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We investigate the influence of the nonparabolicity of bulk bandstruc- 
ture on the electron subbands in GaAs/Ga]-xAlxAs heterojunctions. Our 
calculation is based on a self-consistent solution of the subband prob- 
lem in the parabolic approximation and takes into account the nonpara- 
bolic contributions (of order k 3 and k 4) and the spin-orbit term 
~(kxE).~ by perturbation theory. The calculated electron subbands exhib- 
it a nonparabolic dispersion and spin-splitting, whose variation with 
Al-concentration x and free carrier density N s is investigated. 

] .  Introduction 

The increasing amount of experimental work 
on electron subbands in GaAs/Gal_xAlxAS hetero- 
junctions has more recently led to various theo- 
retical investigations of these states. Ando,l, 2 
Bastard, 3 Stern and DasSarma, 4 and Hurkx and 
van Haeringen 5 performed numerical or/and varia- 
tional self-consistent calculations of the sub- 
band problem using an effective-mass Hamiltonian 
in the simplest, i.e. parabolic approximation 
for the kinetic energy. Earlier theoretical work 
is presented in the review article by Ando, 
Fowler, and Stern. 6 With the exception of Ref. I, 
where nonparabolic corrections to the subband 
effective-mass have been estimated, the influ- 
ence of the nonparabolicity of the bulk band 
structure on the subband states in GaAs/ 
Ga]_xAlxAs heterostructures is not considered in 
the above mentioned literature. 

The nonparabolicity of the bulk band struc- 
ture, originally understood as a small-gap ef- 
fect, is usually described in Kane's model, 7 
which takes into account the mixing between con- 
duction (F6c) and valence band (r7v+r8v) in a 
8x8 matrix Hamiltonian. For large gap semicon- 
ductors this model is not appropriate, because 
the coupling between the lowest conduction band 
(F6c) and the p-antibonding conduction band 
(F7c+FSe) becomes equally important and should 
be considered on equal footing. This leads to 
an extended Kane model for the bulk band struc- 
ture in the vicinity of the F point, 8 which in 
addition takes into account the influence of 
more remote bands by second order perturbation 
theory. For an investigation of subbands in het- 
erojunctions or quantum wells, including the 
nonparabolicity effects, this ]4x]4 matrix 
Hamiltonian ought to be considered as kinetic 

energy operator. This, however, would make the 
subband problem an awfully complex one. Lassnig 9 
considered a simplified version of the extended 
Kane model, which does not include inversion- 
asymmetry induced terms and the coupling to re- 
mote bands. He reduced the set of ]4 coupled 
equations by eliminating all but the conduction 
band envelope functions. By this reduction, 
which is analogous to Ohkawa and Uemura's IO 
treatment of quantized surface states on a nar- 
row-gap semiconductor, he obtained an effective- 
mass Hamiltonian acting in the twofold conduc- 
tion band space. 

In contrast our calculation is based on a 
reduction of the bulk Hamiltonian in the ex- 
tended Kane model 8 to a 2x2 conduction band 
Hamiltonian by means of higher perturbation 
theory,// which contains terms of third and 
fourth order in the wave vector components. 
This Hamiltonian can also be obtained by an in- 
variant expansion in the twofold space of the 
lowest conduction band states with the weighting 
factors taken from k'p theory.// In addition the 
invariant expansion yields as a cross-term be- 
tween the k.p term and the coupling mediated by 
the interface electric field (eE.!) , the so- 
called spin-orbit term N(kxE).~, which is re- 
sponsible for the spin-splitting of the subbands 
due to the symmetry breaking effect of the in- 
terface potential.9,10, 12 We use this 2x2 ma- 
trix Hamiltonian as effective-mass operator by 
replacing k z (the wave vector component normal 
to the interface) by -id/dz and add the inter- 
face potential U(z) in the diagonal to obtain 
the subband Hamiltonian (Section 2). As the non- 
parabolic contributions and the spin-orbit term 
are only small corrections to the subband prob- 
lem, we first perform a self-consistent numeri- 
cal calculation in the parabolic approximation 
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(Section 3) and then consider these corrections 
by perturbation theory (Section 4). We present 
results (subband energies, effective-masses and 
spin-splittings) for the two lowest subbands in 
GaAs/Gal_xAlxAS heterojunctions for O.2!x50.4 
and electron concentrations IOllcm-2iNsSI.2 • 
IOl2cm -2 and calculate also the expectation val- 
ue of the electric field for the lowest subband. 
It turns out that this expectation value differs 
from zero, in contrast to an earlier assumption 
made for subband states in a MIS inversion lay- 
er. 13 Preliminary results, including the effect 
of a magnetic field, have been published in Ref. 
14. 

