Supplementary information for “Quantum and classical
confinement of resonant states in a trilayer graphene Fabry-Pérot

interferometer”

L. C. Campos,! A. F. Young,! K. Surakitbovorn,! K.
Watanabe,? T. Taniguchi,? and P. Jarillo-Herrero!
IDepartment of Physics, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139

2 Advanced Materials Laboratory, National Institute for

Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan.



Supplementary Figures
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Supplementary Figure Sl: Band structure of Bernal stacked (ABA) trilayer graphene.
(a) Energy band structure at zero transverse electric field (A; = 0). The ABA TLG bands are
composed of a combination of BLG-like subbands (red)and MLG-like subbands (blue). The low
energy subbands are composed of offset, overlapping MLG-like and BLG-like bands. While at most
energies TLG is a multiband conductor, a small energy window of ~15 meV exists near charge
neutrality in which the hole type MLG-like band is isolated. Trilayer graphene is thus purely MLG-
like in a small charge density window of An ~ 10! cm™2. Accessing this regime is only possible if

2 necessitating high mobility devices. (b)

carrier inhomogeneity over the sample is n < 10 cm™
Two terminal resistance data as a function of the Vg at npg = 0, at T' ~ 300 mK. We estimate the
field effect mobility in our device from the Drude model, p = (L' /W)(1/C)dG/dVig, where L is
the channel length, W is the channel width, and C is the capacitance per unit area. The estimate
gives (1 = 60,000 cm?V~!s71) close to the charge neutrality point. By measuring the full-width at
half-maximum of the resistance peak (AVpg = 1.2 V), we estimate a charge carrier inhomogeneity

to be An < 8.10'Y cm~2. We estimate the mean free path of the charge carriers from the formula

o = (2€%/h)kplys to be e = 600 nm. (c) Energy band structure at finite transverse electric field.
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Supplementay Figure S2: Electrostatic profile in the giant oscillation regime for three
different values of top gate voltages (Vpg). A broad crossover region divides the regions
characterized by isolated MLG-like and BLG-like bands. Inset, Detail of the crossover region.
Deep in the GLs, the charge carriers are purely MLG-like, while in the center of the LGR they
are purely BLG-like. In between, fringe fields from the local gate lead to a wide crossover region

characterized by multiband transport.
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Supplementary Figure S3: Temperature dependence and observation of the giant
oscillation in different samples. (a) Temperature dependence of the giant FP oscillations with
Vea = 0.8 V (ngLs ~ 10 em™2) performed on sample 1. Increasing the temperature increases the
conductance of the sample in this regime, simultaneously attenuating the giant oscillations. Both
effects are qualitatively consistent with expectations. The insulator-like temperature coefficient
suggests thermal activation of GL carriers to the BLG-like conduction and valence bands. The
giant oscillations are robust up to temperatures of ~50 K. This number is roughly consistent
with the available energy window for monolayer-type states in the GLs of about 15 meV. A naive
estimate would set an upper bound of Tyiax ~ 15meV/(2kg) = 87 K. However, disorder likely
suppresses this further, by at least 1 meV~ 10 K (ref. 31). Further calculations are required in
order to understand the role of other decoherence processes at finite temperature. (b) Observation
of the giant FP oscillations at 300 mK on sample 1. (c) Observation of the giant FP oscillations

at 300 mK on sample 2.
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Supplementary Figure S4: Magnetic field dependence of the small FP oscillations. Here
we plot the derivative of the resistance with respect to Vg for several values of V. The inset
in each figure depicts the energy band structure of the GLs and LGR states for the value of Vg
denoted by the dotted vertical line. Unlike the giant oscillations, the small oscillations observed
throughout the ambipolar regions survive in magnetic field, until the eventual crossover to the
Shubnikov de Haas regime. These oscillations are associated mostly with transmission through
larger k| states, which do not decouple as rapidly. The precise description of the behavior of the
small oscillation at low fields is beyond the scope of this paper, but there is a rich phenomenology
to be studied arising from the multiband transport and its interplay with chirality. (a) Vag = 20
V. (b) Vsgg = =20 V. (¢) Vg =15 V. (d) Vg =—-15V. (e) Vg =10 V. (f) Vg =—10 V. In

some cases, such as f, there is an apparent 7 phase shift in the oscillations (at B~200 mT).



