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Introduction

he first theoretical formula for the evaluation of stresses,
ing in a thin film prepared on a thick substrate, was sug-
ed by G. G. Stoney (1909), and is still widely utilized for
ess calculation from the measured deformation of the
trate. This formula can be written down as follows:

o )
Or=

778 "6phy

re o, is the stress in the film, E2 = E,/l1—v, is the

ilized Young’s modulus for the substrate material, E
are elastic constants of this material, 4, and h; are
es of the substrate and the film, respectlvely, and pis
ius of curvature.

 formula (1) can be obtained on the basis of the follow-
elementary considerations. The bending moment, which a
periencing stress oy, applies to the substrate, is M =
/2). On the other hand, this moment is related to the
~of inertia I, = h3/12 of the substrate cross-sectional
 unit width by the formula M, E I/p) =
12p), where the generalized Young S modulus EY is
account for the two-dimensional stress condition. The
wo-formulas for the bending moment result in the

ciety of Mechanical Engineers.
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An Approximate Analysis of
Stresses in Multilayered Elastic
Thin Films

The analysis contains an engineering method for the approximate evaluation of ther-
mally induced stresses in single and multilayered heteroepitaxial structures
Jabricated on thick substrates, with consideration of the finite size of the structure.
The examined stresses include normal stresses, acting it the film layers themselves
and responsible for their ultimate and fatigue strength, as well as interfacial stresses,
responsible for film blistering and peeling. The developed formulas are simple, easy-
to-use, and clearly indicate how material and structural characteristics affect the
magnitude and the distribution of stresses and deflections. Some recommendations
Sfor smaller stresses in film structures are presented. The obtained results can be
utilized as a guidance for physical design of multilayered heteroepztaxtal structures
in microelectronics.

stants of the film material and its thermal expansion mismatch
with the substrate are unavailable. Otherwise the formula

o;=EjAalt, Ao=a;—a, ?2)

should be utilized. This formula follows from the fact, that
the strain ¢, = «,;Af+ F/EQh, in the substrate must be equal to
the strain €, = ayAt — F/E$h; in the film. The force F, arising
between the film and the substrate, can be found on the basis
of the strain compatibility condition and is as follows: F =
E?thaAt. Then the stress in the film is expressed by the for-
mula (2), which, unlike Stoney’s formula (1), reflects the role
of the actual factors, affecting the stress in the film, while for-
mula (1) can be even misleading, if used for the purpose of op-
timal structural design.

The formulas for the curvature and the maximum bow can
be easily obtained from (1) and (2):

! 6

p E) K
where {is half the film Iength The ex1st1ng methods of stress
calculations  for multilayered heteroépitaxial structures
(Reinhart and Logan, 1973; Réll, 1976; Olsen and Ettenberg,
1977; Vilms and Kerps, 1982) are based on the formulas
(1)-(3). Since these methods deal with the stresses in the film
layered themselves, they can be used only for an indirect
judgement of the level of the interfacial stresses, respons1ble
for film blistering and peeling.

Therefore the major objective of the analysis below is to
develop an engineering method for an approx1mate evaluation
of the interfacial ~stresses in‘ single and multilayered
heteroepitaxial structures, fabricated on thick substrates, and
to find out how the material and structural characteristics af-
fect these stresses. This would enable one to decide what could
be done in order to reduce the interfacial stresses'if necessary.
The suggested approach, based on the concept of the‘viuter"face

) thozAt (3)
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Fig.1 Stress analysis model

¢ompliance (Suhir, 1986), makes it possible to determine the
magnitude and the distribution of the shearing and peeling
stresses in the interfaces, as well as the normal stresses in the
layers, with consideration of the finite size of the structure. It
should be noted that the developed approach is equally ap-
plicable to other areas of physics and material science where
thermal or lattice-mismatched stresses occur (Luryi and Suhir,
1986). It can also be used in those areas of engineering where
lap shear joints subjected to external or thermally induced

- loading are utilized (Suhir, 1986).