2. The 2×2 Subband Hamiltonian 

Following the concept of an invariant ex- 
pansion 11"15 we construct the kinetic energy 
operator acting in the twofold space of the low- 
est conduction band states as a series of prod- 
ucts of irreducible tensor components K~<, %)* 
(k,E) and a complete set of orthogonal 2x2 ma- 
trices X~ <,I) 

t)*(_k,E) (1) 
- - <,I L 

The tensor components KL(K'I)*(_k,E) represent 
symmetrized products of the components of the 
electron wave vector k (up to fourth order) and 
the interface electric field E_, which transform 
according to the irreducible representations F< 
of the zinc-blende point group T d and have the 
same time-reversal symmetry as the matrices 
X~ <,I). For the basis matrices X~K, I) we choose 
XI(])=I 2 and X~(4)={o~l~=x,y,z}. The resulting 
terms are listed in Table I. 

K! ],2)~ is the kinetic energy operator in the 
i . • - 1 3 "  pa rabo l l c  approxlmatlon. The terms K 1 , ) and 

K~ 1,4)* represent  i s o t r o p i c  and an i so t rop ic  k 
nonparabo l i c i ty  of the bulk conduction band. 
The remaining terms in Table I are the inver- 
sion-asymmetry induced k 3 nonparabolicity and 
the spin-orbit term, which both contribute to a 
spin-splitting of the subband states for finite 
wave vector. The expansion coefficients a<l(<= 
1,4) have been derived in Ref. II by reducing 
the original 14×14 Hamiltonian of the extended 
Kane model to a (2x2) Hamiltonian by higher or- 
der perturbation calculation. They can be ex- 
pressed by momentum matrix elements and energy 
gaps, which are well known 16 for GaAs and AlAs 
and are obtained for Gal_xAlxAs by linear inter- 
polation of the energy gaps. The weighting fac- 
tor a64 can be determined from the results of a 
second order perturbation treatment of the k.p 
and eE-r couplings. 14 Numerical values for the 
expansion coefficients a<l are given in Table 2. 
It is important to note, that within our model 
the values of a<l change discontinuously at the 
interface. For comparison we give in Table 2 al- 
so some values of a<l , when contributions from 
inversion-asyrmnetry induced terms and from re- 
mote bands are neglected as in previous work. 9 

The Hamiltonian for the subband problem is 
then obtained by replacing in H(k,E_) of Eq. I k 
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Table 1: 

Irreduclble tensor components K¢ K'I)  (k E) for 
zero magnetic f i e l d ,  {a,b}=g(ab+ba) 

KI 1,2)* k 2 

KI1,3) * (k2)2 

KI I'4)* {kx,ky}2+ {ky,kz}2 + {kz,kx}2 

K~ 4'2)* {(ke-k 2) k } {(k2-k2),ky> {(k~-k~),k z} 
y z ' x ' z x ' 

K~6,4) * (~X~)x' (~*~)y' (~×~)z 

by -iV and adding the interface potential U(z) 
in the diagonal. In order to guarantee flux con- 
servation across the interface, we must adopt 
the hermitian form of this Hamiltonian, thus 
the leading term of the kinetic energy operator 
appears as 17,18 

Hki n = -~ V ~ V (2) 

The subband Hamiltonian then reads 

HSB = (Hki n+ U(z))l 2+ H 1 (3) 

where 

HI = (al3K} 1'3)*+ a14K}l'4)*)| 2+ (4) 

~=~,y,z(a42K~4'2)*+ a K(6'4)*)o 64 ~ 

contains the nonparabolic terms and the spin- 
orbit coupling. In the following Section 3 the 
subband problem with the leading terms of HSB, 
Eq. 3: 

H O = Hki n + U(z) (5) 

will be solved self-consistently and in Section 
4 the influence of H I on the subband states is 
investigated by perturbation theory. 

