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Abstract. Analytical models for the piezoelectric excitation and for the wet micromachining of resonant
cantilevers are proposed. Firstly, computations of metrological performances of micro-resonators allow
us to select special cuts and special alignment of the cantilevers. Secondly the self-elaborated simulator
TENSOSIM based on the kinematic and tensorial model furnishes etching shapes of cantilevers. As the
result the number of selected cuts is reduced. Finally the simulator COMSOL� is used to evaluate the
influence of final etching shape on metrological performances and especially on the resonance frequency.
Changes in frequency are evaluated and deviating behaviours of structures with less favourable built-ins
are tested showing that the X cut is the best cut for LGS resonant cantilevers vibrating in flexural modes
(type 1 and type 2) or in torsion mode.

1 Introduction

Piezoelectric devices are highly attractive for res-
onators [1,2] and for sensors applications [2–7] and up to
now the quartz crystal remains the reference material for
bulk acoustic wave (BAW) resonators with high stability.
Moreover quartz resonant structures can be fabricated by
wet micromachining [7–9]. The potential MEMS applica-
tions of quartz still simulate the development of quartz mi-
crosensors [6–8]. Vibratory gyroscopes constitute a good
example of combined piezoelectric excitation and MEMS
technology based on quartz crystal.

However in the last decade the langasite (LGS) crys-
tal has attracted attention for sensors operating at ele-
vated temperature [10–12] because this crystal possesses
high piezoelectric coupling, temperature stability and low
acoustic loss [13]. LGS sensors and especially microbal-
ances and nanobalances [10,11] are based on BAW res-
onators vibrating in a thickness shear mode. More re-
cently. Ansorge et al. [13,14] investigated the possibility
to design and to fabricate cantilever beams in Y cut LGS.
These workers fabricated beams with length varying from
1.35 mm to 4.4 mm by chemical etching. Effectively until
2002 the chemical etching of LGS has been primarily lim-
ited to chemical polishing of LGS plates [15–18]. The pos-
sible anisotropy of the dissolution of LGS crystal in acidic
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solutions has not been discussed. Fortunately in the past
few years the selective etching of the LGS crystal in var-
ious etchants has been studied [19–21] showing that LGS
can be also considered as a promising material for MEMS.
The aim of this work is thus to design new LGS sensors
that fulfill the following requirements:

(i) operation of resonant cantilevers with flexion or tor-
sion modes;

(ii) microfabrication of the resonant structure by wet mi-
cromachining which is a low cost batch process.

Cubes from LGS ingots are frequently fabricated with
faces perpendicular to the X and Y crystal axes. The eas-
ily available faces are thus the X and Y faces and the X
cut and the Y cut can be qualified of commercial cuts. It
is the reason why this study is concerned with these two
commercial cuts. The first part of this paper deals with the
piezoelectric effect of LGS and with computations of res-
onance frequency. As a main result we retain several pos-
sibilities for cantilevers vibrating in flexion or in torsion
modes. The second part is devoted to the numerical simu-
lation of 3D etching shapes for LGS cantilevers microma-
chined in a HCl solution. In this part a special attention is
paid to the final 3D etching shape that depending on orien-
tation deviates more and less from the optimum shape. A
final selection of cuts and cantilever alignments is carried
out by combining results of parts 1 and 2. A FEM analy-
sis of theoretical micromachined structures is performed in
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Fig. 1. Definition of primed axes. (a) Wafer orientation and
(b) cantilever alignment.

Table 1. Reference values (ϕ0, θ0) for the angles of cuts of
“commercial” Y and X cuts.

Cut ϕ θ
X 90◦ 0◦

Y 0◦ 0◦

part 3 for the selected orientations. This analysis confirms
that requirements (i) and (ii) may be met for commercial
cuts.

2 Piezoelectric excitation

Let be x∗
1 and x∗

3 the rotated axes corresponding to a
doubly rotated LGS plate (Fig. 1) whose orientation is
defined by means of two angles of cuts (ϕ, θ) according to
the IEEE Standard on piezoelectricity [22]. Adopting this
standard gives the angles of cut listed in Table 1 for the X
and Y cuts that can be considered as “commercial” cuts.

To optimize the metrological performance of a reso-
nant cantilever it is necessary to align the cantilever along
a specific direction x′

1. Hence the final system coordinates
(x′

1, x
′
2, x

′
3) is obtained by a third rotation of Ψ degrees

about the x∗
2 axis (Fig. 1b). This section that is concerned

with flexural and torsional modes of vibration is divided
into two parts:

(i) the first part focuses on piezoelectric coefficients in
order to determine orientations and cantilever align-
ments that give the best piezoelectric excitation for
the two modes;

(ii) in the second part an analytical model is used to com-
pute the resonance frequencies of flexural and torsion
vibration modes.

For convenience in the following the modeling for each
mode of vibration is treated separately.

For piezoelectric excitation of a cantilever vibrating in
a flexural mode in the plane (x′

1, x
′
2) or in a torsion mode

about the x′
1 axis two electrode configurations may be

used (Fig. 2):

(A) the configuration A in which two pairs of electrodes
at excitation voltages +V0 and −V0 are placed on the
upper and lower faces of the cantilever (Fig. 2a);

(a) (b)+V0-V0

-V0+V0

(d)(c)

+V0

-V0

+V0

-V0

Fig. 2. Electrodes configurations and associated electric field
lines. (a, b) and (c, d) are for configuration A and configuration
B respectively.

(B) the configuration B requires four electrodes. The two
narrow electrodes deposited on lateral faces are driven
by a voltage −V0 whereas an excitation voltage +V0

is applied to the two wider electrodes on upper and
lower faces (Fig. 2c).

Figures 2b and 2d present schematically the lines of the
electric field for the configurations A and B that confine
the electric field E in the cross-sectional (x′

2, x
′
3) plane. It

follows the absence of the longitudinal component E′
1 of

the electric field.
Let us recall that the modeling can begin with the con-

stitutive equation for the converse piezoelectric effect [1]
that assumes that strain Sm depends linearly on the elec-
tric field E. Equation (1) is written using the matrix no-
tation:

Sm = dimEi. (1)
There is only five non-zero piezoelectric constants:

d11; d12 = −d11; d14; d25 = −d14; d26 = −2d11. (2)

Sets of material constants have been reported in literature
by several authors [23–28]. Among these sets we have re-
tained for the independent piezoelectric constants d11 and
d14 the values published recently by Malocha et al. [24,25,
27], i.e.

d11 = 6.15 pC/N, d14 = −6.01 pC/N.