Theory

1 Single-Layered Structure. Examine first the simplest
case of a single layer structure fabricated at an elevated
temperature and. subsequently cooled ‘(Fig.  1). The
longitudinal'di‘spla‘c,emmts: us(x) and u, (x) of the lower ex-
treme fiber of the film" and the upper extreme fiber of the

; substrate, respectively, can bgexpressed by the formulas:
\‘:‘Atx?x“igy"f}(fé)ds+ Gl |-
a A= N\ T(E)AE + KfT — T
o f G I i o 2.7 Jo p(¥)
: G : ; ¢ , @)
X oo 1 x d
= oA ‘ - R\ —
e ,‘”ots tx+7\s50 T(»E)d{‘ kT (X) > hsgo >0
where 7(x) is the shearing stress in the interface,
X
T = rea )

is the shearing force per unit film width for the given Cross sec-
tion x, £is half the film length, p (x) is the radius of curvature,
..oy and o AT€ thermal expansion coefficients for the film and
the substrate materials, Ny = (E9hp)~' and A, = (E%h,)~" are
coefficients of axial compliance for the film and the substrate,
EY = E/(1— v;) and EY = E;/(1—vj)are generalized Young
moduli of the materials, /; and h, are the thicknesses of the
film and the substrate,

2/3 (1 +vp)/(1—vp) hy/E}

I

Kr
and

I

ke =2/3(+ v}/ (1 =v5) hy/E?

are coefficients of interfacial compliance (Suhir, 1986), E; and
E, are Young moduli, 7, and v, are Poisson ratios for the film
and the substrate materials, and At is the temperature dif-
ferential. The origin O of the rectangular coordinates x, y is in
the middle of the structure on the interface.

The first térms in equations (4) are unrestricted thermal con-
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tractions. The second terms are due to the forces (5) and are
calculated under an assumption that these forces are uniform-
ly distributed over the film and the substrate thicknesses. The
third terms account for the additional displacements due to
the actual (nonuniform) distribution of the above forces, and
are calculated under an assumption that the corresponding
corrections are directly proportional to the shearing stress in
the given cross section and are not affected by the stresses in
other cross sections. The last terms are due to bending.

The equation of equilibrium for a portion of the film-
substrate structure is as follows:

A=A e SN T
AR T RN R U

+ 2
K=K K, =
f S< 3

Aa=o;—0a;

The equation (9) has the following solution:

where the function x;(X) = k (sinh kx)/ (cosh K0
characterizes the distribution of the shearing stress along the
film. The maximum shearing stress is at the end of the film:

The solution (11) satisfies the condition 7(0) = 0 of symmetr
and the boundary condition T'(9) = 0. )

Calculations show that for the structures in question the
values are very great. Therefore, formulas (1 1) and (12) canb
simplified as follows: / :

As is evident from these formulas, the maximum sheari
stress is independent from the film size, and the stresses dr0
exponentially with the decrease in X, i.e., they concentrd
near the film ends. The length of the zone of high stresses ©
be defined, for instance, as such a length, for which
stresses decrease by, say, 95 percent of their maximum v u
at the edges. This results in the following formula fof
length of the zone of appreciable shearing stresses: =
0.05/k) = 3/k. ‘
After substituting equation (11)in (5) we find:

where the function Xg x) = 1 - (cosh kx)/(COSh ¢
characterizes the distribution of the forces T(X) and

hi+h
f_2 S T(x) =M;(x) + M, (x), ©)
!
E%h3 E°h?
M (x)= Y M (x)= _Tss
() =00 " e ™
are bending moments acting over the cross sections of the film
and the substrate. From the equations (6) and (7) we have:
hi+h . T(x) Tes
b e TS T(X) =6 8 _
SRR B ®
After substituting (8) in (4) and using the condition u,(x) = ing
of the displacement compatibility, we obtain the follow-
ing basic equation for the unknown shearing stress function
x AaAt Tt
- TR === )
L)t L

1+vy _ﬁf_+, 1+ ﬁs__) . ‘
1~y E} 1= EY /)’

7(Xx)= —E?hfxl(x)AozAt, (11)

= 1(f) = — kEQh AcAt tanh k. (12

Tmax

7(%) =Tmax€ s Tmax =7 KEQhAQAL

T(x) =E?hfxo(x)AozAt,
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Fig. 2 Peeling stresses

resulting normal stresses along the film. Note, that x, (x) =
(dxo(x))/(dx).

