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ABSTRACT 

  
    Specific developments in optical technology over the past thirty years including refractive materials, thin film 

coatings and surface profiles will be discussed. A large variety of optical designs which depend on some of these 

developments will be described.  The optical design examples presented will cover the infrared, visible, ultraviolet and 

combinations of these wavebands. A novel multi-waveband optical system that utilizes many of these developments will 

be illustrated in several possible configurations to meet different application requirements. A summary of the 

technologies employed in all of the optical design examples will indicate whether or not there may be trends in optical 

technology development. The optical design examples will be taken from issued Patents or published Patent applications 

and hence their optical prescriptions will be available for detailed analysis.  

 
Keywords:  optical design, technology, materials, coatings, surfaces, infrared, visible, ultraviolet, multi-waveband. 

 
1. INTRODUCTION 

 
    To illustrate optical design dependence on technology development a variety of optical designs covering three 

decades have been selected from the Patent literature. Each optical design example is categorized by waveband of 

operation. The performance of the examples is not presented however all of the examples may be considered high 

performance for their intended applications. In general, the infrared waveband examples may be considered suitable for 

security type applications, the visible waveband examples are designed for consumer, prosumer and high end imaging 

applications, the ultraviolet waveband examples are specific to microlithographic applications and the multi-waveband 

examples may be appropriate for surveillance type applications. 

 

    Before commencing with the optical design examples the following definitions are given. Technology development is 

the progression over time of manufactured components which are materials (optical substrates), coatings (thin films) and 

surfaces (optical surface profiles). Optical design analysis and optimization software is a tool to apply the technology. 

The optical designer creates the optics portion of the optical system design by utilizing the optical design software to 

apply the technology. The object space is to the left and the image space is to the right unless otherwise specified, the 

field of view and numerical aperture are specified using the acronyms FOV and NA and the three wavebands together 

span a total wavelength range from 0.0134μm (13.4nm) to 13μm. After the section on examples a technology summary 

is presented, a couple of potential future technologies suggested and a broad conclusion drawn. 
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2. EXAMPLES 

 
2.1 Infrared waveband 

 
    The following examples show optical designs covering the 3-5μm and 8-13μm infrared waveband regions. 
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Figure 1  

 
    The first optical design example 1.1 shown in Figure 1 is a passively athermalized petzval objective for the 8-13μm 

infrared waveband region which is taken from a 1985 US Patent
(1)

. Three different refractive materials are employed in 

four spherically surfaced lens elements which are supported in an aluminum structure. The dispersion and thermal 

change in refractive index of the refractive materials plus the thermal expansion of the aluminum facilitates an 

achromatized lens system which maintains high image quality over a temperature range from -40°C to +80°C (-40F to 

176F). The key technology here is material. 
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Figure 2  

 
    The second optical design example 1.2 illustrated in Figure 2 is a mechanically compensated afocal zoom telescope 

also for the 8-13μm infrared waveband region which is taken from a 1987 US Patent
(2)

. One major difference between 

the previous example and this example is the increased total number of lens elements from four to eleven. Since 

refractive materials for the 8-13μm infrared waveband region typically exhibit high refractive indices from about 2 to 4, 
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Figure 3  

 
    The third optical design example 1.3 depicted in Figure 3 is an optically compensated afocal zoom telescope again for 

the 8-13μm infrared waveband region which is taken from a 1986 US Patent
(3)

. This design uses two fewer lens elements 

than in the previous example but one lens element surface is aspherical in shape to maintain compactness. The key 

technologies here are coating and surface. 
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Figure 4  

 
    The fourth optical design example 1.4 portrayed in Figure 4 is an achromatized and passively athermalized objective 

for the 8-13μm infrared waveband region and possibly for the 3-5μm infrared waveband region after re-optimization, 

which is taken from a 1996 US Patent
(4)

. The different refractive materials in the air spaced doublet are utilized for their 

dispersive and thermal change in refractive index properties and are combined with a diffractive surface to achieve both 

the color correction and the thermal control. The key technologies here are material and surface. 
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Figure 5  

 
    The fifth optical design example 1.5 shown in Figure 5 is an afocal zoom telescope for the 8-13μm infrared waveband 

region and possibly for the 3-5μm infrared waveband region after re-optimization, which is taken from a 2007 US 

Patent
(5)

. The compound zoom approach of having zoom groups separated by an intermediate image enables both a high 

zoom ratio and a fairly wide field of view to be achieved. However, the compound zoom approach may tend to require 

more lens elements. Therefore, multiple aspherical surfaces are used to provide the desired aberration correction. The 

key technologies here are coating and surface. 

