-step processes. These are processes in
which a transition takes place via an intermediate state in such a way
as to conserve energy in the over-all process, but not in the individual
transitions. They are only of practical importance when the direct tran-
sition between initial and final states is forbidden by a selection rule (66,
107, 108).

1. Allowed Transitions (Process 1)

For allowed transitions in solids we have the selection rule
P—P = (h/\)s (7.1)

where ) is the optical wavelength and s is a unit vector in the direction of
propagation of the electromagnetic wave. For a wavelength of 2 X 104
em, the momentum on the right of (7.1) corresponds to an electronic
energy of 3.5 X 10-7 ev, which is entirely negligible; hence, for practical
purposes we may take the right side of (7.1) as equal to zero. Thus an
allowed transition is one which can be represented by a vertical arrow in
Fig. 13.

There are two cases of allowed transitions to be distinguished. The
vertical transition at the point P = 0 may be either forbidden or allowed,
depending on the symmetry of the wave functions corresponding to the
initial and final bands. The transition is allowed only if the wave func-
tions are, respectively, even and odd with respect to reflection in the
origin, i.e., if the initial and final states are of opposite parity. This is
believed to be the case for the valence and conduction bands of Ge and 8i.
Under these conditions the transition probability is approximately con-
stant as a function of P for vertical transitions near P = 0. Since the
total absorption at frequency v is proportional to the total numbers of
pairs of initial states having this frequency, it is easily shown that the
absorption coefficient near the threshold varies according to

= COMd gty — s

1 1 1

(7.2)

Mired m, My

where m, and m, are the effective masses corresponding to the curvatures
at the points P = 0 of the conduction and valence bands, respectively,
n is the refractive index, ¢ is the velocity of light, », is the threshold ab-
sorption frequency, » is the actual frequency, and f;; is the oscillator



ELECTRICAL PROPERTIES OF GERMANIUM AND BILICON 167

strength for the transition—a pure number of order unity. If the tran-
sition were a forbidden one, the selection rule would be violated away
from the point P = 0, and the transition would be roughly proportional
to P2, and hence to an additional power of (» — »;). Such a transition is
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Fia. 13. Graph of energy vs. P for germanjum, showing possible optical processes.

(1) Allowed vertical transition from the valence band to the conduction band.

(2) Indirect transition from near the edge of the valence band to near the edge of
the conduction band (optical followed by phonon transition).

(3) Indirect transition from near the edge of the valence band to near the edge of
the conduction band (optical transition from deep in the valence band, followed by
phonon transition from the edge of the valence band into a hole).

(4) Indirect transition within the conduction band.

(4) Indirect transition within the valence band.

(5)(5")(5") Direct transitions between components of the valence band.

(6) Transition from a normal donor level into the conduction band.

(7) Transition from g deep trap to the conduction band.

still considered as allowed in the sense used hereafter because it satisfies
the selection rule (7.1).

A curve of absorption coefficient vs. hv as determined by Dash et al.
on very thin single crystals of Ge (67) is shown in Fig. 14. The plateau
beyond kv = 0.81 ev is interpreted as the beginning of the allowed ab-
sorption. The absorption coefficient has been followed to above 10® em—!
and appears to be increasing at a rate considerably faster than would be
suggested by (7.2). In fact, the increase is more like the 34-power of
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(v — w), suggesting a forbidden absorption. In any case, the minimum in
the conduction band at P = 0 appears to lie about 0.18 ev above the
conduction band edge. In Si the edge for allowed absorption is more diffi-
cult to locate, but seems to be between 2.0 and 2.5 ev, and again the
absorption coefficient appears to vary more nearly like (v — »;)*, although
the magnitude of the absorption, as well as other evidence discussed be-
low, strongly indicates that the transition is an allowed one.
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Fig. 14. Absorption coefficient of germanium as a function of frequency (W. C.
Dash and R. Newman).