When we are concerned with the Cartesian system
(x′

1, x
′
2, x

′
3) equation (1) takes the general form

S′
m = d′imE′

i, (3)

where the primed piezoelectric constants d′ijk obey to the
usual tensor transformation rule that involves the direc-
tion cosines αij of the rotated axis [1].

2.1 Piezoelectric constants for flexural modes
of vibration

For the flexural mode if we take into account the electric
field property it is clear that equation (3) becomes

S′
1 = d′21E

′
2 + d′31E

′
3. (4)
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(a)

(b)

Fig. 3. Electronic field lines associated with pure flexion
modes; (a) and (b) are for flexion type 1 and flexion type 2
respectively.

At this point it is important to recall that the distributions
of the electric field as viewed in Figure 2 show changes
in components E′

2 and E′
3 with corresponding Cartesian

coordinates x′
2 and x′

3. Hence in most cases we observe in-
evitably a dependence of strain S′

1 with these two coordi-
nates that induces a coupling between two flexural modes.
It is imperative that the strain S′

1 depends only on a com-
ponent E′

i. The solution to obtain a pure flexural mode
is thus trivial and consists to select orientation (ϕ, θ) and
alignment (Ψ) for which one of the d′i1 coefficients involved
in equation (4) is equal to zero.

Let us firstly consider the electrode configuration A.
To have a pure flexion mode in the (x′

1, x
′
2) plane (Fig. 3a,

flexion type 1) described by

S′
1 = d′31E

′
3 (5)

we select orientations and alignments that obey at the
following selection rule:

(R1) high primed piezoelectric coefficient d′31 and zero
d′21.

Conversely according to

S′
1 = d′21E

′
2 (6)

a pure flexion in the (x′
1, x

′
3) plane (flexion of type 2,

Fig. 3b) is generated if d′31 is zero a condition that en-
sures the absence of action of E′

3 on S′
1. This leads to the

selection rule:

(R2) high primed piezoelectric coefficient d′21 and zero
d′31.

If we turn attention to the electrode configuration B it
appears that a pure flexion of type 1 (type 2) occurs if
the generation of S′

1 is due to component E′
2 (E′

3) alone.
Consequently the foregoing selection rules R1 and R2 must
be inverted.

Fig. 4. Polar plots of primed coefficients d′
21 and d′

31

(×10−12 V/m). Plots (a) and (b) are for the Y cut. Plot (c) is
for the X cut.

The aim of this paper is to explore commercial LGS
cuts. Among the commercial X , Y and Z cuts only the
X and Y cuts may be excited piezoelectrically. The selec-
tion of alignments for the two electrode configurations is
facilitated by using a graphical representation of d′i1 that
consists of polar plots. The primed piezoelectric constants
are thus computed to draw the polar plots of Figure 4.
At this point it should be mentioned that the graph of
d′31 is absent in the case of the X cut. Effectively taking
into account the zero values of constant d3m and of direc-
tion cosines α31 and α11 we readily find that the primed
coefficient d′31 is equal to zero whatever the alignment.

For technology reasons a flexion of type 1 is frequently
activated. This means that rules R1 and R2 must be satis-
fied for configurations A and B respectively. Nevertheless
possible selections for a flexural mode of type 2 are also ex-
amined. Careful analysis of the polar plots call for several
remarks:

(i) in the case of the cut X it appears that d′21 passes
through a small maximum for alignments Ψ = 135◦
and Ψ = 135◦ and that this primed coefficient takes
enough high value (about 6.15× 10−12 V/m) for can-
tilevers aligned along the Y axis (Ψ = 0◦ or Ψ =
180◦). Taking into account that coefficient d′31 is equal
to zero for any alignment into the X plane it readily
appears that a flexion of type 1 (type 2) may be acti-
vated with the electrode configuration B (A);

(ii) the Y cut seems inappropriate to design resonant can-
tilevers vibrating in a flexural mode. Both primed d′21
and d′31 coefficients exhibit relatively high values for
Ψ in the range (30◦, 60◦) and the three other asso-
ciated ranges. Consequently it is impossible to verify
the foregoing selection rules.

So if we limit our investigation to commercial cuts so-
lutions for pure flexural modes are only for the X cut.
Table 2 summarizes the final selection and gives values of
the primed coefficient d′21.
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Table 2. Selection for the X cut: alignment Ψ , electrode con-
figuration, type of flexion corresponding primed coefficient d′

21

(in V/m).

Ψ(◦) Electrode configuration Type of flexion d′
21

0, 180 A Type 2 6.15 × 10−12

0, 180 B Type 1 6.15 × 10−12

2.2 Piezoelectric constants for torsion modes
of vibration

With a Cartesian system of arbitrary orientation and with
non-zero shear coefficients d′im torsion vibrations can be
activated. For torsion modes about the longitudinal x′

1

axis the resulting shear strains S′
5 and S′

6 may be affected
by electric field’s x′

2- and x′
3-components:{

S′
5 = d′25E′

2 + d′35E′
3

S′
6 = d′26E

′
2 + d′36E

′
3.

(7)

Here again coupling between torsion modes are unwanted.
The way to observe pure torsion modes is to search orien-
tations that obey to the selection rules:

(R3) high values for pairs of primed piezoelectric coeffi-
cients (d′26, d′35) together with zero values for the
(d′25, d′36) pair;

(R4) this rule is simply obtained by inverting the condi-
tions established for rule R3.

From Figure 2 rules R3 and R4 are valid for configura-
tions A and B respectively. Figure 5 gives polar plots of
primed “shear” coefficients for standard X and Y cuts. For
the X cut the primed coefficient d′26 is zero for all possi-
ble alignments. Hence it is impossible to active a torsion
mode with the configuration A. X and Y cuts have poten-
tial advantages for cantilever vibrating in torsion modes
because:

(i) an Y cantilever aligned along the x∗
3 axis (Ψ = 90◦)

that is to say along the so-called Z axis can vibrate
on a perfect torsion mode using the electrode config-
uration B. Effectively we have zero d′26 and d′35, d′31
and d′21 for this special alignment;

(ii) with the configuration B and an alignment at 45◦
from the x∗

1 axis (crystallographic X direction for an
Y cut) or from the x∗

3 axis an Y cantilever can be
satisfactory activated on a torsion mode because d′25
is zero and d′36, d′31, d′21 are small whereas the two
other shear coefficients are high;

(iii) a pure torsion mode can be accomplished with an X
cut and the electrode configuration B for an align-
ment along the x∗

3 axis.

For the selected orientations and alignments the primed
coefficients are listed in Table 3.