 
2.2 Visible waveband 

 
    The following examples show optical designs covering the visible waveband region. 
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Figure 6  

 
    The first optical design example 2.1 for the visible waveband shown in Figure 6 is a zoom objective which is taken 

from a 1990 US Patent
(6)

. Even though the zoom ratio of 2x is small and the full aperture through zoom is slow the 

system is notable for its simplicity. The use of the two aspherical surfaces in the two zoom groups enables good 

aberration correction in a small package. The surface is the key technology. 

Proc. of SPIE Vol. 7428  742802-4



17

48 48

57

3 4

M

__479

°ssJ76iriii' 76 2

ir_qJ'
43 528

I

51

LIQUID 

DISCOLORATION

ISSUES

LOW 

TEMPERATURE

COMPACT

LOW COST 

GLASSES

BENEFITS





KEY 

TECHNOLOGY

SURFACE

COATING

MATERIAL

LIQUID 

DISCOLORATION

ISSUES

LOW 

TEMPERATURE

COMPACT

LOW COST 

GLASSES

BENEFITS





KEY 

TECHNOLOGY

SURFACE

COATING

MATERIAL

FILM OR 

ELECTRONIC 

DETECTOR

TELEPHOTO OBJECTIVE

Passively Athermalized & Color Corrected System with Liquid Elements
EFL=693mm  F/2.75  ImageØ=28.9mm  Waveband=435-656nm

Liquid 1 Liquid 2

Quintuplet

Al

2 Focus Groups Provide 

Close Focus Object/Image 

Height Ratio <3:1 

Liquid 1

Liquid 2

Quintuplet

Al

Abnormal 

Dispersion Crown 

Glass with Thermal 

Coefficient of 

Refractive Index in 

Opposite Direction 

of Standard Glass

 
 

Figure 7  

 

    The second optical design example 2.2 for the visible waveband illustrated in Figure 7 is a passively athermalized and 

color corrected objective employing liquids which is taken from a 1997 US Patent
(7)

. Usually in fast aperture long focal 

length lens systems chromatic aberration correction may be costly because large diameter lens elements with abnormal 

dispersion glass types are required. To reduce the need for such glasses, a hybrid quintuplet lens group comprising two 

abnormal dispersion liquids and one abnormal dispersion glass is incorporated. The abnormal dispersion glass is used to 

compensate for a mismatch in thermal change in refractive index of the two liquids. Key technologies are material and 

coating. 
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    The third optical design example 2.3 for the visible waveband depicted in Figure 8 is a macro focus wide angle zoom 

objective which is taken from a 2000 US Patent
(8)

. Two aspherical surfaces are utilized, one distant from a pupil space 

and the other quite close to a pupil space, to correct aperture and field dependent aberrations. Particularly noteworthy is 

the fact that there is no simple and compact all spherical equivalent solution when the aspherical surface nearest object 

space is removed. Coatings are also important to maximize transmission given the large number of lens elements and the 

large ray angles at some of the lens element surface normals. Key technologies here are coating and surface. 
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Figure 9  

 
    The fourth optical design example 2.4 for the visible waveband portrayed in Figure 9 is a zoom objective which is 

taken from a 2006 US Patent
(9)

. This system is similar in complexity to the previous example but has a larger zoom ratio 

of 4.7x, is less wide angle, is longer focal length and has a slightly slower aperture. This design relies on ten abnormal 

dispersion glasses for chromatic aberration correction. Key technologies are material, coating and surface. 
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Figure 10  

 
    The fifth optical design example 2.5 for the visible waveband shown in Figure 10 is a telephoto objective employing a 

diffractive surface which is taken from a 2008 US Patent
(10)

. Unlike the previously described infrared waveband 

diffractive example 1.4, the diffractive surface in this system is likely to produce much more scattering at short 

wavelengths of operation. However, as in the earlier liquid lens example 2.2 one task is to reduce the number of costly 

abnormal dispersion glasses and possibly their corresponding weight. The laminated diffractive grating approach may be 

a good solution in those respects. Key technologies are material and surface. 
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Figure 11  

 
    The last optical design example 2.6 for the visible waveband given in Figure 11 is a very large zoom ratio  objective 

using a compound zoom approach which is taken from a 2005 US Patent
(11)

. The compound zoom approach mentioned 

earlier in example 1.5 may require a large number of lens elements and in this wide angle macro focus system, coatings 

are needed to minimize the transmission loss from thirty nine lens elements. Two aspherical surfaces and a multitude of 

abnormal dispersion glasses are utilized to provide the aberration correction. This lens system is about 1m (~3') in length 

and about 0.3m (~1') maximum diameter. Key technologies are material, coating and surface. 
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2.3 Ultraviolet waveband 

 

    The following examples show optical designs covering the ultraviolet waveband including the extreme ultraviolet soft 

x-ray wavelength of 13.4nm. 
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Figure 12  