2. Forbidden Absorption (Processes 2 and 3)

As Fig. 14 shows, there is very strong absorption on the long wave
side of the allowed threshold, and this has been interpreted by Bardeen
et al. (66) in terms of a two-step process, as shown in Fig. 13. In the
first step the light produces a vertical transition to a point near P = 0
in the conduction band, and in the second step, a phonon scatters the
excited electron to a position near the band edge. Another two-step proc-
ess which would lead to the same final state is the process 3, in which the
electron is first raised directly from the valence band to the final state in
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the conduction band by an optical transition, and the resulting hole in
the valence band is then scattered by a phonon to a position near the
top of the valence band. The latter process is thought to be somewhat
less probable than process 2.

The transition probability for any two-step quantum mechanical proc-
ess is given by a formula of the general form (708)

GIMAD UML) P

B | e 13)

e =27
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where the summation is over all possible intermediate states, and where
M, and M, are operators representing the constituent processes, Er and
E; are, respectively, the energies of the intermediate and final states, and
p(E;) is the density of final states. For the processes which we are con-
sidering, M, represents the operator for an optical transition and satisfies
the selection rule (7.1), whereas M, represents the operator for the phonon
which has the appropriate momentum to carry the electron from P = 0
to one of the energy minima in the conduction band. Bardeen ef al. (66)
have evaluated (7.3) for the process 2 shown in Fig. 13 and obtain the
formula

eX(mymo)*fir(E1 — Eiay
we= MA@+ 1) o o (Br = B ay

Here m, and m, are the ‘“density-of-states’” effective masses for valence
and conduction band edges, respectively, fir is an oscillator strength,
M,? is a phonon matrix element squared, n, is the number of quanta
excited of the appropriate phonon wave length, and E; — E, is the dif-
ference in energy between the actual quantum energy and the threshold
energy for this type of absorption, i.e., the band gap.

Bardeen ef al. attempt to estimate the phonon factor in (7.4) by means
of the resistivity mobility. For frequencies near threshold (Ey — E)ay
cancels Aw in the denominator, and E; — E; = Eo — E¢, where E, is the
energy at the point P = 0, and E¢ is the energy of the conduction band
edge. Using E; — E¢ = 0.18 ev for Ge, and 1.0 ev for Si, and assuming
an allowed transition at the band center, they obtain

u; = 100 em™!  at 0.72 ev for Ge
u; = 300 em™! at 1.45 ev for Si

(Ey — E)*  (74)

(7.5)

These results are to be compared with 30 cm~?! for Ge and 700 em—1 for Si
found by Dash ef al. Considering the uncertainty in estimating the
magnitude of the phonon matrix element, the theory is in quite good
agreement with experiment. Actually, of course, since the change in mo-
mentum of the electron is rather large, the same phonons are not involved
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in this transition as are involved in ordinary lattice scattering. If we use
the deformation potential approach to estimate 3/,* in (7.5)—a question-
able procedure for short wavelength phonons—we find

koT

M22n, + 1) = E;*— £coth §
. (7.6)
g = o
2koT

where { coth £ reduces to 1 for the phonons that participate in ordinary
lattice scattering. This factor is of order unity for room temperature in
Ge, but may be somewhat larger for 8i. For low temperatures, however,
the factor becomes large, and the phonon factor tends to become tem-
perature independent at low temperatures.*

3. Free Carrier Absorption (Processes 4 and 4')

In the preceding paragraphs we considered processes in which the
electron makes an optical transition between bands. Processes are also
possible in which the electron makes an optical transition within a band
and then reaches the final state via a phonon transition exactly as pre-
viously. The possibility of such processes arises essentially because the
velocity operator for band states has a finite expectation value, so that
nearly diagonal matrix elements for the optical transition exist. Such
processes can be treated by means of Equation (7.3), and this has been
done by Bardeen (110, 111) and by Rosenberg and Lax (112). However,
somewhat similar results may be obtained by a semiclassical approach. In
fact the absorption coefficient may be obtained from the high-frequency
conductivity given in Equation (5.37).

