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I. Introduction

The term intersubband transitions has been used to describe optical
transitions between quasi-two-dimensional electronic states in semiconduc-
tors (“subbands”), which are formed due to the confinement of the electron
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2 ManrFrRED HELM

wave function in one dimension. The formation of such low-dimensional
electronic systems has been one of the major topics of semiconductor
physics for the past two and a half decades (Ando et al, 1982), and in this
context, the term “band-structure engineering” was coined. This develop-
ment has been mainly triggered by epitaxial crystal growth techniques such
as molecular beam epitaxy, which provides atomic-layer control of layer
thicknesses.

In these terms, the conceptually simplest band-structure engineered sys-
tem that can be fabricated is a quantum well, which consists of a thin semi-
conductor layer (of the order of 100 A) embedded in a semiconductor with
a larger bandgap (see Fig. 1). Depending on the relative band offsets of the
two semiconductor materials, both electrons and holes can be confined in
one direction in the conduction band and the valence band, respectively, and

one obtains allowed energy levels that are quantized along the growth

direction. These energy levels can be tuned by the quantum well depth and
thickness. Whereas, of course, optical transitions can take place between

“valence and conduction band states, in this chapter the term “intersubband

transitions” is used solely for transitions between quantized levels within the

conduction (or valence) band (Fig. 1 schematically shows both interband

and intersubband transitions).

The first experimental evidence for quantized states in a semiconductor
quantum well was presented by Dingle et al. in 1974 through optical
bandgap spectroscopy in a GaAs/AlGaAs structure. Later Esaki and Sakaki

FiG. 1. Schematic of a quantum well made from a semiconductor with energy gap Ef
embedded in a semiconductor with gap Ef. Subbands in the conduction and valence band are
indicated as well as interband and intersubband transitions.
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1 THEe Basic PHYSICS OF INTERSUBBAND TRANSITIONS 3

(1977) and Smith et al. (1983) showed the possibility of using intersubband
transitions in quantum wells for infrared light detection. More than 10 years
after the Dingle er al. report, intersubband absorption in a GaAs—AlGaAs
quantum well was obscrved by West and Eglash (1985). Although this is
often quoted as the beginning of intersubband spectroscopy, researchers put
a lot of effort into the investigation of another quasi-two-dimensional
electron system much earlier. Fowler et al. (1966) showed that the conduc-
ting channel in a Si-MOSFET (metal-oxide semiconductor field effect
transistor) is effectively a two-dimensional electron gas that is formed at the
interface between the Si and the oxide. Extensive investigation of this system
followed, and Kamgar et al. (1974) reported the observation of intersubband
absorption in a Si accumulation layer. Similar research was carried out on
the GaAs—AlGaAs system, and in 1983, intersubband absorption was
reported in an inversion layer at the interface of a GaAs—AlGaAs hetero-
structure (Schlesinger et al., 1983). ’

These works remained relatively unknown to many researchers who later
entered the field; one reason for this may be the fact that in these
accumulation and inversion layers, the absorption wavelength was in the far
infrared (FIR), at wavelengths longer than 40 ym, whereas in the work of
West and Eglash (1985) the absorption occurred in the technologically more
important range around 10 ym. Nevertheless the physical mechanism is, of
course, the same in both types of structures.

After 1985, the number of works on intersubband absorption in quantum
wells increased dramatically, most often motivated by the high technological
potential of intersubband transitions for novel infrared detectors (Levine,
1993), emitters, and nonlinear optical elements. Research in these three areas
has been so successful that each is covered in separate chapters of this
volume. For example, focal-plane arrays of intersubband detectors (quan-
tum well infrared photodetectors, QWIPs) with high detectivities have been
fabricated (see Chapter 4) by a number of groups and intersubband lasers
(quantum cascade lasers) (Faist et al, 1994a; see also the corresponding
chapter in this volume) were finally demonstrated in 1994.

