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We investigate the influence of the nonparabolicity of bulk bandstruc-—
ture on the electron subbands in GaAs/Ga]-xAlyAs heterojunctions. Our
calculation is based on a self-consistent solution of the subband prob-
lem in the parabolic approximation and takes into account the nonpara-
bolic contributions (of order k3 and k*) and the spin-orbit term
~(kxE)g by perturbation theory. The calculated electron subbands exhib-
it a nonparabolic dispersion and spin-splitting, whose variation with
Al-concentration x and free carrier density N is investigated.

l. Introduction

The increasing amount of experimental work
on electron subbands in GaAs/Gaj-_xAlyAs hetero-—
junctions has more recently led to various theo-
retical investigations of these states. Ando,!/?
Bastard,3 Stern and DasSarma,4 and Hurkx and
van Haeringen® performed numerical or/and varia-
tional self-consistent calculations of the sub-
band problem using an effective-mass Hamiltonian
in the simplest, i.e. parabolic approximation
for the kinetic energy. Earlier theoretical work
is presented in the review article by Ando,
Fowler, and Stern.6 With the exception of Ref. I,
where nonparabolic corrections to the subband
effective-mass have been estimated, the influ-
ence of the nonparabolicity of the bulk band
structure on the subband states in GaAs/
Ga)-4Al As heterostructures is not considered in
the above mentioned literature.

The nonparabolicity of the bulk band struc-
ture, originally understood as a small-gap ef-
fect, is usually described in Kane's model,”
which takes into account the mixing between con-
duction (Tgc) and valence band (I'7,+lgy) in a
8x8 matrix Hamiltonian. For large gap semicon-
ductors this model is not appropriate, because
the coupling between the lowest conduction band
(Tge) and the p-antibonding conduction band
(T'7.1Tge) becomes equally important and should
be considered on equal footing. This leads to
an extended Kane model for the bulk band struc-
ture in the vicinity of the T point,® which in
addition takes into account the influence of
more remote bands by second order perturbation
theory. For an investigation of subbands in het-
erojunctions or quantum wells, including the
nonparabolicity effects, this 14x14 matrix
Hamiltonian ought to be considered as kinetic

energy operator. This, however, would make the
subband problem an awfully complex one. Lassnig?
considered a simplified version of the extended
Kane model, which does not include inversion-
asymmetry induced terms and the coupling to re-
mote bands. He reduced the set of 14 coupled
equations by eliminating all but the conduction
band envelope functions. By this reduction,
which is analogous to Ohkawa and Uemura's!O
treatment of quantized surface states on a nar-
row—gap semiconductor, he obtained an effective-
mass Hamiltonian acting in the twofold conduc-—
tion band space.

In contrast our calculation is based on a
reduction of the bulk Hamiltonian in the ex~
tended Kane model® to a 2x2 conduction band
Hamiltonian by means of higher perturbation
theory,11 which contains terms of third and
fourth order in the wave vector components.

This Hamiltonian can also be obtained by an in-
variant expansion in the twofold space of .the
lowest conduction band states with the weighting
factors taken from k‘p theory.!! In addition the
invariant expansion yields as a cross—term be-
tween the ke«p term and the coupling mediated by
the interface electric field (eE-r), the so-
called spin-orbit term ~(kxE)-g, which is re-
sponsible for the spin-splitting of the subbands
due to the symmetry breaking effect of the in-
terface potential.9,10,12 Ye use this 2x2 ma-
trix Hamiltonian as effective-mass operator by
replacing k, (the wave vector component normal
to the interface) by -id/dz and add the inter-
face potential U(z) in the diagonal to obtain
the subband Hamiltonian (Section 2). As the non-
parabolic contributions and the spin-orbit term
are only small corrections to the subband prob-
lem, we first perform a self-consistent numeri-
cal calculation in the parabolic approximation

*Work supported in part by the Deutsche Forschungsgemeinschaft

0749-6036/86/030267 + 06 $02.00/0

© 1986 Academic Press Inc. (London) Limited



268

(Section 3) and then consider these corrections
by perturbation theory (Section 4). We present
results (subband energies, effective-masses and
spin-splittings) for the two lowest subbands in
GaAs/Ga|-yAlyAs heterojunctions for 0.25x20.4
and electron concentrations IOllcm'Zgngl.Z-
1012¢m=2 and calculate also the expectation val-
ue of the electric field for the lowest subband.
It turns out that this expectation value differs
from zero, in contrast to an earlier assumption
made for subband states in a MIS inversion lay-
er. Preliminary results, including the effect
of a magnetic field, have been published in Ref.
14,

