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Supplementary Figures
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Supplementary Figure S1: Band structure of Bernal stacked (ABA) trilayer graphene.

(a) Energy band structure at zero transverse electric field (∆1 = 0). The ABA TLG bands are

composed of a combination of BLG-like subbands (red)and MLG-like subbands (blue). The low

energy subbands are composed of offset, overlapping MLG-like and BLG-like bands. While at most

energies TLG is a multiband conductor, a small energy window of ∼15 meV exists near charge

neutrality in which the hole type MLG-like band is isolated. Trilayer graphene is thus purely MLG-

like in a small charge density window of ∆n ∼ 1011 cm−2. Accessing this regime is only possible if

carrier inhomogeneity over the sample is n < 1011 cm−2, necessitating high mobility devices. (b)

Two terminal resistance data as a function of the VBG at nTG = 0, at T ∼ 300 mK. We estimate the

field effect mobility in our device from the Drude model, µ = (L
′
/W )(1/C)dG/dVBG, where L

′
is

the channel length, W is the channel width, and C is the capacitance per unit area. The estimate

gives (µ = 60, 000 cm2V−1s−1) close to the charge neutrality point. By measuring the full-width at

half-maximum of the resistance peak (∆VBG = 1.2 V), we estimate a charge carrier inhomogeneity

to be ∆n ≤ 8.1010 cm−2. We estimate the mean free path of the charge carriers from the formula

σ = (2e2/h)kFlmf to be lmf = 600 nm. (c) Energy band structure at finite transverse electric field.
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Supplementay Figure S2: Electrostatic profile in the giant oscillation regime for three

different values of top gate voltages (VTG). A broad crossover region divides the regions

characterized by isolated MLG-like and BLG-like bands. Inset, Detail of the crossover region.

Deep in the GLs, the charge carriers are purely MLG-like, while in the center of the LGR they

are purely BLG-like. In between, fringe fields from the local gate lead to a wide crossover region

characterized by multiband transport.
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Supplementary Figure S3: Temperature dependence and observation of the giant

oscillation in different samples. (a) Temperature dependence of the giant FP oscillations with

VBG = 0.8 V (nGLs ∼ 1011cm−2) performed on sample 1. Increasing the temperature increases the

conductance of the sample in this regime, simultaneously attenuating the giant oscillations. Both

effects are qualitatively consistent with expectations. The insulator-like temperature coefficient

suggests thermal activation of GL carriers to the BLG-like conduction and valence bands. The

giant oscillations are robust up to temperatures of ∼50 K. This number is roughly consistent

with the available energy window for monolayer-type states in the GLs of about 15 meV. A naive

estimate would set an upper bound of TMAX ∼ 15meV/(2kB) = 87 K. However, disorder likely

suppresses this further, by at least 1 meV∼ 10 K (ref. 31). Further calculations are required in

order to understand the role of other decoherence processes at finite temperature. (b) Observation

of the giant FP oscillations at 300 mK on sample 1. (c) Observation of the giant FP oscillations

at 300 mK on sample 2.
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Supplementary Figure S4: Magnetic field dependence of the small FP oscillations. Here

we plot the derivative of the resistance with respect to VTG for several values of VBG. The inset

in each figure depicts the energy band structure of the GLs and LGR states for the value of VTG

denoted by the dotted vertical line. Unlike the giant oscillations, the small oscillations observed

throughout the ambipolar regions survive in magnetic field, until the eventual crossover to the

Shubnikov de Haas regime. These oscillations are associated mostly with transmission through

larger k‖ states, which do not decouple as rapidly. The precise description of the behavior of the

small oscillation at low fields is beyond the scope of this paper, but there is a rich phenomenology

to be studied arising from the multiband transport and its interplay with chirality. (a) VBG = 20

V. (b) VBG = −20 V. (c) VBG = 15 V. (d) VBG = −15 V. (e) VBG = 10 V. (f) VBG = −10 V. In

some cases, such as f, there is an apparent π phase shift in the oscillations (at B∼200 mT).
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Supplementary Discussion

The device electrostatics suggest a natural division of the charge carrying channel into two

regions: the graphene leads (GLs) and the locally gated region (LGR). The energy dispersion

and carrier density in the GLs is tuned by varying VBG, while the band structure in the LGR

is dependent on the combination of VBG and VTG. To precisely describe the energy bands and

carrier density throughout the sample, we simulate the electric field profile over the sample

using the commercial Comsol Multiphysics software package (see Supplementary Figure S2).