Intersubband transitions have been observed in many different material
systems. Apart from GaAs—AlGaAs the most important are strained
InGaAs—-AlGaAs structures, InGaAs-InAlAs lattice matched to InP, and
InAs—AlGaSb structures. Much work has also been done with quantum
wells based on group IV elements such as Si—SiGe. Both conduction and
valence-band quantum wells have been employed. Besides the usual way of
introducing n- or p-type doping into the quantum wells, a number of
investigations were devoted to photoinduced intersubband absorption (Ol-
szakier et al., 1989; Yang et al., 1990; Abramovich et al., 1994; Julien and
Boucaud, 1997). Here, electrons and holes are created in undoped material

oy




4. MANFRED HELM

using above-bandgap radiation and the intersubband absorption is studied
simultaneously.

The photon energy {(or wavelength) range accessible with intersubband
transitions is limited through the magnitude of the conduction- or valence-
band offset of the heterojunction on the high-energy side, and by the typical
intersubband linewidth on the low-energy side. Currently, the spectral range
covered by intersubband transitions extends over more than two orders of
magnitude, from 200 (Helm ez al, 1991) to 2 ym (Chui et al., 1994). Even
the technologically important wavelength of 1.55um has been reached
(Smet et al,, 1994). The development of intersubband physics research over

"the past decade can be followed in the proceedings of the Intersubband

Physics Workshop, which has been held every two years since 1991. These
were published as books (Rosencher et al, 1992; H. C. Liu et al, 1994; Li
and Su,-1998) and in Superlattices and Microstructures, volume 19 (1996),
respectively. '

This chapter covers the more basic aspects of intersubband transitions
with a main emphasis on linear absorption. Intersubband emission is
covered in Chapter 5 by Faist et al. (see also the review by Perera et al,
16997). A more compact account of some of the material covered here is due
to Loehr and Manasreh (1993). The organization of the chapter is as
follows.

In Section 1I, we derive an expression for the intersubband absorption
coefficient based on Fermi’s golden rule for the induced transition rate in
the framework of the one-band effective mass approximation. In Section IiI
this is applied to the case of a symmetric single quantum well. Section IV

'discusses several experimental geometries that enable coupling of the

electromagnetic wave to the intersubband transition, which in most cases
requires a polarization component perpendicular to the quantum well (QW)
layers. Section V discusses asymmetrically shaped QW potentials, such as
those induced by a vertical electric field or by variation of alloy composition.
Due to the symmetry breaking, more transitions become allowed than in the
symimetric situation. In Section VI we consider multiple quantum wells and
superlattices, especially with regard to the formation of extended minibands
with a finite dispersion along the growth direction. Section VII is devoted
to the discussion of effects going beyond the most simple single-particle,

“one-band model, which are nonparabolicity and the inclusion of Coulomb

and many-body effects in the intersubband absorption. In some situations,
radiation polarized parallel to the layers can also be absorbed. These are
discussed in Section VIII. The most important one exhibits constant-energy
ellipsoids that are tilted away from the QW confinement direction. Intersub-
band absorption can take place not only in the conduction band but also
in the valence band of p-type doped QWs. Due to the complicated valence—
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1 THE Basic PHYSICS OF INTERSUBBAND TRANSITIONS 5

band structure, this requires a more sophisticated theoretical treatment on
the basis of a multilevel k- p Luttinger—Kohn type Hamiltonian, which is
presented in Section IX. In Section X, we discuss ling broadening and
intersubband relaxation. In a loosely connected manner, Section X1 presents
several other effects also related to intersubband transitions, including
magnetic-field effects, parabolic quantum wells, impurities, and the photon
drag effect.

II. The Intersubband Absorption Coefficient

In this section, we derive an expression for the intersubband absorption
coefficient based on Fermi’s golden rule for the induced transition rate. On
a more sophisticated level, the absorption spectrum can be calculated in a
full many-body framework using linear response theory. Here, however, we
present the single-particle approach, to which several many-body correc-
tions can be added afterward. (For more discussion and references on this
issue, see Section VII). For the moment, we restrict ourselves to the case of
a single electronic band; that is, we make use of the envelope-function
approach in the effective-mass approximation.

The total wave function y,{r) can then be written as the product between
the lattice-periodic Bloch function of band v at the center (or another
extrernum) of the Brillouin zone u,(r) and an envelope function f;(r), which
is supposed to vary slowly over one lattice period.