-By substituting the equation (14) in (8) we obtain the follow-
ing formula for the curvature:

L _ Ejhy AaAt. 15
Then the formulas (7) yleld.
(E0)2h4
M, (x) =ﬁ Xo(x) AcAt,
(16)
E% h
M, (x) ==L 3 (x) AaAt.

ince the thickness of the film is small, the bending moment
r(x) is also small, and therefore the stresses in the film are
ue to the forces 7°(x) only:

T(x) '
=E7xo (x)AcAt.

a7

great k values, the function x, (x) can be calculated by the
rmula x, (x) = 1—e %¢=9_ Ag evident from this formula,
small enough x values, i.e., for the cross-sections suffi-
tly remote from the film ends, the factor x, (x) is close to
y, and the stresses in the film are independent from the
on of the given cross-section along the film length. Near
ends, where the x coordinate is on the same order as half
film length ¢, the stresses rapidly drop and turn to zero at
edges. '
tresses in the substrate, unlike the stresses in the film, are
oth to the force T'(x) and the bending moment M, (x).
> total stresses are maximum at the interface and can be
uated as follows:

T(x)  M,(x) _
. -6 2 (18)

deflection function can be found from the equation
ce for small curvatures 1/(o(x)) = (?w(x))/(dx?).
ufficiently great k values this formula results in the
ing equation for the maximum bow:

B (03
I3 ( 7 ) hpAadt.
e expected distribution of the transverse normal (peeling)
s is schematically shown in Fig. 2 by the dotted line. To
ify the analysis, however, we replace the stresses,
ed upward and distributed over small areas near the
by concentrated forces N, applied at the edges. These

Uf(x) =

A Xo(x)AaAt.

s

Wwo=3 19

s

al of Applied Mechanics

forces, as well as the distributed peeling stress p(x), can be
found on the basis of the following equation of equilibrium
for the portion of the film:

wromo- | | peenyaerae

h h
=M, (%) ___—2f T(x)= ————2f T(x).
Using the equation (14) we obtain:

* 1
NG = p(8)dE =Ny —— Ephx () Acat

=Ny+— h7(x), (20)
dN(x) 1 dx, (x)
= = ——— EVR2AcAt —22
P dx 2 T “ dx
1
= E%R3x,(x) AcAt, @1
where the function x,(x) = —(dx,(x))/(dx) = —k? (cosh

kx)/(cosh kf) characterizes the longitudinal distribution of
the peeling stress. Since the equilibrium condition requires
that N(f) = 0, then

1
]\]0= _T thmax=__

kE’}h}AaAt. (22)
The distributed peeling stress p(x) is max1mum at the end
cross sections:
I 1 ,
Puax =P ()= ——— Ep(khy)?Aadt =—— khyrog. (23)
For great &k valucé the formula (21) can be simplified as
follows:

D(X) =Page” ¥, @4

Hence, the distribution of the peeling stresses in this case is
similar to the distribution of the shearing stress.

It is noteworthy, that while the normal stress in a thin film is
independent from the film thickness, the interfacial stresses in-
crease with an increase in the thickness of the film. Therefore,
there is an incentive to reduce, for smaller interfacial stresses,
the film thickness in the zone of high stresses by slanting the
film edges. In addition, the interfacial stresses, unlike the
stresses in the film, depend on the parameter £ of the inter-
facial compliance, which, in its turn, depends on the thickness
and the Young’s modulus of the substrate. The stress in the
film itself, however, is independent from the thickness and the
Young modulus of the substrate, as long as these parameters
are substantially greater than the thickness and the Young
modulus of the film.

2 Multilayered Structure. Examine now a multilayered
heteroepitaxial structure (Fig. 3). We assume, for instance,
that the coefficients o; (i = 0, 1,2, ..., m withi = OTteferr-
ing to substrate) of linear thermal expansion of the layers in-
crease with an increase in the number #; and that the entire
structure is subjected to uniform cooling.