3. Self-Consistent Calculation 

In parabolic approximation the subband 
problem 

HO,(!) = E¢(r) (6) 

has been solved before  by v a r i a t i o n a l  and numer- 
i c a l  calculations I-6. Eq. 6 can be easily re- 
duced to a one-dimensional SchrSdinger equation 
for the z-direction normal to the interface: 

Ho(z,kx,ky)~i(z ) = Ei~i(z ) (7) 

where 
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Table 2: 

Numerical values of the expansion coefficients aKX in Eq. I. The values in 
brackets are obtained by neglecting inversion-asymmetry induced terms and 
coupling to remote bands (see text). 

al2[eV~ 2 ] al3[eV~ 4 ] al4[eV~ 4 ] a42[eV~ 3 ] ao4[eV~ 2] 

57.29 -2107 -2288 -27.57 5.49 
GaAs 

(57.29) ( -2311) (-1531) (0.0) (5.49) 

Gao. 75A10.25As 42.49 - 1269 - 1670 -22,31 2.77 

40.11 -1164 -1585 -22.74 2.45 
Gao" 7Alo" 3As (40.11) (-1287) ( -911 .1 )  (0 .0 )  (2 .45)  

Gao. 65AI0.35As 37.87 -1071 -1508 -21.29 2.23 

Ho(z,kx,ky) = (8) 

~2 d 1 d ~2 
2 dz m*(z) dz + U(z) +2~m* k~l 

m*(z) is the bulk mass of GaAs (Gax_iAlxAS) for 
z>O (z<O). It corresponds to a12 in Table 2. 

The interface potential is described by: I-6 

U(z) : V O0 (-z) +VH(Z ) +Vxc(Z) (9) 

It contains the conduction band discontinuity 
Vo0(-z) and the band bending potential VH(Z) + 
Vxc(Z), where VH(Z) is the Hartree potential and 
V (z) a parametrized exchange-correlation po- 
tential. 4'19 The magnitude of V O depends on the 
AI concentration in GaAIAs and is taken to be 
60% of the band offset. 20,21,22 

The eigenvalue problem (6) is solved self- 
consistently, using the finite elements method 
for numerical integration. The boundary condi- 
tions at z=O are determined by flux conservation 
across the interface. 17,18 As input parameters 
for the calculation we have the electron concen- 
tration Ns, the depletion charge density NDepl 
and the Al-concentration x in GaAIAs, which 
takes influence on the effective mass in GaAIAs 
(see Table 2) and on the conduction band discon- 
tinuity V O. 

Calculated subband energies and subband 
electron densities are consistent with results 
of previous work. I-6 They are presented for the 
lowest two subbands together with the Fermi en- 
ergy as a function of N s in Fig. I. A variation 
of the AI concentration O.2ix!O.4 shows no sig- 
nificant influence on the above mentioned re- 
suits. 

The average electric field <Ez> can be cal- 
culated directly as the expectation value of the 
first derivative of U(z) 

An alternative derivation is possible using the 
quantum-mechanical equation of motion, which 
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Fig. 1: Calculated subband energies EO, E I and 
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Fermi energy E F relative to the conduction band 
minimum at z=O plotted as function of the sub- 
band electron concentration N with N nl=O 8x s Der- • 
lOllcm -2 and x=O.3, together with corresponding 
subband electron densities NO, N I. 

can be used to calculate the average force nor- 
mal to the interface: 

<Fz> = -<[d~,Ho]> (11) 

A simple calculation yields: 
+~ 

<Fz> : -g _~ ( ) 



270 Superlattices and Microstructures, Vo/. 2, No. 3, 1986 

2 . 5  

7T 
E 2.0 
(_.) 

0 
, - - -  1 . 5  

A 
1.o 

V 

0.5 

x = 0.35 

x = 0.30 

X = 0.25 

I I I I i I I I I I I I 

0.2 0.4 0.6 0.8 1.0 1.2 

U s (1012cm -2 ) 

Fig. 2: Calculated values of the average elec- 
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Calculated subband separation EIO, 
Fermi energy E F and subband occupation NO, N] 
as function of the electron concentration N s 
with NDepl=O.8xlollcm -2 and x=O.3. Solid (dashed) 
curves correspond to calculations with (without) 
nonparabolic corrections to the density of states. 

The quantum mechanical statement, that particles 
in bound states cannot be subject to a finite 
force, i.e. <Fz>=O, has been verified within the 
limit of numerical precision by calculating the 
integrals of Eq. ]2 using the self-consistent 
solutions of the subband problem. This result 
demonstrates that there is a nonvanishing aver- 
age electric field for subband states, whenever 
the effective mass is position dependent. This 
statement is true also for subband states in MIS 
structures, for which the effective mass changes 
from the bulk value of the semiconductor to a 

value close to the free electron mass in the in- 
sulator. This fact has not been considered in 
Ref. ]3. 