Once the selection of special orientations finished it
is necessary for the operating conditions established in
Tables 2 and 3 to determine the resonance frequency. This
is done in the following section.

(a)

d’25 d’36

d’25 d’36

(c)

d’26

d’35

(b)

(d)

d’35

Fig. 5. Polar plots of “shear coefficients”. Graphs (a, b) and
(c, d) are for the Y cut and the X cut respectively.

3 Resonance frequency

3.1 Flexural vibration modes

Let us consider a cantilever which geometry is given by
� for the length, d for the thickness and w for the width.
We suppose that the length � of the cantilever is markedly
larger than cross section dimensions d and w. The condi-
tions of validity of the Bernoulli-Euler model [1,29] are
thus respected. Let us consider a flexion of type 1. Cal-
culations of the resonance frequency are performed in the
framework of this model and involve [30]:

(i) the fundamental equation of the dynamics that here
is applied to a narrow slice of the beam of length Δx′

1

and mass Δm;
(ii) the equation that express the equilibrium of moments

Mx′
3

about the x′
3 axis for the small element of volume

dSΔx′
1.

Then taking into account that for a flexion of type 1 only
stresses T ′

1 and T ′
6 are non-zero and using linear relations
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Table 3. Selected cuts, electrode configuration and corresponding primed shear coefficients (in V/m). n is a positive integer.

Cut Ψ(◦) Electrode configuration d′
25 d′

36 d′
26 d′

35

X 90, 270 B 6.01 × 10−12 6.01 × 10−12 0 0
Y 45+ n90 A 0 2.8 × 10−12 4.6 × 10−12 4.1 × 10−12

Y 90, 270 B 6.01 × 10−12 6.01 × 10−12 0 0

between stresses and strains the equation of motion is
found to be

4d2

3ρs′11
u′

2,111 + ü′
2 = 0 (8)

where ρ is the voluminal mass density, ü′
2 the x′

2 compo-
nent of the acceleration and s′11 is a primed compliance
coefficient associated to the rotated system. The x′

1 and
time t dependent displacement u′

2 can be written as the
product of two functions in which the influence of the two
quantities is separated

u′
2(x

′
1, t) = g(x′

1)f(t). (9)

Substituting equation (9) into the differential equation (8)
and taking into account the boundary condition specific
to a beam clamped at one end the resonance frequency is
found to be

fF = X2
n

d

2π�2

√
1

3ρs′11
, (10)

where X2
n depends on overtone number. For the first res-

onance frequency we have X2
n = 3.516.

Calculations for a flexion of type 2 can be treated
by the same argument. The result follows readily since
we have to interchange some physical quantities in equa-
tions (8) to (10):

x′
2 → x′

3, ü
′
2 → ü′

3, u
′
2 → u′

3, ΔMx′
3
→ ΔMx′

2
,

T ′
6 → T ′

5, d → w. (11)

3.2 Torsional vibration modes

Resonance frequency fT can be determined by adopting a
theoretical framework based on the Saint-Venant hypothe-
sis [30,31]. Hence for a beam with rectangular cross-section
we proceed under the assumption that the state of strain
is composed of

(i) a rotation of cross-sections similar to that occurring
in the case of a cylindrical beam;

(ii) warpings of cross-sections for which analogous formu-
las apply.

Hence the components of the displacement vector in the
rotated system may be written as

u′
1 = δ0ξ(x′

2, x
′
3), u′

2 = δ0x
′
1x

′
3, u′

3 = δ0x
′
1x

′
2. (12)

In equation (12) δ0 is the angle of rotation by unit of beam
length and ξ(x′

2, x
′
3) is the Saint-Venant function. Then we

have to write the condition of mechanical equilibrium for
the rectangular cross section

∂T ′
5

∂x′
2

+
∂T ′

6

∂x′
3

= 0, (13)

where stresses T ′
5 and T ′

6 are connected to non-zero strains
S′

5 and S′
6 by linear relations in matrix form. Combin-

ing these stress-strain relations with equation (12), equa-
tion (13) becomes an equation of partial derivative with re-
spect to the Saint-Venant function. This equation is solved
with the condition of zero stresses on faces perpendicular
to longitudinal axis x′

1. As a result the Saint-Venant func-
tion can be expressed in terms of a series

ξ(x′
2, x

′
3) = x′

2x
′
3 −

8d2

π3

√
C′

55

C′
66

∞∑
n=0

An (14)

with the coefficients of the expansion

An = (−1)n(2n + 1)−3 sin
(

(2n + 1)πx′
2

d

)

×
sinh

(
(2n + 1)πx′

3

d

√
C′

66

C′
55

)

cosh

(
(2n + 1)πw

2d

√
C′

66

C′
55

) · (15)

Then we write the moment Mt due to shears tangential
to the cross section CS

Mt =
∫∫

CS

(x′
2T

′
5 − x′

3T
′
6)dx′

2dx′
3. (16)

This moment is found to be proportional to the rotation
angle according to

Mt = δ0Ct, (17)

where Ct is the coefficient of torsion. Calculations yield

Ct =
C′

55wd3

3

(
1 − 192

w
d

√
C′

55

C′
66

∞∑
n=0

1
(2n + 1)5π5

tanhB

)
,

B =
(2n + 1)πw

2d

√
C′

66

C′
55

. (18)

Equation (18) shows that the coefficient of torsion depends
on the dimensions of the rectangular cross section and on
primed elastic stiffness C′

55 and C′
66. Series involved in

equations (14) and (18) are strongly convergent. Hence we
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Table 4. Values of the resonance frequencies (in MHz) as com-
puted from equations (10) and (21) (theory, case 1). Case 1
corresponds to the standard cantilever defined in Section 3.3.

Cut, Ψ , Mode of vibration Theory, case 1
X cut, Ψ = 0◦, 180◦, Flexion type 1 .10185587
X cut, Ψ = 0◦, 180◦, Flexion type 2 .2851964

X cut, Ψ = 90◦, 270◦, Torsion 1.079256
Y cut, Ψ = 45◦ + n90◦, Torsion 1.3141525

limit the expansion to fourth-order term to compute Ct.
The dynamics response of a resonator vibrating on torsion
modes is governed by a differential equation involving the
torsion angle α(x′

1, t) and the moment of inertia I

ρI
∂2α

∂t2
− Ct

∂2α

∂x′2
1

= 0. (19)

The harmonic solution of the above differential equation
is found taking into account boundary conditions for a
cantilever

α(x′
1, t) ≺ sin (nπx′

1/�) coswt. (20)

Finally writing the energy conservation’s principle yield
the resonance frequency fT as

fT = �−1
√

3Ct[4ρ(w3d + wd3)]−1. (21)

3.3 Discussion

Theoretical values of resonance frequencies fF and fT are
determined from equations (10) and (21) for a standard
cantilever with vertical walls. Dimensions of the cantilever
are � = 420 μm, w = 70 μm and d = 25 μm. In Table 4
we list the results for the selected X cut and cantilever
alignments identified in Tables 2 and 3. For the X cut
vibrating in flexion mode we observe that the frequency
fF is about three times lower for the flexion type 1 (fF
close to .1 MHz) than for the flexion type 2. In the case of
excitation of X and Y cuts in a torsion mode the frequency
fF is close to 1 MHz.