The observed absorption in the forbidden gap has been studied by a
number of workers (174). It is, of course, much weaker than the inter-
band absorption, because the initial states are only very sparsely occu-
pied compared with the initial states in the valence band for inter-band
absorption. The actual transition probabilities from a given initial state
are of the same order of magnitude as for the forbidden inter-band ab-
sorption discussed above (process 2). It is found experimentally that the
absorption is proportional to the number of carriers, and that in intrinsic
material the contributions of the electrons and holes are additive. Further-
more, the absorption varies about as the square of the wavelength, as is
required by (5.37). In n-type Ge the magnitude of the absorption coef-
ficient is many times that predicted for free electrons of the appropriate
de mobility. This is accounted for by the factor v(p)/meu? in (5.37), which

* This discussion ignores the effect of the phonon energy on the energy gap. For a
more complete treatment see reference 109.
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is about 72 for Ge (115). Rosenberg and Lax (112) have shown that addi-
tional absorption could be accounted for by inter-valley phonon induced
transitions, which are not as severely limited by conservation of energy
considerations as in the de case, owing to the energy supplied by the
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Fia. 15. Free electron absorption in n-germanium. From Seventh Quarterly
Report, Purdue University, Project DA 36-039-SC-15339, fig. 15, p. 59.

photon. Another possibility is that for the photon energies involved ac-
count must be taken of the changes in the eurvature of the energy sur-
faces away from the minimum at the band edge. One would expect, how-
ever, that such an effect would lead to a slower variation of absorption
with wavelength than A2 whereas actually the A*-law seems to be well
satisfied for n-type Ge and Si.

It is also predicted by (5.37) that the infrared absorption should vary
inversely with the de mobility. This relation has been tested experimen-
tally by Fan and co-workers (116), and is found to be fairly well obeyed
in the lattice scattering regime, but the behavior in the impurity scat-
tering regime is not understood. Typical curves for n-type Ge are shown
in Fig. 15.
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4. Free Hole Absorption (Processes 6, 5, and 6'")

Another type of transition which can occur involves an allowed type
of optical jump between different branches of the same degenerate band
structure, as indicated by process 5 in Fig. 13. Although this is really a
special case of process 1, it is much weaker and is proportional to the
hole density near the top of the valence band. Two factors account for
the weakness of the transition. First, the transition is forbidden at P = 0,
and the transition probability is proportional to P? and therefore to
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Fic. 16. Optical absorption in p-type Ge, from Briggs and Fletcher, reference 117.

(8, — &) for states near, but away from, the band edge. This is an in-
evitable feature of transitions within a degenerate band structure, be-
cause the different degenerate branches have the same parity at P = Q.
Secondly, and more important, a transition can only occur, consistent
with the exclusion principle, if the final state is empty, so that the total
absorption is proportional to the hole density in the upper state of the
transition pair.

All this leads to an absorption which behaves like free hole absorption
in that it is proportional to the number of conducting holes, but which
does not show the characteristic A? dependence of the electronic absorp-
tion, and is also about 10 times stronger. In fact, as was shown by Briggs
and Fletcher (117}, and as is illustrated in Fig. 16, the free hole absorp-
tion in Ge shows considerable structure, which is, moreover, very tem-
perature dependent. The structure has been explained quite well by
Kahn (715), using the model of a three-fold degenerate valence band,
split by spin-orbit effects into an upper doubly degenerate and a lower
singly degenerate branch. Kahn found that the data were consistent with
the effective masses obtained from cyclotron data, and the short wave-
length peak could be properly explained if the spin-orbit splitting at
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P = 0 were taken to give a separation of 0.28 ev. The transition prob-
abilities can be computed completely in terms of the effective mass pa-
rameters, so that in principle there are no undetermined constants in the
calculation other than the spin-orbit splitting. However, this calculation
program has not been completely carried out. Also, there are some minor
discrepancies between theory and experiment which are difficult to ac-
count for. In particular the absorption at long wavelengths appears to be
less than predicted by theory.

Similar measurements on free hole absorption in Si have revealed no
evidence of structure out to 12 microns (118), and furthermore the A? re-
lation is fairly well fulfilled. Although the spin orbit splitting is probably
less than 0.05 ev for 8i, and therefore one would expect the structure to
appear at much longer wavelengths than in Ge, there is rather surprisingly
no evidence of structure at all.