W) = fi(r)u,(r) (1)

where i denotes the quantum numbers of the problem. This provides a
reasonably good description for the conduction band of many semiconduc-
tors including GaAs. More accurate descriptions, which include several
bands, are briefly discussed in Section VIIT and more extensively in Section
IX in connection with valence-band intersubband transitions. Equation (1)
is simply a generalization of the usual Bloch ansatz for a bulk crystal, where
the envelope function f£,(r} reduces to a plane wave ¢*". The envelope
function fi(r) will depend on the shape of the quantum well potential or
other external potentials such as electric and magnetic fields.

Under the assumption that the lattice-periodic function is the same in all
constituent materials a Schrodinger equation only for the envelope function
can be derived:

2
020 + Vi) £ = E S0 @

2m

T

R




6 ManrFrep HELM

When z is chosen the growth direction, the free motion in the x and y
directions, can. be separated:

fusle) = ﬁef‘ﬂ"cpn(z) 3

where k, denotes the two-dimensional vector (k,, k) and A4 is the sample
area. Then Eq. (3) reduces to a one-dimensional Schrodinger equation of the
textbook form

—h? &2,

om* a2 T V@0ul2) = E,0,(z) N C))

This equation must be solved in each material layer (4, B,...) of the
heterostructure, and the solutions have to be connected with the following
matching conditions at each interface z,:

1. de?
m* dz

1 de?

¢A(zo) = ¢%z,) and (zo) = oy (zo) (5)

The latter condition ensures conservation of the probability current, but as
a consequence, the envelope function has a kink at each interface when the
effective mass is discontinuous. In this case, the first term in Eq. (4) is better
written in the form — (h%/2)(d/d2)[ 1/m*(z))(d/dz)p,(z).

The solution of Eqs. (2) and (4) leads to energy eigenvalues of the form

A’k
En.lngL = En + Yn*

(6)

where the subband energies E, depend on the shape of V{z).

In simple cases, such as the finite, symmetric quantum well, Eq. (4) can
be solved analytically, but for more complicated structures the solution must
be obtained numerically, The most common method for an arbitrary
one-dimensional potential is the well-documented, so-called transfer matrix
method (Kane, 1969; Chuang, 1995). In this method, the potential is
assumed to be piecewise constant, thus having plane-wave solutions (with
either real or imaginary k-vector). The set of matching conditions in Eq. (5)
is formulated in a 2 x 2 matrix at each interface. The solution is then
achieved by multiplication of all matrices together with the requirement that
the wave functions decay exponentially at each end of the structure.

Now let us turn to the calculation of the absorption coefficient. We start
from Fermi’s golden rule for the transition rate form a state i to a state f

induced by
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1 THE Basic PHYSICS OF INTERSUBBAND TRANSITIONS 7

induced by an external electromagnetic field
: 2x v s .
W= Y |<w; | ' ] 5.(Ef — E; — hm) (7

where H' is the interaction Hamiltonian, H' = (e/2m*}A 'p + p-A) (the
electron charge is —e). It can be shown (Bastard, 1988) that in a one-band
effective-mass model, the interaction is correctly described when the effective
mass m* is used in this expression and not the free-electron mass. A linearly
polarized, plane electromagnetic wave is described by

E = Eecos(q 1 — wt) (8)

where E is the electric field, e is the polarization vector, and q is the
propagation vector. The corresponding vector potential, which is related to
the electric field by E = —JA/d¢, can be written as

iE,e

A=2w

gar—ed 4 o e (%)

At this point, we can employ the dipole approximation, which requires the
wavelength of the radiation to be much larger than any characteristic
dimension of electronic origin. This is the lattice period for interband
transitions and the quantum well width for intersubband transitions; in both
cases, the dipole approximation is very well fulfilled. (Note, however, that
electric quadrupole transitions were discussed by Sa’ar, 1993.)) Then p
commutes with A, which leads to H' = (¢/m*)A -p, and we obtain

2n e*E}
Wiy = 2 s Kile B DISE, — E, — ho) (10)
Before deriving the absorption coeflicient from the transition rate, we take
a closer look at the matrix element in Eq. (10). Due to the properties of the
periodic Bloch functions and the slowly varying envelope functions (Eq. (1)},

the complete matrix element can be split up in the following way (Bastard
1988):