The analysis, carried out for a single-layered structure, has
indicated that the formula for the shearing force 7'(x) in the
film can be obtained by multiplying the force T = E¥hr AcAt,
calculated under an assumption that it is constant along the
film, by the factor xo(x), which considers the longitudinal
distribution of this force. The interfacial stresses can be then
evaluated by the formulas
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Fig. 3°~ Multilayered structure

M: —Tx; (%), Ny

dx T2 HiTmass

r(x)=T

1
p(x)=—- hTx,(%). (25)

This enables one to simplify the analysis for a multilayered
structure and to avoid forming and solving a system of in-
tegral equations of the type (9). Therefore, the analysis below
is based on the strain compatibility conditions rather than on
the conditions of the compatibility of displacements. The
longitudinal strains ej= | and ef of the upper extreme fiber of
the (i— 1)-st layer and the lower extreme fiber of the ith layer,
respectively, can be expressed as follows: S

. 2 0 2y el ‘

o i=0,1,2,...,m

h;
OliAt—)\iFi '——2-"— )
o)
(26)

el a; 1 At= N Fi +——'—1f )

' Here « is the coefficient of thermal expansion for the ith layer
material, \; = (E%h;)~! is the axial compliance of this layer,
F, is the force acting in the ith layer, p is the radius of cur-
vature, and At is the temperature differential. Using the condi-

tion er,tl = e; of strain compatibility, we obtain:
. h;+h;_,
)\iFi_)‘i—lFi‘l'*'—t'—Z;"_:(O‘i'—ai—l)At’

@n

i=0,1,2,...,m ‘
0to i we have:

After summarizing these equatibns fromi=
(28)

1 .
Fol (NFo+ A=), i=0,1,2, ...
i )\ 0L 0 i o
e .

where Aq; = a;— 0
tween the ith layer and the substrate materials, and

% ho+h;
ai=2hj"“ 0 ! .
j=0

2
summarizing all the equations (28) and considering the ob-

By
vious equilibrium condition ,)’50 F;=0,we find:
. =

29

(30

S
NoFo= —sAt+—,
]
where
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mula: )\()Fo = h0/2p,

The corresponding stresses in the fil

" The shearing force acting in the it
terface between the ith and the i+ 1)

is the thermal expansion mismatch be-

m m
Y Aa/N S a/ If t
R N (1) for
YN YN
i=0 i=0 Tiur
For a muitilayered structure on a thick substrate
(hy > if:o h,) the formula (29) yields: a; = hy/2. In this case
s, = hy/2ands = 0. Then the equation (30) results in the for- Pi

and the equation (28) yields:
_ Aa;At

=EhpaAt, i= 1,2, ..., M (32)

i
m layers are as follows:

i

Ui_—_—__l__

=E0AqAL, i= 1,2, T (33)
dif
an

(i=

i

h interface, i.e., in the in-
-st layers, is .

Ti = (34) Tou

m .
Fy=AtY E0rAey, i=0,1,2 0o m—1.
j=i

~.

value in the formulas (10) for the case ofa

We present the kK
the following approximate way:

multilayered structure in

—_——

(39)
LN )

where the interfacial compliances «; of the layers can be as-

sessed, assuming v, = 1/3, by the formula:
2 14w R _ 4 hi 4 o a6
e e — = =
iT73 T1-y;, E} 3 B 3 o

The distributed stresses in the ith interface can be calculated
on the basis of the formulas (25) as follows: : )

sinh kx
()= = Tix, (0 = =kTy =
7:(X) x1 (%) cosh K

X

j=i+l

Y, b

=i+1

1
D;(x) = Tix,(x)

cosh kx
i cosh kf j

The maximum values of the interfacial forces occur at the end

cross sections:
m
Ti,max = —kT;= _kAtZE?thaj’
j=1
1 m
"=‘—_2__ Ti,max E hj
j=i+1
1 m
Dimax = —'_2‘ szi E hj
j=i+l
1 m m
=5 kAL ): hfZE?hiA“f’
j=i+1 Jj=i
i=0,1,2,...,m-1
Transactions of the ASM