In practice the metrological performance of LGS res-
onant cantilevers may be altered by fabrication process.
The most common sources of deviations from theoretical
predictions are:

(i) deviations from expected cantilever dimensions �, d
and w caused by a micromachining prolonged after
the opening of the resonant structure;

(ii) misalignment of the mask that produces a deviation
ΔΨ with respect to optimal alignment Ψ .

To study the influence of cantilever dimensions on the res-
onance frequency we have to consider separately the dif-
ferent modes of vibration. Firstly we turn attention on
the X cut and on the flexion modes excited by the two
electrode configurations A and B. Figure 6 shows for the
flexion of type 1 relative changes in resonance frequency
ΔfF /fF as a function of relative changes in length � and

ΔΔfF/fF (%) 

Δd/d, Δℓ/ℓ (%)

(1)

(2)
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Fig. 6. Relative changes in the resonant frequency fF with
relative changes in thickness d (1) and in length � (2) for an X
cantilever vibrating in flexion mode type 1.

in thickness d. Note that as we are concerned with rela-
tive changes of influencing parameters plot of ΔfF /fF as
a function of Δw/w for the flexion type 2 will be similar
to plot of ΔfF /fF as a function of Δd/d as drawn in Fig-
ure 6. It can be seen that the plot of ΔfF /fF as a function
of Δd/d is linear with a slope equal to 1 in accord with
the theoretical prediction of equation (10). A converse be-
havior is observed for ΔfF /fF against Δ�/�. The behavior
is characterized by non linear variations and by a decrease
of the resonance frequency with increasing length. At this
point let us outline that a relative change of 10% in width
and thickness correspond to deviation of 7 μm and 2.5 μm
with respect to the standard cantilever. For the LGS crys-
tal that undergoes an anisotropic etching of type 2 [19] it is
clear that for some orientations and cantilever alignments
the underetch beneath the mask can cause such change in
width. Moreover deviating behavior of experimental pa-
rameters (etching duration, temperature of etching bath)
can result in relative changes of ±10% both in width w and
in thickness d yielding equivalent relative changes in fre-
quency. Influence of length cannot be neglected because a
small error of 5% in final length induces an error of −10%
in resonance frequency. Moreover owing to the converse
behaviors of the two plots of Figure 6 it is essential to
undertake a complete study of the final 3D etching shape.

Typical behaviors for a standard Y cantilever vibrating
in torsion mode are plotted in Figure 7. The two plots of
ΔfT /fT as a function of Δd/d and as a function of Δ�/�
are now non linear. Here again the resonance frequency
decreases (increases) with length (thickness). However we
observe less marked changes of the frequency in the case
of torsion than in the case of flexion especially for changes
caused by variations in length.

It is also interesting to follow changes in the res-
onance frequency induced by misalignment of the can-
tilever. Numerical calculations are performed to plot fF
and fT against ΔΨ for flexion (type 1) and torsion modes
respectively (Fig. 8). We observe:
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Fig. 7. Relative changes in the resonant frequency fT with
relative changes in thickness d (1) and in length � (2) for a Y
cantilever vibrating in torsion.
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Fig. 8. Relative changes in the resonant frequencies as a func-
tion of misalignment ΔΨ . Curve (1) is for ΔfT /fT in the case
of torsional mode. Curve (2) is for ΔfF /fF and for a flexion of
type 1.

(i) non linear variations of frequencies fF and fT with
increasing misalignment ΔΨ ;

(ii) negligible changes in resonance frequency for can-
tilevers vibrating on a torsion mode (ΔfT ≤ .7% for
ΔΨ < 5◦);

(iii) more marked changes for the flexion mode with de-
viation reaching 4% when ΔΨ = 5◦.

4 Micromachining and simulations

4.1 The simulator TENSOSIM

Before attempting to comment the software of the simula-
tion tool TENSOSIM let us look briefly to the theoretical

framework of the numerical simulation. For this purpose
let be consider a mask opened on a wafer plane and an ori-
ented surface element dS of orientation (ϕ, θ) potentially
present at the mask edge. We have to track the displace-
ment of dS within the crystal during the chemical attack.
The way to solve this problem is to adopt a model de-
rived from kinematic wave theory [32,33]. This 3D model
(KT model) that combines kinematic theory and tensorial
formulation constitutes an extension to the 2D model pre-
viously proposed by Frank [32]. There are three points of
great importance on which the KT model is constructed

(i) for chemical etchings governed by orientation alone,
a surface element dS moves along a linear trajectory
into the wafer. Consequently we may assign a dis-
placement vector P of components dx1, dx2 and dx3

to dS ;
(ii) theoretical expressions for the components of P may

be derived from the analytical equation for the disso-
lution slowness surface proposed by Tellier et al. [34,
35]. This dissolution slowness surface is just the rep-
resentative surface of a dissolution slowness vector
L associated to a moving surface element dS whose
magnitude ‖L‖= f(ϕ, θ) is the reciprocal of the etch
rate and whose positive direction is that of the unit
inward normal n to dS . So under the assumption that
the dissolution slowness is only orientation dependent
the KT model allows us to compute the displacement
P of all surface elements potentially present at mask
edges;

(iii) a simple method to construct the analytical equation
f(ϕ, θ) for the representative surface is to use a ten-
sorial formulation:

f(ϕ, θ) = L(n1, n2, n3) (22)
= D0 + Dini + Dijninj + Dijkninjnk + . . .

where Di, Dij , Dijk, ... are components of dissolution ten-
sors of rank 0, 1, 2, ... It is expected that observation data
including etching shapes and etch rate data will provide
values of dissolution constants. The number of dissolution
constants is reduced by [36,37]:

(i) arguing that permutations of inward normal compo-
nents in equation (22) give identical dissolution con-
stants (i.e. applying this rule we have D123 = D132 =
D213 = D231 = D312 = D321);

(ii) accounting for the symmetry of the crystal.