Supplementary Discussion

The device electrostatics suggest a natural division of the charge carrying channel into two
regions: the graphene leads (GLs) and the locally gated region (LGR). The energy dispersion
and carrier density in the GLs is tuned by varying Vgq, while the band structure in the LGR
is dependent on the combination of Vg and Vrg. To precisely describe the energy bands and
carrier density throughout the sample, we simulate the electric field profile over the sample
using the commercial Comsol Multiphysics software package (see Supplementary Figure S2).
For the electrostatics simulations, we take the trilayer to be a perfect conductor, and fit the
dielectric constant of the hBN (¢ ~ 3.2) to match the voltages corresponding to charge
neutrality in the LGR, given experimentally measured (by AFM) hBN thicknesses. We
calculate the applied electric field, and resulting A;, as a function of distance along the
channel. Supplementary Figure Slc shows the band structure of the LGR under the local
gate when Vg =3 V and Vg = 1.6 V (|D]| = 0.35 V/nm), for which the Fermi level in the
LGR lies in a BLG-like subband. The spatial profile of the band structure and displacement
field are then input into the calculations of the transmission probabilities, described in the
next section.

In our simulations, we neglect the effects of quantum capacitance (Cgp). In the graphene
leads, the channel is gated only by the back gate. Even at the low GL densities where
the giant oscillations are observed, the Cg is at least 80 times larger than the geometrical
capacitance of the back gate, Czg. The resulting correction to the total capacitance, C~1 =
Ogé + C51, is of order 1%. The locally gated region is gated both by the top gate and
back gate. The geometric capacitance of the top gate, Crg > Cpgg, potentially leading to a
larger correction; however, in the giant oscillation regime, the density—and correspondingly,
the density of states and by extension Cp—in the LGR is much larger than the density in
the GLs (this essentially happens because the Fermi energy is tuned well into the BLG-like
band). Thus even under the top gate, the quantum capacitance is never less than ~30
times larger than Crg, giving a maximum correction to the density profile of order 3%.
Incorporating such a small effect is well beyond the scope of our simplified model for the
trilayer graphene band structure.

Fabry-Perot oscillations and the transmission probability through the pn in-

terface. Conductance oscillations in ballistic electronic Fabry-Pérot interferometers can be



modeled using a phase coherent Landauer formula3?:
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Here, 6 is the phase accumulated as particles cross the electrostatically induced Fabry-

0 — 9Re {% /_ i px(x')dx’} (82)

Ty and Ry denote the transmission and reflection amplitudes at the first (+) and second

Pérot cavity,

(=) pn junction. In the main text, we assume 7, = T_ = T, which is valid in the absence
of a magnetic field and neglecting trigonal warping.

As discussed in the main text, both semiclassical and quantum effects contribute to the
ballistic transport properties of graphene etalons. The semiclassical contribution, Tyc, arises
from the translation symmetry of the electrostatic potential, which leads to conservation of
momentum parallel to the symmetric barrier, k. Whenever the Fermi momentum is decreas-
ing as a function of coordinate, states with |kp| < |kj| are transmitted only evanescently,
leading to an exponential suppression of 7. In monolayer graphene, kr vanishes at the
center of a pn junction, leading to exponentially preferred reflection of all obliquely incident

carriers (ref. 33).

TSC _ e—lm{%fjpx(x/)dx/} (S?))

Chiral particles also receive a major contribution from pseudospin matrix elements33 36,

denoted by Tq.