Calculated results for the average electric 
field in a GaAs/Ga x_ AliAs are shown in Fig. 2 

• e Ii -2< <] 12 -2 for electron concentrations ]O cm _N s_ O cm 
at three different Al-concentrations x. 

4. Influence of Nonparabolic Corrections 

Starting from the self-consistent solutions 
of Section 3 we can now consider the nonparabol- 

ic correction Hl(k,E). This is done by a pertur- 
bation calculation using the spinor wave func- 
tion 

Xi(z) = c+(~)~i(z) + c+(~)~i(z) (13) 

and minimizing the expectation value of the to- 
tal Hamiltonian H (Eq. ]) by variation with re- 
spect to ct, c+. At the same time the change in 
the density of states due to the nonparabolie 
corrections is considered in the self-consistent 
solution of Section 3. Warping effects are ne- 
glected by averaging in the plane parallel to 
the interface. 

Fig. 3 shows the effect of the change in 
the density of states on the subband separation 
EIO , Fermi energy EF, and subband occupation. It 
can be seen, that due to nonparabolieity the oc- 
cupation of the second subband starts at higher 
N s. The variational calculation for the expecta- 
tion value of the subband Hamiltonian yields a 
dispersion relation: 

Ei(kl] ) = E i+ Eip(kil)~ Eis(kll ) (14) 

for each subband i. E i is the i th subband energy 
at kil=O. 
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2 
~.-~k 2 + Eip(kl[) = 2m* i[ <d~ (2al d 2 - 3+a14) ~--~z>k [[ 

1 4 + dZ d2 
( a l3+~a l4 )k [ [  < ~ z  al3d-~z > (15) 

d e s c r i b e s  t h e  subband d i s p e r s i o n  w i t h o u t  s p i n -  
s p l i t t i n g .  The c o r r e c t e d  e f f e c t i v e  mass i s  de -  
f i n e d  by 

1 1 2 d . ~  d >  
m-~c = ~-~--Z<~zLZal3+al4)~z + 

12 1 2 
(al 3+8 al4)k II ( i 6) 

The spin-splitting 

Eis(kll) = (A42+Aso)I/2 (17) 

I 

results from the k3-nonparabolicity 

1 ~ d ]~a4 2> 2 
A42 = -~kll <a~e~z + + 

1 4 d d >  
~a42k il <~za42~z + 

k~] d d 2 ] 2 ,6 
< d--~ a42 d--~> + ~a42~: i[ (18) 

and the spin-orbit term 

2 2 
ASO = a6%k H <Ez >2 (;9) 

Fig. 4 shows the subband dispersion E~(kll) of 
Eq. 15 for Ns=5x1ollcm -2, which exhiblts"a devi- 
ation from the parabolic form and a lifting of 
the spin degeneracy. The effective mass at k[l=O 
and k =k F for fixed NDe.l,X and an electron 

. . P 
concentratzon Ollcm-2~Ns~l.2xlOl2cm-2 is plot- 
ted in Fig. 5. It is not possible to compare 
these results for the dispersion effective mass 
with cyclotron masses from cyclotron experi- 
ments, 23,24,25 but the values at kH=O and kit =k F 
can be taken as bounds for the measured cyclo- 
tron masses. 

The spin-splittings for IOllcm-2&Ns!l.2x 
Iol2cm -2 at fixed NDepl,X is shown in Fig. 6. 
It turns out that the influence of the spin-or- 
bit coupling is small for a GaAs/Gax-IAlyAs het- 
erostructure and the main contribution is due to 
the inversion asymmetry-induced k3 nonparabolic- 
ity. 
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5. Conclusion 

Using a self-consistent solution of the 
subband problem in parabolic approximation we 
consider the influence of the nonparabolicity of 
the bulk band structure on the electron states 
in GaAs/Gal_xAlxAs heterostructures. Our main 
results: change of the density of states, shift 
of the subband energies, increase of the effec- 
tive mass and spin-splitting of the subband at 
finite kll , demonstrate the importance of the 
nonparabolic effects for a quantitative under- 
standing of the 2-dimensional electron system. 

For ~ comparison with experimental data (cy~:l,~- 
tron and electron spin resonance) it is nece~ 
sary to take into account Lhe magnetic field, 
which is done in the following paper. 
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