 
    The first optical design example 3.1 for the ultraviolet waveband shown in Figure 12 is a twenty nine lens element all 

refractive relay taken from a 2002 US reissued Patent
(12)

. Due to the large number of lens elements coatings are 

important to maximize transmission and the lens surface shapes need to be fabricated extremely accurately to realize the 

high resolution required at the short wavelength of operation. The key technologies are coating and surface. 
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Figure 13  
 

    The second optical design example 3.2 for the ultraviolet waveband illustrated in Figure 13 is a hybrid refractive and 

reflective relay taken from a 1990 US Patent
(13)

. Compared to the last example this design has fewer lens elements and 

surfaces. However, a beamsplitter plus tilted and powered reflective surfaces require high quality materials and effective 

coatings. The key technologies are material and coating. 
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 Figure 14  

 
    The last optical design example 3.3 for the ultraviolet waveband depicted in Figure 14 is an all reflective and all 

aspherically surfaced relay taken from a 1998 US Patent
(14)

. For operation at the extreme ultraviolet soft x-ray 

wavelength of about 13.4nm special coatings are required even to provide a single surface reflection of about 70% and 

total system transmission of about 10%. Also, the surface shape accuracy needs to be superlative. The key technologies 

are coating and surface. 

 
2.4 Multi-waveband 

 

    The following examples show optical designs covering several waveband regions, from the visible waveband through 

the 8-13μm infrared waveband region. 
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Figure 15  

 
    The first multi-waveband optical design example 4.1 shown in Figure 15 is taken from a 1998 US Patent

(15)
. The dual 

waveband system combines multiple aspherically surfaced reflective surfaces with a specially coated beamsplitter, to 

collect and direct the visible waveband and the 8-13μm infrared waveband region radiation to two detectors. The key 

technologies here are coating and surface.   
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Figure 16a  

 
    The second multi-waveband optical design example 4.2 illustrated in Figure 16a is taken from a 2008 International 

Patent publication
(16)

. The system harnesses multi-waveband transmitting refractive material, a special beamsplitter 

coating and two aspherical reflective surfaces to collect and direct radiation to two detectors via a beamsplitter which 

separates the visible and near infrared radiation from the 3-5μm infrared waveband region. The triple waveband system 

forms two donut shaped images from a nearly hemispherical field of view and is approximately the size of a golf ball. 

However, there is a blind spot in the center of the field of view and this may be eliminated by reconfiguring the system. 

In Figure 16b it is shown that the blind spot may be replaced with two semi-circular blind spots at opposite sides of the 

periphery of the field of view. This is achieved by splitting the original system into a top section then placing two of 

these top sections back to back, thus creating an „igloo‟ field of view.   
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Figure 16b  
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Figure 16d 

 
    As illustrated in Figure 16c a further refinement may be made to eliminate the two small blind spots by oppositely 

tilting both sides of the system and extending the upper fields of view. To provide an unobscured global field of view a 

second copy of the system may be inverted and placed below the original one thus producing a system that is about the 

size of a tennis ball (see Figure 16d). One downside to all of this reconfiguration is that many detectors are required and 

some of their images need to be stitched together. Introducing additional beamsplitters to combine different radiation 

paths may reduce the total number of detectors required but then the sensing of the images need to be shuttered. The 

image quality of these compact systems is driven more by the requirement for motion sensing rather than resolution. 

Higher resolution may be achieved by enlarging all of the systems. The key technologies in these systems are material, 

coating and surface. 
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3. SUMMARY 

 
    Figure 17 tabulates the various technologies employed versus waveband of operation and decade of occurrence, for 

the previously described examples. Even though the frequency of the technologies is example dependent the tabulation 

gives one cross section of what has happened over the last three decades.  
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Figure 17  

 
    This paper has concentrated on the past; however, a brief mention will now be given about future technology 

development. Two technologies that may appear in future, or become more prevalent, fall into the technology categories 

of material and surface. The first potential technology is the variable power liquid lens cell which may augment or 

replace movable lens groups such as in zoom lenses. Variable power liquid lens cells may provide many significant 

benefits such as reduced mechanical complexity, lighter weight and possibly lower cost. A second potential technology 

is the free-form optical surface and improvements to the specification, optimization and tolerancing of aspheres, all of 

which may offer higher performance for existing and new optical designs. 

 
4. CONCLUSION 

 
    Technology development usually provides optical design improvements but occasionally it is disruptive because it 

dramatically changes the direction of optical design advancement which may enable new optical design solutions that 

lead to highly competitive products. Two past examples of the latter are the dependence of multi element infrared zoom 

lenses on coatings for sufficient transmission and the dependence of high performance visible waveband zoom lenses on 

aspherical surfaces for compact packaging.  

 

    It is difficult to perceive any apparent trend in technology development, however, it may be said that “Necessity is the 

mother of invention” – Plato, c. 400BC.  
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