TasLE IX. Comparison of Optical and Thermal Ionization Energies for Donors
and Acceptors in Silicon

Impurity Thermal Optical
B Acceptor 0.045 (23)= 0.046 (20)
Al § 0.057 (23) 0.067%

Ga “ 0.065 (23) 0.071®
In ¢ 0.16 (23) 0.16b

P Donor 0.044 (23) 0.0460
As ¢ 0.049 (23) 0.056%

& Numbers in parentheses are reference numbers.
® Burstein, Henvis, Picus, and Shulman, unpublished results quoted in reference 30.

5. Absorption by Group III and V Impurities (Processes 6 and 6')

Direct transitions between hydrogenic impurities and the appropriate
conduction bands were first observed in p-type Si by Burstein and co-
workers (20). This observation can only be made at low temperatures,
where the acceptors are appreciably de-ionized. In this way it was possi-
ble to measure the ionization energy of acceptors quite accurately and to
compare it with that determined from Hall and resistivity data at low
temperatures. For boron the agreement was excellent. A more complete
comparison is shown in Table IX, which also shows results for n-type Si
obtained by the same authors. Such discrepancies as appear are probably
experimental and have no theoretical significance. The optical data may
be considered the more reliable. There are no optical results for Ge be-
cause of the longer wavelengths involved and attendant experimental
difficulties.
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An interesting biproduct of these results was the observation of tran-
sitions to excited states of the impurity centers. The positions of the ex-
cited states seem to give a rather striking confirmation of the hydrogenic
model. This is shown in Table X (20).

TasLe X. Comparison of Optical Data on p-Type Silicon with the Hydrogenic
Model

Hydrogen Models B Al Ga In®
1s 0.0460 ev 0.0460 ev 0.067 0.071 0.156
2p 0.0115 0.0116 0.012 0.013 0.019
3p 0.0051 0.0062 0.007 0.009 0.010
4p 0.0029 0.0029 0.003 0.003 0.004

¢ Spherical energy surfaces with m.s = 0.45m,.
t Note that energy of excited states is less reliable in this case. Data taken from
thermal ionization energy.

Similar results have been obtained for donor levels. It is unfortunate
that there is not a good theory with which to compare the experiments
on p-type silicon; in fact, the simple hydrogenic model appears to work
surprisingly well except for the ground state, despite the fact that here
we have to deal with a degenerate band structure in which, furthermore,
the spin-orbit splitting is insufficient to minimize the influence of the
split-off band. Theoretical transition probabilities have also been com-
puted on the hydrogenic model with spherical symmetry. The observed
transition probabilities are in rough agreement with theory, except that
the 1s-2p transition is relatively very much weaker than it should be,
by a factor of the order of 30 (20).

The structure of the absorption corresponding to transitions from the
acceptor level to the valence band is also of considerable interest. A theory
for this for Ge has been given by Teitler, Burstein, and Lax (719). Since
the acceptor level is comprised of band wave functions corresponding to
values of P very close to the band edge, where P = 0, the structure of
this absorption, and the theory for it, is quite similar to that developed by
Kahn for the inter-band transitions (115), except that the momentum
distribution of holes in the final state is determined by the nature of the
impurity level rather than by a Maxwell distribution.

6. Absorption by Other Types of Impurities (Processes 7 and 8)

Transitions may take place directly from deep-lying trap levels to
either the valence or conduction bands. Because of the high degree of
localization in the trap level, the selection rule for allowed inter-band
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transitions has no relevance in this case. Also the solubilities of gold and
the iron-group transition elements, which produce deep lying levels in
Ge, is so small that absorption cannot be observed directly. The tran-
sitions are rather observed through the photoconductivity produced, that
is, from the conductivity resulting from the excited electron or hole (31,
50).