2. The 2x2 Subband Hamiltonian

Following the concept of an invariant ex-
pansion +15 ye construct the kinetic energy
operator acting in the twofold space of the low-
est conduction band states as a series of grod—
ucts of irreducible tensor components KpkKs )*
(k,E) and a complete set of orthogonal 2x2 ma-
trices XEK’A)

HGE) = 5,

ac IOV s )
The tensor components KEK’A)*(E,E) represent
symmetrized products of the components of the
electron wave vector k (up to fourth order) and
the interface electric field E, which transform
according to the irreducible representations I',
of the zinc-blende point group Ty and have the
same time-reversal symmetry as the matrices
XEK’A). For the basis matrices XﬁK’A) we choose
Xl(])=]2 and X§4)={cu|a=x,y,z}. The resulting
terms are listed in Table 1.
K{1,2)* i the kinetic energy operator in the
parabolic approximation. The terms K}'» * and
K(1:4) represent isotropic and anisotropic k
nonparabolicity of the bulk conduction band.
The remaining terms in Table ! are the inver-
sion-asymmetry induced k°® nonparabolicity and
the spin-orbit term, which both contribute to a
spin-splitting of the subband states for finite
wave vector. The expansion coefficients ag) (k=
1,4) have been derived in Ref. !l by reducing
the original 14x14 Hamiltonian of the extended
Kane model to a (2x2) Hamiltonian by higher or-
der perturbation calculation. They can be ex-
pressed by momentum matrix elements and energy
gaps, which are well known!® for GaAs and AlAs
and are obtained for Gaj}.,AlyAs by linear inter-
polation of the energy gaps. The weighting fac-—
tor agy can be determined from the results of a
second order perturbation treatment of the kep
and eE-r couplings.!4 Numerical values for the
expansion coefficients a,, are given in Table 2.
It is important to note, that within our model
the values of a., change discontinuously at the
interface. For comparison we give in Table 2 al-
so some values of a.,, when contributions from
inversion-asymmetry induced terms and from re-
mote bands are neglected as in previous work.?
The Hamiltonian for the subband problem is
then obtained by replacing in H(k,E) of Eq. 1 k
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Table 1:

Irreducible tensor Componeu%s KéK’A)*(E,E) for
zero magnetic field, {a,b}=5(ab+ba)

2)*

k¢ K2

kDT yz

k{9 fieoie 12+ fhe ke 32+ Lk )7

kPP 022 a0, (03D ), 102D k)
KOO m, e, D),

by -iV and adding the interface potential U(z)
in the diagonal. In order to guarantee flux con-
servation across the interface, we must adopt
the hermitian form of this Hamiltonian, thus

the leading term of the kinetic energy operator
appears asl7.18

o Bt 1

Hein = -3 Y oy ¥ (2)
The subband Hamiltonian then reads

HSB = (Hk1n+U(Z))12+H] (3)
where

By = (313K§]’3)*+aMKl(]’[‘)*)12+ (4

4,2)% 6,4)%
a=X,y,z(a“2K; e aqué ) )og,

contains the nonparabolic terms and the spin-—
orbit coupling. In the following Section 3 the
subband problem with the leading terms of Hgg,
Eq. 3:

Hy = Hyg,+ U(2) (5)
will be solved self-consistently and in Section
4 the influence of H; on the subband states is
investigated by perturbation theory.

3. Self-Consistent Calculation

In parabolic approximation the subband
problem

How(x) = Ey(r) (6
has been solved before by variational and numer-
ical calculations{™6. Eq. 6 can be easily re-

duced to a one-dimensional Schrddinger equation
for the z-direction normal to the interface:

Ho (2, ke, ky) €4 (2) = Bi5(2) M

where



Superlattices and Microstructures, Vol. 2, No. 3, 1986 269

Table 2:

Numerical values of the expansion coefficients ag) in Eq. 1. The values in
brackets are obtained by neglecting inversion-asymmetry induced terms and
coupling to remote bands (see text).

ay,[evB2] ajslevR*] ayulevB*] ay,[evR3] ag,levR?]