If the layers are applied at different temperatures, the above
formulas for the 7, ,,, and p; ., could be written as follows:

-~

m m
Timax = _kZE})thajAtf = _kEUjhf’
j=i Jj=i
. 1 m m
Pimax = “7"2 2 by B AAL
jeiet s . L (39)
1 m
='—2" kTi,max ) E hj’
J=i+1
0,1,2,...,m—1, J

~ where At; is the temperature change for the ith layer, i.e., the
difference between the application temperature of the material
and the given temperature. On the interface with the substrate
0) we have:

m I
) nax= — Kk ) B9 AcyAt,
' i=0
1 1 m
No= == Tomax Y e (40)
. i=1
) ! y
Po,max =7 kTO,max E hi'
: i=1 y
he maximum bow can be calculated by the formula:
- 3 /0\2 &
wy = (-—) o;h;. 41)

merical Example

he numerical example is executed for a hypothetical
ilayered structure, where a 0.25 um thick SiO, layer,
i thick Al layer, and 5 um thick polymide layer are ap-
on a 0.51 mm thick Si substrate. The stresses and max-
bow are evaluated for the room temperature conditions
0°C). Calculations are performed in Table 1. The half
of the structure, affecting the maximum bow, is { =
. The obtained results indicate that the thermally in-
esses are rather great and could possibly result in in-
ent ultimate and fatigue strength.

ously, in order to be able to make a final conclusion

regarding the cohesive and the adhesive strength of the
materials, one has to know not only the actual stresses, but
also the allowable (design) stress values. The latters are, unfor-
tunately, not available for many materials utilized in
multilayered structures. For this reason, until an appropriate
strength data is available, our analysis, dealing only with the
left part of the strength condition ‘‘actual stress =< design
stress,”’ can be used for the prediction of the stress level and
could, of course, be utilized as a guidance for structural design
of low stress multilayered structures.

Discussion

We now consider how the results of the above analysis
might help our understanding of the thermally induced
stresses in multilayered structures. In addition to normal
stresses acting in the film layers themselves, there are shearing
and transverse normal (peeling) stresses, acting in the inter-
faces. While the stresses in the layers themselves are responsi-
ble for the strength of the film materials, the interfacial
stresses are responsible for blistering and peéling.

The normal stresses in the film layers are practically
uniformly distributed along the film. Only at the very ends of
the structure these stresses rapidly drop to zero. The inter-
facial stresses, on the contrary, concentrate near the edges at
the distances on the same order of magnitude as the thickness
of the multilayered structure. Since thin films do not ex-
perience bending stresses, the normal stresses in thin films are
independent from the layer thicknesses. If, in addition, the
substrate is thick, compared to the total- thickness of the
heteroepitaxial structure, then the normal stresses in the given
film layer become independent from the mechanical properties
of the other film layers and are characterized by the general-
ized Young modulus of the given layer, temperature differen-
tial, and the thermal expansion mismatch between this layer
and the substrate materials. The corresponding normal
stresses in the layers can be calculated by formula (33).

The maximum interfacial stresses arising in the ith layer of a
multilayered heteroepitaxial structure, fabricated on a thick
substrate, can be evaluated by formulas (37). These'stresses in-
crease with an increase in the normal stress level and in the
thicknesses of the layers, located on the ‘“‘free surface’’ of the
structure. The interfacial stresses increase with an increase in
the interfacial stiffness. This effect is accounted for by the fac-
tor k, which is affected by the stiffness of all the heteroepitax-
ial layers.

Thus, if there is a need to reduce the stress level, one should
use materials with small Young moduli and small thermal ex-
pansion mismatch with the substrate. In the case of interfacial
stresses, in addition to the above measure, smaller stresses

Table 1 Stresses in Multilayered Structures (Calculation Sheet)

STRESSES IN

MAXIMUM SHEARING

FILMS.