<i|e'll.|f> = e {ulplu, > ful o) + € Sl 2 flplfor> (11)

where v and v and n and »’ are the band and subband indices of the initial
and final states, respectively. The first term describes interband transitions,

Ly R R
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which are accompanied by a change of the band index v (e.g., transitions
from the valence band to the conduction band). It consists of a dipole matrix
element of Bloch functions, which dictates the interband polarization
selection rules, and an overlap integral of the envelope functions, which
gives rise to selection rules concerning the electron and hole subband
quantum numbers. If the initial and the final bands are the same, as in the
case of intersubband transitions in the conduction band, this term vanishes.
Then the second term, which describes transitions between subbands in the
same band, becomes relevant. It consists of an overlap integral of Bloch
functions (which vanishes for v #v' and is umity for v = v), and a dipole
matrix element of the envelope functions. This last term is the only one
relevant for intersubband transitions treated in the one-band model. In a
multiband model, which is necessary to describe intersubband transitions in
the valence band, however, both terms are important. We come back to this
point in Section IX. ' '

Thus let us evaluate the dipole matrix element of the envelope functions:

1

e Dl = 1 J dre~*ToMz)e b, + e,p, + ,p,1e% "0z} (12)

Only the term proportional to e, yields a contribution at finite frequency.
The other terms, proportional to e, and e, vanish, except when initial and
final states are identical (n = n" and k; = k). The physical meaning of these
terms is the free-carrier absorption in the two-dimensional electron .gas,
which is finite only at zero frequency when no scattering processes are
included. This is due to the impossibility of conserving energy and momen-
tum simultaneously during the absorption of a photon by an electron. Thus
1t is the matrix element

{nlp,Jn'> = j dzgi(z)p . @ad2) (13)

which determines the intersubband absorption in a one-band model. Thus
we obtain the result that the electric field of the radiation must have a z
component (i.e., a component perpendicular to the semiconductor layers) to
couple to the intersubband transition. This is the famous polarization
selection rule for intersubband transitions, which, of course, has conse-
quences for how practical experiments are performed. We discuss several
frequently employed coupling schemes and sample geometries in Section IV,

Next we briefly note that within the dipole approximation, a different
interaction Hamiltonian H’ for the electron—photon coupling can be em-
ployed, namely, H' = —eE-+r. The » matrix elements are related to the P
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1 THE Basic PHYSICS OF INTERSUBBAND TRANSITIONS 9
matrix elements through
Pon = im*wnn’rfm' . (14)

where w,,, = (E, — E_)/h. Note, however, that the use of ¢E-r can lead to
wrong results in a system with nonnormalizable, unbounded wave functions,
such as in the Kronig—Penney model for superlattices. In this case, the A-p
interaction should be used.

As in all areas of optical spectroscopy, it is very useful to define the
dimensionless oscillator strength f.. by

2 2 2m¥o, 2
o = s <l 'SP = === Kl (15)

since it facilitates the comparison of transition strengths in different physical
systems and also obeys the sum rule

S fur = 1 (16)

valid for all initial states » and the sum extending over all final states n'"
Absorption processes are counted positive, emission processes with a
negative sign, which is implicitly taken care of already in the definition in
Eq. (15). Sometimes the free-electron mass m, is used in Eq. (15) instead of
the effective mass m* (West and Eglash, 1985). The such defined oscillator
strenghs are then not of the order of unity for allowed transitions, but rather
of the order m/m*, which also has to be substituted for the right-hand side
of Eq. (16). This is especially necessary for multiband (or nonparabolic)
models, where interband and intersubband transitions cannot be separated
in the sum rule (Khurgin, 1993; Sirtori er al., 1994). In a similar manner, the
position dependence of the effective mass can be incorporated. It has been
shown that my/m* has to be replaced by {njmy/m*(z)jn) in this case (Dave
and Taylor, 1994); that is, an average of m* over the ground state wave
function must be performed. Of course, the absorption coefficient, if cal-
culated consistently, remains unaffected by these definitions.