Gahs 57.29 -2107 -2288 -27.57 5.49
(57.29) (-2311) (-1531) (0.0) (5.49)
Gag, 75A1p, 2548 42.49 -1269 -1670 -22.31 2.77
Gan 7Aln 1AS 40.11 -1164 -1585 -22.74 2.45
0.72%0.3 (40.11)  (-1287) (-911.1)  (0.0) (2.45)
Gag, 65410, 3548 37.87 -1071 -1508 -21.29 2,23
Hy (2, kyoky) = (8)
82 d 1 d w2 o, 10 - —
2 dz m*(z) dz+U(z) * ot k|| 0 T‘E
« : 100 - O
m*(z) is the bulk mass of GaAs (Gay,_ Al As) for ~
z>0 (z<0). It corresponds to ajp in Table 2. n o
: 92 : 90
The interface potential is described by:l-6 -
U(2) = V0 (-2) + Vy(2) + v, (2) (9 80 4
) . ) . = 70} =
It contains the conduction band discontinuity DL %7}
VOB(-Z) and the band'bending potential VHSZ)+ = 60 Si
Vxc(2), where Vy(z) is the Hartree potential and — R
ch(?) a4p?§ametrized exchange-correlation po- > 5ok c
tential.?s The magnitude of Vj depends on the EED o
Al concentration in GaAlAs and is taken to be @ ok 1.5 =
60% of the band offset.20,21,22 c & gj
The eigenvalue problem (6) is solved self- o —
consistently, using the finite elements method 30 10 @
for numerical integration. The boundary condi- }g
tions at z=0 are determined by flux conservation 20 o
across the interface.!7-18 Ags input parameters —0.5 jg
for the calculation we have the electron concen-— 10 N ]
tration Ng, the deple?ion cbarge density'NDepl VoL L 1l w
and the Al-concentration x in GaAlAs, which 0 0L 0 08 10 12
takes influence on the effective mass in GaAlAs 02 : 6 - : :
(see Table 2) and on the conduction band discon- 1 -2
tinuity V. NS ( ]U cm )
Calculated subband energies and subband . .
electron densities are consistent with results Fig. 1: Calculated subband energies Ej, E; and

Fermi energy Ep relative to the conduction band
minimum at z=0 plotted as function of the sub-
band electron concentration Ng with Npep1=0.8x
1011em=2 and x=0.3, together with corresponding
subband electron densities Ng, Nj.

of previous work.2™® They are presented for the
lowest two subbands together with the Fermi en-
ergy as a function of Ng in Fig. l. A variation
of the Al concentration 0.25<x5<0.4 shows no sig-
nificant influence on the above mentioned re-

sults.
The average electric field <Ez> can be cal- can be used to calculate the average force nor-
culated directly as the expectation value of the mal to the interface:
first derivative of U(z) d
| q <Fp> = —<[E,H0]> (1)
R | £52(2) 20(2)dz (10) , o
e, z A simple calculation yields:
. . . . . . 2 ¢t
An alternative derivation is possible using the <Fp> = .h J (ii-—;L—ﬂ(ngi(z))zdz
quantum-mechanical equation of motion, which 2 dz m*(z) "dz
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Fig. 2: Calculated values of the average elec-
tric field <E,> as a function of the subband
electron concentration Ng at NDep1=O.8x1011cm‘2
and x=0.25, 0,30, 0.35.

2 d

[ i@ () (12)

Zw
The quantum mechanical statement, that particles
in bound states cannot be subject to a finite
force, i.e. <F,>=0, has been verified within the
limit of numerical precision by calculating the
integrals of Eq. 12 using the self-consistent
solutions of the subband problem. This result
demonstrates that there is a nonvanishing aver-
age electric field for subband states, whenever
the effective mass is position dependent. This
statement is true also for subband states in MIS
structures, for which the effective mass changes
from the bulk value of the semiconductor to a
value close to the free electron mass in the in-
sulator. This fact has not been considered in
Ref. 13.

Calculated results for the average electric
field in a GaAs/Gay_|Al,As are shown in Fi
for electron concentrations lOllcm‘zstslo
at three different Al-concentrations x.