For the langasite crystal that belongs to class 32 only two
elements of symmetry may be considered: the two-fold x1

axis and the three-fold x3 axis. Simple but cumbersome
calculations allow us to establish relations (Tab. 5) be-
tween non-zero dissolution constants. Taking further into
account condition (1) we finally expand equation (22) to
obtain an analytical expression L(ϕ, θ) that at each tensor
rank R involved νR independent constants (Tab. 5).

At this point it must be recall that to create a rep-
resentative surface with peaky protuberances and narrow
valleys it is necessary to work with tensors of high rank.
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Table 5. Relations between non-zero constants and number νR of independent constants. In this table we adopt the notation
D1(N1)2(N2)3(N3) where N1, N2 and N3 are the number of subscripts 1, 2 and 3 respectively. Note that N1 + N2 + N3 is equal
to the tensor rank R.

Rank Dissolution constants and relations νR

D1(7) = −(7/3)D1(1)2(6) = −7D1(3)2(4) = −21D1(5)2(2) , D1(3)3(4) = −D1(1)2(2)3(4)

7 D1(5)3(2) = −5D1(3)2(2)3(2) = −(5/3)D1(1)2(4)3(2) , 4

D1(5)2(1)3(1) = −D1(3)2(3)3(1) = D1(1)2(5)3(1)

D1(8) = D2(8) = −7D1(6)2(2) = (35/3)D1(4)2(4) = 7D1(2)2(6)

D1(6)2(1)3(1) = 3D1(4)2(3)3(1) = 9D1(2)2(5)3(1) = −(3/7)D2(7)3(1)

8 D1(6)3(2) = D2(6)3(2) = 5D1(2)2(4)3(2) = 5D1(4)2(2)3(2) 8

D1(4)2(1)3(3) = 3D1(2)2(3)3(3) = −(3/5)D2(5)3(3) , D1(4)3(4) = D2(4)3(4) = 3D1(2)2(2)3(4)

D1(2)2(1)3(5) = −D2(3)3(5), D1(2)3(6) = D2(2)3(6), D3(8)

D1(9) = D1(1)2(8) = −D1(7)2(2) = D1(5)2(4) = D1(3)2(6)

D1(7)2(1)3(1) = −3D1(5)2(3)3(1) = −3D1(3)2(5)3(1) = D1(1)2(7)3(1)

9 D1(7)3(2) = −21D1(5)2(2)3(2) = −7D1(3)2(4)3(2) = −(7/3)D1(1)2(6)3(2) 6

D1(5)2(1)3(3) = −D1(3)2(3)3(3) = D1(1)2(5)3(3)

D1(5)3(4) = −5D1(3)2(2)3(4) = −(5/3)D1(1)2(4)3(4) , D1(3)3(6) = D1(1)2(2)3(6)

D1(10) = D2(10) = 9D1(8)2(2) = 21D1(6)2(4) = 21D1(4)2(6) = 9D1(2)2(8)

D1(8)2(1)3(1) = −D1(6)2(3)3(1) = D1(4)2(5)3(1) = −D1(2)2(7)3(1) = D2(8)3(1)

D1(8)3(2) = 7D1(2)2(6)3(2) , D1(4)2(3)3(3) = 3D1(2)2(5)3(3)

10 D1(6)3(4) = D2(6)3(4) = 5D1(4)2(2)3(4) = 5D1(2)2(4)3(4) 10

D1(4)2(1)3(5) = 3D1(2)2(3)3(5) = −(3/5)D2(5)3(5) ,

D1(4)3(6) = D2(4)3(6) = 3D1(2)2(2)3(6)

D1(2)2(1)3(7) = −D2(3)3(7), D1(2)3(8) = D2(2)3(8), D3(10)

44..33DD  Sampling of 2D profiles (sections Sk) and determination of points Dhi in 
horizontal planes 

55..33DD  Analysis of crossing trajectories in horizontal planes and eliminating tests  

66..33DD  Reconstruction with all elements that participate to the final 3D shape, 
Drawing of the 3D shape  as constant level graphs 

11..33DD  Identification of  concave and convex intersections In of starting mask,  
Introduction of 2D profile elements in section Sk

22..33DD  Calculation of displacements PEki  for all active elements Eki in cross 
sections Sk

33..33DD  Analysis of crossing trajectories and tests to eliminate elements Eki that 
disappear during etching

Fig. 9. The flow chart of the self-elaborated simulator TEN-
SOSIM.

Fig. 10. Geometry involved in step 1.3D. Identification of sec-
tion in (a) and definition of angle αi in (b).

In the present case the database is composed of dissolu-
tion constants related to tensors of rank 7 to 10 that were
determined from experiments.

The software of the self elaborated simulator TEN-
SOSIM [38,39] consists of six principal steps according to
the flow chart of Figure 9. Let be a mask of more and less

Fig. 11. Crossing trajectories in section Sk (a) and geometry
involved in step 4.3D (b).

complicated shape whose contour presents successive con-
vex or concave intersections In (Fig. 10) be patterned on a
reference surface with orientation (ϕ0, θ0). In practice we
have to work with all cross-sections Sk present at an inter-
section In. A section Sk is now defined by three angles ϕ, θ
and Ψ . In step 1.3D we work with successive sections Sk

and in a section Sk the dissolution profile is composed of
successive elements Eki (Fig. 10a). For convention the hor-
izontal element EN related to the wafer plane is located
as αN = 0◦ consequently angle αi varies from −180◦ to
0◦. Step 3.3D merits also comments. In a cross-section Sk

extremities of displacements PEki create an oriented path
showing crossings (Fig. 11a). To extract the final disso-
lution profile beneath the mask (in bold line in Fig. 11a)
we have to eliminate such crossings. For this purpose spe-
cial algorithms called “eliminating tests” are elaborated.
As a result of step 3.3D final dissolution profiles are deter-
mined in successive cross-sections Sk. A dissolution profile
intersects a plane parallel to the reference surface at point
Dhi. Step 4.3D shows that points Dhi related to succes-
sive dissolution profiles generate a path in the horizontal
plane into consideration with here again some crossings.
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Section AA’ 

(a2)

(a1) (b1)

Section AA’ 

A

A’

A

A’

(b2)

Fig. 12. Simulations: (a1, b1) for cantilever etched on a Y cut
(Ψ = 180◦) and (a2, b2) on the face 1 of an X cut (Ψ = 90◦).

In step 5.3D these crossings disappear by means of spe-
cific eliminating tests. This procedure gives finally a 3D
etching shape as a constant level representation.