It is worth again summarizing the main issue related to the effective-mass.
approximation (with constant effective mass). As long as m* is assumed
constant and-z-independent in all formulas known from elementary quan-
tum mechanics, m, can be substituted for m* and one can work with the
envelope function alone. The incorporation of the position (Davé and
Taylor, 1994) or energy (Sirtori et al, 1994) dependence (nonparabolicity)
requires more sophistication.

LT
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Having achieved a very simple form of the matrix element, we can proceed
to evaluate the-absorption coefficient a. The absorption coefficient is usually
defined through the ratio of the absorbed electromagnetic energy per unit
tlme and volume, hw* W /¥, and the intensity of the incident radiation,

= (1/2)e yenEg, summed over all occupied initial and empty final states.
I-Iere n denotes the refractive index of the material, for the moment taken to
be real and constant. This leads to a dimension of inverse length for «. In
the case of quasi-two-dimensional layers, this concept must be modified, and
we have several possible ways to do that. The most natural way is to define
a dimensionless absorption coefficient, x,p, by dividing through the area A
instead of the volume. Here a,;, is simply a measure of the fraction of
electromagnetic energy absorbed by a 2D layer, When we also allow for
stimulated emission in addition to absorption, sum over all possible combi-
nations of initial and final states, and take into account their occupation via
the Fermi-Dirac distribution function, we can write the very general
expression for the absorption coefficient

%2p=7 AZZ—I(HI(E/M*)A'PIH YPLAE(k )~ f(Epk)]

nn kg

X O(Enplk,)—E,(k )—hw)  (17)

Now we express both I and A by the electric field amplitude E, (which then
cancels) and change the summation into a two-dimensional integration in
the usual way (including a factor of 2 for the spins).

ap = mm*z % G f Pl Knlp P LI (E,) — f(Ex)]  S(Ey~ Ey—h)

(18)

Here we have already accounted for the polarization selection rule and
suppressed the k-dependence of the energies E, and E,.. This formula can be
significantly simplified, if we assume a parabolic in-plane dispersion. Then
the two-dimensional integration over the Fermi-Dirac distributions (where
Ep is the Fermi energy and k is Boltzmann’s constant) can be performed
analytically (which is possible only in 2D!) and we get the final result

dyp =

Z [1 + exp((E; — E,)/kT) I/n
S| 1 + exp((Ef — En’)/kT):l(En' —E, — ho)’ +T7

(19)
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We have also replaced the energy-conserving & function by a normalized
Lorentzian with half width at half maximum (HWHM) of T" and the
momentum matrix element by the oscillator strength using Eq. (15) and
@y & @, 0 that the prefactor in Eq. (19) becomes independent of w. (Note
that problems can arise in this connection for broad absorption lines such
that hw,, = I'. This was thoroughly discussed by Cohen-Tannoudji et al,
1989).

A main feature of intersubband transitions is their d-function-like density
of states, which is a consequence of the same curvature of the initial and
final subband (corrections due to nonparabolicity will be discussed in
Section VII). Mathematically, this is reflected through the cancellation of
the #*k3/2m* terms in the energy conserving & function (Eq. (17)). This is
why intersubband transitions largely behave like atomic transitions, al-
though we have a two-dimensional rather than a zero-dimensional system.

At zero temperature, where the In approaches (Er — E, J/T (assuming
only one subband is occupied) a particularly simple result is obtained, which
can be used to estimate the peak absorption strength of a particular
structure with certain carrier density, oscillator strength and linewidth. We
also leave out the sum over all transitions with the exception of 1 — 2, which
is usually the most important one:

T
T=
%ol =0) = 2soc11m Sz (E, — E, —hw)* + T?