For the electrostatics simulations, we take the trilayer to be a perfect conductor, and fit the

dielectric constant of the hBN (ε ' 3.2) to match the voltages corresponding to charge

neutrality in the LGR, given experimentally measured (by AFM) hBN thicknesses. We

calculate the applied electric field, and resulting ∆1, as a function of distance along the

channel. Supplementary Figure S1c shows the band structure of the LGR under the local

gate when VTG = 3 V and VBG = 1.6 V (|D| = 0.35 V/nm), for which the Fermi level in the

LGR lies in a BLG-like subband. The spatial profile of the band structure and displacement

field are then input into the calculations of the transmission probabilities, described in the

next section.

In our simulations, we neglect the effects of quantum capacitance (CQ). In the graphene

leads, the channel is gated only by the back gate. Even at the low GL densities where

the giant oscillations are observed, the CQ is at least 80 times larger than the geometrical

capacitance of the back gate, CBG. The resulting correction to the total capacitance, C−1 =

C−1BG + C−1Q , is of order 1%. The locally gated region is gated both by the top gate and

back gate. The geometric capacitance of the top gate, CTG � CBG, potentially leading to a

larger correction; however, in the giant oscillation regime, the density—and correspondingly,

the density of states and by extension CQ—in the LGR is much larger than the density in

the GLs (this essentially happens because the Fermi energy is tuned well into the BLG-like

band). Thus even under the top gate, the quantum capacitance is never less than ∼30

times larger than CTG, giving a maximum correction to the density profile of order 3%.

Incorporating such a small effect is well beyond the scope of our simplified model for the

trilayer graphene band structure.

Fabry-Perot oscillations and the transmission probability through the pn in-

terface. Conductance oscillations in ballistic electronic Fabry-Pérot interferometers can be
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modeled using a phase coherent Landauer formula32:

Gpnp =
4e2

h

∑
k‖

∣∣∣∣ T−T+e
−LLGR/2lmf

1−R−R+eiθe−LLGR/lmf

∣∣∣∣2 (S1)

Here, θ is the phase accumulated as particles cross the electrostatically induced Fabry-

Pérot cavity,

θ = 2Re

{
1

~

∫ +

−
px(x

′)dx′
}

(S2)

T± and R± denote the transmission and reflection amplitudes at the first (+) and second

(−) pn junction. In the main text, we assume T+ = T− = T , which is valid in the absence

of a magnetic field and neglecting trigonal warping.

As discussed in the main text, both semiclassical and quantum effects contribute to the

ballistic transport properties of graphene etalons. The semiclassical contribution, TSC, arises

from the translation symmetry of the electrostatic potential, which leads to conservation of

momentum parallel to the symmetric barrier, k‖. Whenever the Fermi momentum is decreas-

ing as a function of coordinate, states with |kF| < |k‖| are transmitted only evanescently,

leading to an exponential suppression of T . In monolayer graphene, kF vanishes at the

center of a pn junction, leading to exponentially preferred reflection of all obliquely incident

carriers (ref. 33).

TSC = e−Im{
1
~
∫+
− px(x′)dx′} (S3)

Chiral particles also receive a major contribution from pseudospin matrix elements33–36,

denoted by TQ.

TQ = |〈ΨGL|ΨLGR〉| (S4)

The total transmission amplitude through a single pn junction can be approximated by

the product of these two effects,

T = TSC · TQ (S5)

Device electrostatics. Supplementary Figure S2 shows the electrostatic profile along

the device in the giant oscillation regime, VBG = 1.6 V and VTG > 0. In this regime,

the GL Fermi level lies in the isolated MLG-like band, while the LGR Fermi level lies in

the isolated BLG-like electron band (see inset in Supplementary Figure S2). While the
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electrostatic interface is quite sharp (.10 nm, comparable to the hBN thickness), the band

structure crossover region, in which there is a coexistence of a MLG-like and BLG-like bands,

penetrates far (∼150 nm) into the GLs. This wide crossover region is a consequence of the

interplay between the electric fields from the top and bottom gates, which simultaneously

modulate the band structure and doping.