4.2 Simulations

An anisotropy of type 2 was recently observed [21] for the
chemical attack of LGS plates in HCl:H2O of composition
2:1. The satisfactory database (dissolution constants of
ranks 7 to 10) extracted from experimental data is intro-
duced in the simulator TENSOSIM to derived theoretical
shapes for 3D cantilevers. Let us start with a LGS wafer
150 μm thick with double sided masks. A two step pro-
cedure is performed to obtain a cantilever 25 μm thick
at the opening of the structure. A rectangular membrane
(125 μm thick) is firstly micromachined on the lower sur-
face of the wafer. Further etching of the upper surface
causes the opening of the cantilever. Figures 12 to 15
show theoretical shapes of resonant structures etched on
selected cuts. Shapes are derived for an etching duration
that ensures the structure opening. Drawings of top shapes
of cantilevers can be found in (a). Cantilevers built-ins
(cross-sections AA′) and cross-sections CC′ are viewed in
(b) and (c) respectively. From a technical point of view
or from a mechanical point of view the following three
situations are considered to be favorable:

(I) nearly vertical lateral edges for cantilevers excited
with the electrodes configuration B;

(II) no re-entrant profiles for cross-sections AA′ (see
Fig. 15b for example);

(III) nearly similar slopes for the two lateral edges (as in
Figs. 12a2, 14a and 15a);

(IV) symmetrical built-ins. A perfect symmetry may be
observed for example in the case of the theoretical
cantilever displayed in Figure 12a2.

’

Section AA’

(b)

(c)

C C’Nearly
symmetrical

Cantilever section CC

Fig. 13. Simulations for a cantilever etched on a Y cut with
alignment Ψ = 225◦.

Section AA’

Cantilever section CC’ 

    (a)

       

(c)

(b)

Fig. 14. Simulations for the face 1 of an X cut and an align-
ment along Y axis (Ψ = 180◦).

Point (I) constitutes a severe technical requirement. Look-
ing at Figure 12a it appears that simulations predict
the formation of two markedly different cantilever edges
namely a vertical edge and an inclined edge (inclination
angle with a mean value close to 40◦). Consequently the
orientation (Y cut, Ψ = 90◦) selected in above section
to fabricate a cantilever vibrating in torsion must be re-
jected even if built-in exhibits (Fig. 12b1) a suitable cross
sectional shape.

Points (II) and (IV) are expected to be explored by an
analysis based on a Finite Elements Method. Such an anal-
ysis may be of interest for a cantilever micromachined on
a Y cut and aligned at 225◦. Simulations (Fig. 13) reveal

20303-p9



The European Physical Journal Applied Physics

Section AA’

Cantilever section CC’ 

(a)

(c)

(b)

Fig. 15. Simulations for the face 2 of an X cut and an align-
ment along Y axis (Ψ = 180◦).

that etching causes the formation of an adequate cross-
section together with nearly symmetrical built-ins on both
sides of the beam. However the cantilever section CC′ in
Figure 13c is composed of edges with different features
(an inclined edge with outward normal and a re-entrant
edge). At this point it is important to remark that:

(i) previous study [40] has shown that the shape of can-
tilever cross section does not decrease dramatically
metrological performances of resonant beams;

(ii) an electrode configuration of type A is used to ex-
cite piezoelectrically this Y cut cantilever and con-
sequently the influence of shape (Fig. 13c) is not so
critical;

(iii) the two faces of a Y cut are etched with the same dis-
solution slowness making the dimensioning of masks
on the two faces more easy.

In contrast with the Y cut the two faces of an X cut have
different dissolution slowness (Lface1/Lface2 ∼= 3.2) so the
fabrication is complicated: the identification of the X face
is now necessary and adjustment of dimensions for the
doubled sided masks is required. Figures 14 and 15 refer
to cantilevers vibrating in flexion (alignment Ψ = 180◦ for
the two faces). Theoretical simulations as derived by the
simulator TENSOSIM call for several remarks:

(i) the micromachining of the resonant beam on face 1
results in a beam with nearly vertical lateral edges
(Fig. 14c), with a crudely perfect vertical built-in
(Fig. 14a) and with a smoothly inclined shoulder

(Fig. 14b). Such a resonant beam can be considered
as adequate for the two types of flexion;

(ii) if the micromachining is performed on face 2 the sym-
metrical beam edges are composed of two facets, one
facet is somewhat vertical and the terminal facet is in-
clined at about 40◦. The vacuum deposition of lateral
electrodes on such edges does not constitute a good
solution for the piezoelectric excitation. However here
again the built is perfectly symmetric making inter-
esting the face 2 for a flexion in the (x′

1, x
′
3) plane

(flexion of type 2).

Hence owing to these two remarks the orientation (Y cut)
and the alignment Ψ = 225◦ are retained for microfabrica-
tion tests. In the case of the Y cut and of cantilever vibrat-
ing in torsion mode this alignment is the alone alignment
possible. Effectively for the other alignments determined
in Table 3 the micromachining is found to create highly
asymmetric built-ins.

In practice only the X cut appears to be very interest-
ing for the design of new LGS micro-resonators. So Table 6
furnishes information on the final selection and on corre-
sponding theoretical resonance frequency (theory, case 2).
For all selected alignments final dimensions of cantilever
calculated by the simulator are introduced in computation
of the resonance frequency.

5 FEM analysis

A finite element method (FEM) is used to compute vibra-
tions for various cantilevers listed in Table 4. In a first step
FEM simulations are performed for cantilevers having on
the one hand the geometry characterized by vertical walls
and on the other hand average values for length and width
as evaluated from simulations. The FEM analysis takes
into account the anisotropy of LGS crystal and calculates
the elastic coefficients for all selected orientations. Table 6
gives values as computed from analytical models (theory,
case 2) and as evaluated by the simulator COMSOL�.
Stress mappings related to X cantilevers are displayed in
Figure 16.

Let us firstly compare theoretical values of the reso-
nance frequency as computed in cases 1 (Tab. 4) and 2
(Tab. 6). As the two faces of an X cut dissolve with dif-
ferent etch rates the simulator gives mean values of � and
w that show relatively marked differences (about 40% for
�, see Figs. 14b and 15b). Consequently the resonant fre-
quency of an X cut vibrating in flexion depends strongly
on the face on which the mask is patterned. Moreover
for all selected orientations simulations furnish length and
width that deviate from standard � and w. In fact devi-
ation reaches more than 30% in most cases showing that
firstly dimensions of the mask pattern must be subjected
to important corrections and that secondly the etching
parameters (duration of etching, temperature) must be
carefully supervised during the micromachining process.
Secondly the comparison (Tab. 6) of theoretical results
with FEM results as obtained in case 2 is quite successful.
Values of the resonance frequency as collected in the third
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Table 6. Values of the resonance frequencies (in MHz) as computed from equations (10) and (21) (theory, case 2) and as
evaluated from FEM analysis. Case 2 is for an X cantilever with vertical walls but with mean length and width as derived from
simulations of etching shapes.