Tg = (YaL|Yicr)| (S4)

The total transmission amplitude through a single pn junction can be approximated by
the product of these two effects,
T =Tsc Ty (SH)

Device electrostatics. Supplementary Figure S2 shows the electrostatic profile along
the device in the giant oscillation regime, Vgg = 1.6 V and Vg > 0. In this regime,

the GL Fermi level lies in the isolated MLG-like band, while the LGR Fermi level lies in
the isolated BLG-like electron band (see inset in Supplementary Figure S2). While the



electrostatic interface is quite sharp (<10 nm, comparable to the hBN thickness), the band
structure crossover region, in which there is a coexistence of a MLG-like and BLG-like bands,
penetrates far (~150 nm) into the GLs. This wide crossover region is a consequence of the
interplay between the electric fields from the top and bottom gates, which simultaneously
modulate the band structure and doping.

At zero magnetic field, the boundaries of the Fabry-Perot interferometer coincide with
the electrostatic potential sharp step. This is because the density and band structure in the
crossover region change adiabatically: eigenstates of the Hamiltonian at coordinate x are
very similar to eigenstates of the Hamiltonian at coordinate x + dx, and incident particles
in the MLG-like band have a very low probability of scattering to the BLG-like band. In
contrast, at the edge of the top gate, the large displacement field gradient leads to a sudden
change in the electronic structure, and induces interband matrix elements. The oscillations
at zero magnetic field are dominated by the quantum transmission probability for interband
scattering; consequently, the distance between the density steps is the appropriate choice for
describing the size of the FP cavity. This is borne out by the fitting of the oscillation period
(see Figure 3a of the main text), which shows a good match when this distance Lygr=78
nm, is chosen.

However, the smooth crossover region plays an important role in carrier collimation, and
consequently the magnetic field induced suppression of the giant oscillations. The classical
decoupling induced by a magnetic field is a consequence of momentum conservation: particles
that accumulate more than a certain kj in the central region cannot propagate in the GLs,
where kr is small, and decouple from transport. Above a certain value of B, this applies to all
states contributing to the giant oscillations at B = 0. This implies that the relevant length
for the classical decoupling is defined by the distance between the two MLG-like/crossover
region boundaries: for a particle in a BLG-like state in the LGR, deconfinement from the
LGR is always possible through interband transitions, but momentum conservation prohibits
the particle escaping beyond the edge of the crossover region. This is confirmed by the data,
where a match to the theory is found for a B¢ with L ~360 nm.



Supplementary Methods

ABA Energy Band Structure. The electronic structure of Bernal stacked or ABA tri-
layer graphene (TLG) consists of both monolayer and bilayer graphene (MLG and BLG)-like
electronic bands®"3®. Starting from the usual sublattice basis, the ABA TLG Hamiltonian

can be transformed via a unitary transformation into a quasi-block diagonal form composed

of MLG-like (H,,) and BLG-like (Hj) blocks®",

H, U Ay 00 0O
U

= U = (S6)
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The off-diagonal block U vanishes for zero interlayer asymmetry. A transverse electric
field induces an energy difference between adjacent layers3” (A;), coupling the diagonal
blocks and causing hybridization of the energy bands.

In our band structure calculations, we numerically solve the ABA Hamiltonian as a
function of the applied electric field. The input parameters consist of the electric field pro-
file, calculated from finite element analysis, and the Slonczewski-Weiss-McClure parameters
(SWMcC), taken from the values recently obtained from analysis of Landau level crossings
in TLG® (see table below). The operator m = &p, + ip,, where ¢ = +1 for the disper-
sion around the K (K') valley. The SWMcC paramters are used to calculate the effective
velocities parameterizing Eq. S8 (ref. 37), v = (V3/2)ayo/h, vs = (v/3/2)arys/h, and
vy = (V/3/2)ay/h.

SWMcC parameters

Yo M Yo V3 V4 Vs o
3.1 eV|[0.39 eV|-0.028 eV |[0.315 eV [0.041 eV |0.05 eV|0.046 eV




For simplicity, we take the energy difference between the central graphene layer and the
average of the outer layers to be zero (Ay = 0), and approximate the energy difference
between adjacent layers (A;) as a linear function of the applied electric field. Following
reference 39, we take the screening of the average displacement field, D = (Dpg + Drg)/2,
to be 40%, giving Ay = —0.6edD where e is the fundamental charge, and d is the inter layer

separation (0.34 nm).
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