PELLING

MAXIMUM SHEARING FORCE

STIFFNESS FACTOR MAXIMUM PEELING

" —
o o 2
g 2 =z
o =3 o
E = § = % g & o, PA k. 1/m STRESSES, T, PA STRESSES, p;, PA Ng. N/m
2 = So- = el -
=] 2 - Sw 58 ELs o 83 : 2L £
=l e 2 EE] oz lesle & = B < 2= E =1 £
[ I E ] == EP R IS = 2 Ha. = = = & R G
H s g8 b |12V lEslgs | 2= R 5 < A Y = el s
] = = 2= 2 |[m2g] 84 = f=xoz b = B Sk -
= = &= g E 5 jes 2 S 05 N - | e + S
8 € £5 |& [zE gy | Sw EETE | 22 [ 6 [BY| wi [E2] 2
2 A =R I - E8 S5 | Wil g e
= " b E =°8 52 @ S [ [
LS EPd = u o o LN
< - a” =
o si | o0s08x103 [ 180x107 [ 32xmw0b | 0 0 0 1.084 x 104 | 3.764 % 107 0

2.50x 107 1.60x 107 | 0.9x10% -36.81 | -36074

5i0,

569 | 6.75x10€ 0.0019

0.208x 1079 | -0.0090

=
o
2
g

1.50 x 10°0 108x107 | 236x106 | 0 | 21954 0

1733 | 6.50x 108 0.0056

0.0617

1.850 x 1073 0

0.276 % 10° | 38.0x 106 9.60 2688

5.00 x 108

1733 | 5.00x 108 0.0043

0725 241.6x 10719 | 0.013¢

0.0044 MAXIMUM BOW FACTOR

1.0368 6.201 x 107"

3a(£)2= a6t 0t I

=2
b
Eq\n, b

k= \/’Tmﬁsa_=
6.201x 101

n
MAXIMUM BOW Wy= Ty 2 o= 0.183 x 1070 m
= 1.203 % 105 I/m i=1
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Table 2 Summary of stress characteristics

QVER THE FILM LENGTH

CALCULATION o= EAa; At

FORMULAS

YOUNG MODULUS;
THERMAL EXPANSION
MISM. w/SUBSTRATE:
TEMP. DIFFERENTIAL

DEPEND ON:

CAN BE
REDUCED BY:

USINGASOFTER-MATERIALS. HAVING
SMALLER THERMAL
MISMATCH WITH THE SUBSTRATE

NORMAL SHEAR PEELING
STRESSES
IN THE FILMS IN THE INTERFACES
RESPONSIBLE STRENGTH OF BLISTERING AND PEELING
FOR: THE FILMS (INTERFACIAL STRENGTH)
DISTRIBUTION UNIFORMLY DISTRIBUTED CONCENTRATE NEAR THE FILM ENDS

AT DISTANCES ON THE ORDER OF THE
FILM THICKNESS

2_ 3
K=

SHEAR STRESSES AND
THICKNESSES OF THE
GIVEN LAYER

NORMAL STRESSES AND
THICKNESS OF THE
GIVEN LAYER

STRUCTURAL STIFFNESS (FACTOR k)

REDUCING THE NORMAL STRESSES IN THE
LAYERS ABOVE THE GIVEN LAVER,

SLOPING THE ENDS OF THE LAYERS,

REDUCING STRUCTURAL STIFFNESS (FACTOR k)

¢ouild be obtained by a proper slanting of the layer ends and by
increasing ‘the - structural compliance (resulting in smaller
values of the stiffness factor k). The summary of the results is
givenin T able 2. Note, hat the developed theory is equally ap-
Vplicable'to heteroepitaxial lattice mismatched structures. In
this “cdse the thermal mismatch. strain. AcAt should be

4 substituted by the lattice mismatch strain f uryi and Subhir,
1986).

Conclusion

An approximate engineering - theory of stresses in
multilayered thin film structure fabricated on a thick substrate
is developed. The obtained formulas are simple, easy-to-use,
and clearly indicate the role of the major factors affecting the
stresses. The results of analysis can be utilized for guidance in
thie physical design of multilayered heteroepitaxial structures
in microelectronics.
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