Cut, Face, Ψ , Mode of vibration Theory, case 2 FEM, case 2

X cut, face 1, Ψ = 0◦, 180◦ , Flexion type 1 .137109 .1381535

X cut, face 2, Ψ = 0◦, 180◦, Flexion type 1 .0907172 .090963

X , face 1, Ψ = 0◦, 180◦, Flexion type 2 .38391 .3770983

X cut, face 2 Ψ = 0◦, 180◦, Flexion type 2 .322953 .3134445

X cut, face 1, Ψ = 90◦, Torsion 1.25217 −
X cut, face 2, Ψ = 90◦, Torsion 0.73213 −

Maximum

   Mean

Minimum

  (a) 

  (b)

Maximum

Maximum

Minimum

Minimum

    

     Mean 

  (c) 

Fig. 16. Stress mappings as derived for cantilevers with mean
dimensions as evaluated from simulations. Mappings (a), (b)
and (c) are for the X cut and for flexion type 1, flexion type 2
and torsion modes respectively. Regions with maximum and
minimum stresses are identified on graphs.

column of Table 6 are close to theoretical values. There is a
maximum discrepancy of 2% and 4% between theoretical
and FEM values for flexions type 1 and 2 respectively.

Owing to this satisfactory agreement tentative are then
made to apply the FEM analysis to final shapes of can-
tilevers as derived by the simulator TENSOSIM. It is rea-
sonable to assume that the shape of cantilever built-in has

Table 7. Frequency shifts for the two types of flexion.

Cut Ψ(◦) Flexion type 1 Flexion type 2
X face 1 180 ΔfF1/fF1 ≈ −4.5% ΔfF2/fF2 ≈ −9.5%
X face 2 180 ΔfF1/fF1 ≈ 46% ΔfF2/fF2 ≈ 50%

also an influence on the resonance frequency. In particular
different behaviors are expected for two cantilevers having

(i) for one cantilever a smooth built-in composed of suc-
cessive profile elements with outward normal. Fig-
ure 14b gives a good example of smooth built-in;

(ii) for the other cantilever a sharp built-in characterized
by a re-entrant profile (see Fig. 15b).

So the main objective is now to study the influence of the
final etching shape of the cross-section AA′ on the perfor-
mance of resonant cantilevers. Hence in a second step the
3D shapes furnished by the simulator are introduced in
the simulator COMSOL� for the meshing. As Section 4.2
reveals that the longitudinal cross-sectional shapes of X
cantilevers aligned along the Y axis (Ψ = 180◦) can il-
lustrate conveniently the two expected different behaviors
the FEM analysis now focuses on X cantilevers vibrat-
ing in flexion. Active stress components are plotted across
the cantilever area for the cross sectional shapes drawn in
Figures 14b and 15b for the two types of flexion (Figs. 17
and 18). Clearly in the case of the flexion of type 1 we
can in the region of maximum stress depict differences be-
tween stress mappings as viewed in Figures 17a and 17b.
In addition shifts ΔfF of the resonance frequency are nu-
merically evaluated (Tab. 7). As expected changes in reso-
nance frequency result from modification in the standard
rectangular shape. Moderate falls are observed for the can-
tilever etched on face 1 characterized by a smooth lon-
gitudinal profile. In contrast a re-entrant profile as that
formed in the case of the cantilever micromachined on
face 2 induces for the two flexion modes marked increases
in the resonance frequency with deviations reaching 50%.
Consequently the face 2 seems to be less favourable than
the face 1 for flexural modes.

6 Conclusion

An analytical model for the piezoelectric excitation of lan-
gasite cantilevers is proposed. Theoretical expressions of
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(b)

Maximum 

Maximum 

Minimum 

Minimum 

(a)

Fig. 17. Stress mappings as derived for simulated X can-
tilevers. Mappings (a) and (b) are for the flexion type 1 and
for faces 1 and 2 respectively. For convenience regions with
maximum and minimum stresses are identified on graphs.

the resonance frequency are derived for cantilevers de-
fected by pure flexion modes or submitted to a pure
torsion. The possibility with commercial cuts to design
cantilevers vibrating in two pure flexion modes or in pure
torsion mode is explored. For the selected cuts and can-
tilever alignments the resonance frequency is evaluated. To
our knowledge the proposed selection is new. Effectively
the recent work of Ansorge et al. is concerned with a Y cut
and a cantilever aligned along the X axis (Ψ = 0◦) that is
defected by a shear strain. So in contrast with the present
work the Y cantilever of Ansorge does not vibrate on a
pure mode. The wet etching is the process retained for the
microfabrication of the cantilever. The wet etching of the
LGS crystal that was recently found to be characterized
by an anisotropy of type 2 is conveniently described by a
3D tensorial and kinematic model whose theoretical basis
are given. In particular relations between the independent
dissolution constants are listed in order to make possible
the tensorial formulation of the dissolution slowness sur-
face. The principal steps of the self elaborated simulator
TENSOSIM that starts with this analytical formulation
are described and emphasis is placed on how we find a
way:

(i) to decompose in successive surface elements the start-
ing surface that is demarcated by a complex mask
contour composed of concave and convex regions;

(ii) to perform eliminating tests.

(a)

(b)

Maximum 

Maximum 

Fig. 18. Stress mappings as derived for simulated X can-
tilevers. Mappings (a) and (b) are for the flexion type 2 and
for faces 1 and 2 respectively. For convenience regions with
maximum and minimum stresses are identified on graphs.

Theoretical 3D etching shapes are then derived for the
previously retained cantilevers. The final selection of can-
tilevers takes into account the “symmetry” of the can-
tilever with respect to the longitudinal axis and the for-
mation of nearly vertical lateral edges. With the symmetry
requirement only the X cut is retained for the pure torsion
mode. In addition the influence on resonance frequency of
the longitudinal built-in shape is studied by a FEM analy-
sis. As a main result a re-entrant built-in causes a vibrat-
ing behavior that differs markedly from that observed for a
smooth built-in. Owing to the marked frequency shift pro-
duced by a re-entrant built-in the final selection for flexion
mode falls on a cantilever micromachined on face 1 of the
X cut. The X cut is found to be the best cut for LGS
resonant cantilevers vibrating in flexural modes (type 1
and type 2) or in torsion mode. Whatever is the vibration
mode the cantilever must be etched on the face 1 of the
X cut. Care must be taken that the resonance frequency
depends on final length and width or thickness. Hence the
simulation is also a help to the dimensioning of masks
patterned on the two faces of the selected cut.