At zero magnetic field, the boundaries of the Fabry-Perot interferometer coincide with

the electrostatic potential sharp step. This is because the density and band structure in the

crossover region change adiabatically: eigenstates of the Hamiltonian at coordinate x are

very similar to eigenstates of the Hamiltonian at coordinate x + δx, and incident particles

in the MLG-like band have a very low probability of scattering to the BLG-like band. In

contrast, at the edge of the top gate, the large displacement field gradient leads to a sudden

change in the electronic structure, and induces interband matrix elements. The oscillations

at zero magnetic field are dominated by the quantum transmission probability for interband

scattering; consequently, the distance between the density steps is the appropriate choice for

describing the size of the FP cavity. This is borne out by the fitting of the oscillation period

(see Figure 3a of the main text), which shows a good match when this distance LLGR=78

nm, is chosen.

However, the smooth crossover region plays an important role in carrier collimation, and

consequently the magnetic field induced suppression of the giant oscillations. The classical

decoupling induced by a magnetic field is a consequence of momentum conservation: particles

that accumulate more than a certain k‖ in the central region cannot propagate in the GLs,

where kF is small, and decouple from transport. Above a certain value of B, this applies to all

states contributing to the giant oscillations at B = 0. This implies that the relevant length

for the classical decoupling is defined by the distance between the two MLG-like/crossover

region boundaries: for a particle in a BLG-like state in the LGR, deconfinement from the

LGR is always possible through interband transitions, but momentum conservation prohibits

the particle escaping beyond the edge of the crossover region. This is confirmed by the data,

where a match to the theory is found for a BC with L ∼360 nm.

8



Supplementary Methods

ABA Energy Band Structure. The electronic structure of Bernal stacked or ABA tri-

layer graphene (TLG) consists of both monolayer and bilayer graphene (MLG and BLG)-like

electronic bands37,38. Starting from the usual sublattice basis, the ABA TLG Hamiltonian

can be transformed via a unitary transformation into a quasi-block diagonal form composed

of MLG-like (Hm) and BLG-like (Hb) blocks37,

H =

 Hm U

UT Hb

 , U =

 ∆1 0 0 0

0 0 0 ∆1

 (S6)

Hm =

 ∆2 − γ2/2 υπ†

υπ ∆2 − γ5/2 + δ

 (S7)

Hb =


∆2 + γ2/2

√
2υ3π −

√
2υ4π

† υπ†

√
2υ3π† −2∆2 υπ −

√
2υ4π

−
√

2υ4π υπ† −2∆2 + δ
√

2γ1

υπ −
√

2υ4π
†
√

2γ1 ∆2 + γ5/2 + δ

 (S8)

The off-diagonal block U vanishes for zero interlayer asymmetry. A transverse electric

field induces an energy difference between adjacent layers37 (∆1), coupling the diagonal

blocks and causing hybridization of the energy bands.

In our band structure calculations, we numerically solve the ABA Hamiltonian as a

function of the applied electric field. The input parameters consist of the electric field pro-

file, calculated from finite element analysis, and the Slonczewski-Weiss-McClure parameters

(SWMcC), taken from the values recently obtained from analysis of Landau level crossings

in TLG38 (see table below). The operator π = ξpx + ipy, where ξ = ±1 for the disper-

sion around the K(K ′) valley. The SWMcC paramters are used to calculate the effective

velocities parameterizing Eq. S8 (ref. 37), υ = (
√

3/2)aγ0/~, υ3 = (
√

3/2)aγ3/~, and

υ4 = (
√

3/2)aγ4/~.

SWMcC parameters

γ0 γ1 γ2 γ3 γ4 γ5 δ

3.1 eV 0.39 eV -0.028 eV 0.315 eV 0.041 eV 0.05 eV 0.046 eV
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For simplicity, we take the energy difference between the central graphene layer and the

average of the outer layers to be zero (∆2 = 0), and approximate the energy difference

between adjacent layers (∆1) as a linear function of the applied electric field. Following

reference 39, we take the screening of the average displacement field, D = (DBG +DTG)/2,

to be 40%, giving ∆1 = −0.6edD where e is the fundamental charge, and d is the inter layer

separation (0.34 nm).
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