.2
%2 cm—Z

4. Influence of Nonparabolic Corrections

Starting from the self-consistent solutions
of Section 3 we can now consider the nonparabol-
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Energy (meV)
Subband electron densities (107 cm”)

0 02 04 06 08 10 12
12 -2
N, (10°cm™)
Fig. 3: Calculated subband separation Ejq,

Fermi energy Ep and subband occupation Ng, N

as function of the electron concentration Ng

with Npep1=0.8x101lem™2 and x=0.3. Solid (dashed)
curves correspond to calculations with (without)
nonparabolic corrections to the density of states.

ic correction Hy(k,E). This is done by a pertur-
bation calculation using the spinor wave func-
tion

1 [¢]

xi(2) = ¢, (DEf() + e, (DEj () (13)
and minimizing the expectation value of the to-
tal Hamiltonian H (Eq. 1) by variation with re-
spect to ¢,, c¢,. At the same time the change in
the density of states due to the nonparabolic
corrections is considered in the self-consistent
solution of Section 3. Warping effects are ne-
glected by averaging in the plane parallel to
the interface.

Fig. 3 shows the effect of the change in
the density of states on the subband separation
E|p, Fermi energy Ep, and subband occupation. It
can be seen, that due to nonparabolicity the oc-
cupation of the second subband starts at higher
Ng. The variational calculation for the expecta-
tion value of the subband Hamiltonian yields a
dispersion relation:

Ej (k) = By + Ejp (k)% Ejgky) (14)

for each subband i. E; is the ith subband energy
at k”=0.
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Fig. 4: Subband dispersion as a function of kﬁ
for Ng=5x1011em™2, Npep=0.8x1011em=2 and x=0.3.
The dashed curve corresponds to the simple para-
bolic case.

_Aa%, d d._,2
Bipley) = gaky = <z;(Qaisrar) goky) +
1 42 42
(@rs+gai)k + <gzaisgz 19

describes the subband dispersion without spin-
splitting. The corrected effective mass is de-
fined by

1 2 4d d
% w0
12 1
2 (arstgal)kg (16)
The spin-splitting
VZ
ElS(k") = (AH‘2+ASO) (17)
results from the ga—nonparabolicity
1 d d
Byp = -gk‘ﬁ faupgyt E;au2>2 +
144, 4
w2k <GpAweg” *

2 d d.2 126
Kl <gqzas2g;” galzkj| (18)

2N

0.085 at ky = ke
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Fig. 5: Effective mass of GaAs as a function of

Ng (NDepl=O.8X1011cm‘2, x=0.3) at k||=0 and at
k|j=kF.

and the spin-orbit term
2
Agp = aquﬁ <EZ>2 (19)

Fig. 4 shows the subband dispersion Ei(k”) of
Eq. 15 for NS=SXI011cm‘2, which exhibits a devi~
ation from the parabolic form and a lifting of
the spin degeneracy. The effective mass at k) =0
and k“=kF for fixed Npepi,x and an electron
concentration lOllcm'Zstsl.leolzcm'2 is plot-
ted in Fig. 5. It is not possible to compare
these results for the dispersion effective mass
with cyclotron masses from cyclotron experi-
ments,?3,24,25 put the values at k=0 and k) =kg
can be taken as bounds for the measured cyclo-
tron masses.

The spin-splittings for lollcm‘ngsgl.Zx
1012cm™2 at fixed Npen1,% is shown in Fig. 6.
It turns out that the influence of the spin-or-—
bit coupling is small for a GaAs/Gax—jAlyAs het-
erostructure and the main contribution is due to
the inversion asymmetry-induced k* nonparabolic-—
ity.
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Fig. 6: Total spin-splitting energy and spin-

splitting energy at k| =kp due to spin-orbit-in-

teraction as a function of Ng (NDep1=O.8XlOllcm‘%

x=0.3).

5. Conclusion

Using a self-consistent solution of the
subband problem in parabolic approximation we
consider the influence of the nonparabolicity of
the bulk band structure on the electron states
in GaAs/Ga)_4AlyAs heterostructures. Our main
results: change of the density of states, shift
of the subband energies, increase of the effec-
tive mass and spin-splitting of the subband at
finite k;, demonstrate the importance of the
nonparabolic effects for a quantitative under-
standing of the 2-dimensional electron system.
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For o comparison with experimental data (cyclio-
tron and clectron spin resonance) it 1s neces-
sary to take into account the magnetic field,
which is done in the following paper.
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