Finally the CAD design that combines computations of
metrological performances, simulation of micromachined
shapes and FEM analysis confirms that it is possible to
fabricate resonant cantilevers vibrating in flexural modes
(type 1 and type 2) or in torsion mode with the commer-
cial X cut. The micro-fabrication of X cantilevers as well
as tests on metrological performances will be investigated
in the future.

20303-p12



C.R. Tellier et al.: CAD of LGS resonant cantilevers

References

1. W.G. Cady, Piezoelectricity (Dover, New York, 1946),
Vol. 1

2. E.P. Eernisse, R.W. Ward, R.B. Wiggins, IEEE Trans.
Ultrason. Ferroelectr. Freq. Control 35, 323 (1988)

3. D.S. Ballantine, R.M. White, S.J. Martin, A.J. Ricco, E.T.
Zellers, G.C. Frye, H. Wohltjen, Acoustic Wave Sensors
(Academic Press, San Diego, 1997)

4. J. Zhang, C.C. Dai, X.D. Su, S.J. O’Shea, Sens. Actuat. B
84, 123 (2002)

5. V.M. Mecea, Sens. Actuat. A 40, 1 (1994)
6. M. Dufour, M.T. Delaye, F. Michel, J.S. Danel, B. Diem,

G. Delapierre, Sens. Actuat. A 34, 201 (1992)
7. J.S. Danel, F. Michel, G. Delapierre, Sens. Actuat. A 23,

971 (1990)
8. J. Liang, F. Kohsaka, T. Matsuo, T. Ueda, IEEJ Trans.

Sens. Micromachines 127, 337 (2007)
9. C.R. Tellier, T.G. Leblois, IEEE Trans. Ultrason.

Ferroelectr. Freq. Control 47, 1204 (2000)
10. T. Leblois, AST 51, 191 (2006)
11. H. Fritze, H. Tuller, H. She, G. Borchardt, Sens. Actuat.

B 76, 103 (2001)
12. H. She, H.L. Tuller, H. Fritze, Sens. Actuat. B 93, 169

(2003)
13. E. Ansorge, S. Schimpf, S. Hirsch, J. Sauerwald, H. Fritze,

B. Schmidt, Sens. Actuat. A 130-131, 393 (2006)
14. E. Ansorge, S. Schimpf, S. Hirsch, J. Sauerwald, H. Fritze,

B. Schmidt, Sens. Actuat. A 132, 271 (2006)
15. S. Laffey, M. Hendricson, J.R. Vig, in Proc. IEEE Int.

Frequency Control Symp. (IEEE, 1994), pp. 245−250
16. H. Hyoung, K.B. Shim, K.H. Auh, T. Fukuda, Mater. Lett.

46, 354 (2000)
17. H. Takeda, S. Okamura, T. Shiosaki, J. Mater. Sci. 21,

1117 (2002)
18. C.R. Tellier, Research Report No. 03034020, DGA, Paris,

(2006)
19. C.R. Tellier, M. Akil, T.G. Leblois, in Proc. 2006

IEEE Ultrasonic Symp., Vancouver, Canada (2006), pp.
1931−1934

20. C.R. Tellier, M. Akil, T.G. Leblois, in Proc. IEEE Int.
Frequency Control Symp., Geneva, Switzerland, 2007, pp.
671−677

21. C.R. Tellier, M. Akil, T.G. Leblois, in Proc. 22th European
Frequency Control Symp., Toulouse, France, 2008, p. 9

22. T.R. Meeker, IEEE Standard on Piezoelectricity
(ANSI/IEEE Std 176, 1987)

23. B. Mill, Y. Pisarevsky, in Proc. IEEE Int. Frequency
Control Symp., Kansas City, MO, 2000, pp. 133−144

24. D. Malocha, M. Pereira da Cunha, in Proc. IEEE Int.
Frequency Control Symp., Seattle, WA, 2001, pp. 291−295

25. M. Pereira da Cunha, D. Malocha, IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 49, 656 (2002)

26. S. Smythe, E. Hague, in Proc. IEEE Int. Frequency Control
Symp., Kansas City, MO, 2000, pp. 191−194

27. D. Malocha, H. François-Saint-Cyr, K. Richardson, R.
Helmbold, IEEE Trans. Ultrason. Ferroelectr. Freq.
Control 49, 350 (2002)

28. J. Kosinski, R. Pastore, M. Pereira da Cunha, D. Malocha,
J. Detaint, E. Bigler, in Proc. IEEE Int. Frequency Control
Symp., Seattle, WA, 2001, pp. 278−286

29. T.G. Leblois, C.R. Tellier, in Proc. 2006 IEEE Ultrasonic
Symp., Vancouver, Canada, 2006, pp. 1918−1921

30. A. Love, A treatise on the mathematical theory of piezo-
electricity (Dover, New York, 1944), pp. 381−443

31. C.R. Tellier, T.G. Leblois, Sens. Actuat. A 132, 224 (2006)
32. F.C. Frank, in Growth, Perfection of Crystals, edited by

R.H. Doremus, B.W. Robert, D. Turnbull (Wiley, New
York, 1965), p. 411

33. K. Sangwal, Etching of Crystals (North Holland,
Amsterdam, 1987)

34. C.R. Tellier, N. Vialle, J.L. Vaterkowski, Surf. Coat.
Technol. 34, 417 (1988)

35. C.R. Tellier, J.L. Vaterkowski, J. Mater. Sci. 24, 1077
(1989)

36. W. Don Shaw, J. Electrochem. Soc.: Solid State Sci.
Technol. 128, 874 (1981)

37. C.R. Tellier, J.Y. Amaudrut, A. Brahim-Bounab, J. Mater.
Sci. 26, 5595 (1991)

38. C.R. Tellier, J. Mater. Sci. 33, 117 (1998)
39. C.R. Tellier, A. Charbonnieras, Sens. Actuat. A 105, 62

(2003)
40. C.R. Tellier, T.G. Leblois, S. Durand, in Proc. 18th

Workshop on Micromachining, Micromechanics and
Microsystems, Guimareas, Portugal, 2007, pp. 19−22

20303-p13


	Introduction
	Piezoelectric excitation
	Resonance frequency
	Micromachining and simulations
	FEM analysis
	Conclusion
	References