The process is illustrated in Fig. 17 for germanium doped with iron
(60). The photoconductive response is the change in resistance of the
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Fia. 17. Photoconductive response of iron-doped germanium, illustrating corre~
spondence between optical and thermal thresholds, from W. W. Tyler, R. Newman,
and H. H. Woodbury, Phys Rev. 96, 882 (figs. 1 and 2) (1954).

sample per watt of incident light energy, a meaningful quantity, since
the illuminated samples obey Ohm’s law and show a response which is
proportional to the intensity. The position of the thermal activation en-
ergy, as determined from resistivity data, is indicated on the response
curves. In n-type material at liquid N, temperature, the upper Fe level is
partially occupied and the photoconduction originates in the excitation
of an electron into the conduction band. The threshold energy for such a
process should and does correspond roughly to the thermal “ionization
energy’’ of this level, although response is so broad that an accurate com-
parison is not possible. In p-type material, the photoconduction is due to
excitation of an electron from the valence band into an empty lower iron
level, and again the threshold is roughly correct.
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There is an interesting contrast in the behavior of n and p photo-
conduction, however. As seen from the figure, the n-type material is much
more sensitive; also it shows very much longer recovery times after the
illumination is removed. This behavior may be possibly correlated with
the fact that in n-type material it is difficult for electrons to retrap in
the upper le iron level because the center is already negatively charged
and hence possesses a ‘‘potential barrier” for electrons. No such situ-
ation occurs in p-type material, since there is no charge barrier against
recapture of holes. It is found that the strong photoconductivity may
also be ‘““quenched” by simultaneous illumination in the proper wave-
length band. All these effects occur at liquid N, temperature, where both
the Fe levels are filled. This is believed to be associated with the satu-
ration of minority carrier (hole) traps, but a detailed explanation is not
available., At room temperature, where the upper level is only partially
occupied, the principal effect of the Fe is to reduce the recombination
lifetime for carriers injected by light and hence to reduce the photo-
sensitivity. Under these circumstances the deep Fe level is thought to
act as a recombination trap by first capturing a hole and then an electron.
Unfortunately, although most of these effects may be explained quali-
tatively in terms of a model involving singly and doubly charged acceptor
states for the iron, it has so far not been possible to use such a simple
model for quantitative interpretation of the photoconductivity results.*

7. Other Optical Processes

So far the discussion has concerned itself entirely with absorption. It
is clear, however, that whenever absorption is possible there must exist a
converse emission process. Often the emission is difficult to observe be-
cause competing processes make it very weak. So far evidence has been
found for three types of emission processes:

1. Direct recombination of holes and electrons with emission of a
single photon, momentum being conserved by lattice vibrations. This
effect has been observed by Haynes and Briggs (48) and by Newman
(120). 1t is essentially the inverse of process 2 in Fig. 13, and hence
the probability and spectral distribution of the emission can be pre-
dicted from absorption data with the use of the principle of detailed
balancing. This has been done by van Roosebroeck and Shockley (48).
They show that the spectral distribution should be extremely sharply

* Since the above paragraph was written, substantial progress has been made by
Tyler and his collaborators. In particular they have succeeded in explaining most of
the photoconduction and quenching properties of Mn doped Ge in terms of the two
known levels introduced by the Mn impurity.
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peaked at the long-wave limit of the absorption curve, and that the
recombination rate at 300°K corresponds to a lifetime for holes of
0.22 sec. This is much longer than observed life-times, which are
thought to arise from a two-step process (47). This value, however,
seems to be in accord with the experimental results (120) as does the
spectral distribution.

2. Recombination in Ge via a deep trap at about 0.2 ev above the
valence band.

3. Recombination radiation observed (121} when a Si p-n junction
is operated at very high back voltage beyond avalanche break-down
(122). Since, in the high field, both electrons and holes will acquire suf-
ficient energy from the field to produce secondaries, it is energetically
possible for radiation to be emitted which is three times the forbidden
gap, or about 3.5 ev. Nearly constant radiation output is actually ob-
served (121) out to 2.4 ev, after which it falls off but is still measurable
out to 3.4 ev. This explanation, however, is not established and involves
some theoretical difficulties.

In this review we have been mainly concerned with electronic proc-
esses in semiconductors and have therefore confined our discussion to
optically induced electronic transitions. It should be mentioned, how-
ever, that absorption in the far infra red has been found which appears
to be nearly independent of carrier concentration or type and is accord-
ingly ascribed to lattice vibrations. Since germanium and silicon are va-
lence crystals, their lattice vibrations do not interact strongly with an
external field, and hence the resulting absorption is quite weak, compara-
ble in strength to the absorption by impurities at low temperatures (123).
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