(20)

Here n, is the areal electron concentration. At the resonance, E, — E; = Ao,
this yields the useful formula for GaAs (with m* = 0.068 m, and 5 = 3.4)

f12

=01 12 -2
p=0.15n[10"cm ]__T[meV]

(21)

Note, however, that this is valid only as long as &,y « 1 (strictly when
t,p sinf/cos f « 1, where 8 is the angle between the growth axis and the
light propagation direction; for more details, see later), which is, fortunately,
fulfilled for nearly all realistic cases. From Eq. (21) we see that a 2D layer
with n, = 10'2em ™2, f;, = 1 and T’ = 1 meV, which is about what can be
achieved to date, leads to a,;, = 0.15. If «,p, = 1 (which actually happens in
cyclotron resonance on high-mobility 2D electron gases), the simple linear
absorption theory breaks down and we must treat the 2D system as a highly
conducting, quasi-metallic sheet with a frequency-dependent surface con-
ductivity ¢?°, and we must determine the transmitted intensity using the
correct electromagnetic boundary conditions. The microscopic properties

R
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are then included in ¢*”. For normal incidence this results to (Hopfel and
Gornik, 1986);

T= 41,1,
In, + 72 + (JZD/SOC)F

4n,(Rea?P/e,c)
|1y +n,+ (JZD/EOC)IZ
(22)

_ I, — 112 —(@*P)fe o) and A=1—-R—T-=
b1 + 12+ ()2 00

Here T R, and A are the transmission, reflection, and absorption, respect-
ively, and #, and #, are the refractive indices before and after the active
layer. For ¢°Y « gqc = (377) ™! and 5, = n, = # we get 4 = Rea?®/e,cn.
We show later that this is identical to the preceding o5, in Eq. (20), when
o() is calculated assuming a Drude—Lorentz oscillator.

It is generally advisable to work with the dielectric function &(w) or the
conductivity o(w) instead of the absorption coefficient, whenever the elec-
tromagnetic properties of a sample are to be calculated consistently (see
Section IV) or many-body effects in the absorption are to be taken into
account (see Section VII}. The relation

) =1+ i—— (23)
Ep

0

(for now neglecting the contribution from the background dielectric con-
stant) known from three dimensions has to be modified in two dimensions
to

O.ZD

24
oW g (24

swy=1+1i

where ¢? is again the 2D (areal) conductivity and I, is some effective
thickness of the quasi-2D system. Using the relation between the optical
conslants

Im(e) = 2 Re(n) Im(n) (25)

and

w
t3p =2 - Im(y)
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where y is the refractive index, we obtain

B Re(a®®) - oyp
EoC Re(n)Lel’f - Leff

m(e) - (26)

Hap = @ I
7 ¢ Re(n)

Inserting here a Drude—Lorentz oscillator with oscillator strength f, and
damping constant y(=I"/h),

n.ef,, —iw

2D,
7 P(w) =
(@) m*  wi — w? - 2ive

(27)

and approximating the denominator with the near-resonance expression
(y, — oNw,, + @) = 2w(w,, — w), we obtain

nse’f, ¥
Reo*%w) = Zm*lz (@, — @) + y* )

which is exactly equivalent to Eq. (20). For more detailed discussion, see
Section IV.

In the discussion up to here we have pretended that one can simply shine
light through a 2D system and get intersubband absorption according to
Eq. (19). However, the polarization selection rule dictates that there must be
a component of the electric field that is perpendicular to the 2D layers
(z direction) to get coupling of the radiation to the intersubband transition.
Obviously this is not the case for normal-incidence radiation. Therefore,
experimentalists have used other geometries to obtain a finite coupling and
thus a finite absorption. These geometries and their theoretical description
will be discussed in more detail in Section IV. Here we consider only the
simplest method, namely, oblique incidence of the radiation (see Fig. 2).
Denoting the angle between the growth axis (z direction) and the propaga-
tion direction of the optical beam with #, the electric-field component
interacting with the intersubband transition is E, = E, sin 8, which gives a
factor sin*# for the absorbed intensity, However, the effective interaction
length of the radiation with the quantum well is then increased by 1/cos 6, so
®,p, in Egs. (19)-(21) must be multiplied by sin®6/cos 6. Finally, if we are
dealing with a multi-quantum-well (MQW) system of N quantum wells, the
transmitted intensity will be proportional to exp(— Nao,p sin*f/cos §). Ex-
perimentally, one usually derives the absorption (“absorbance”) from the
transmission by ‘absorbance = —log(transmission), and proper normaliz-
ation to obtain a flat baseline.

o



14 MANFRED HELM

172

FiG. 2. Oblique-incidence geometry. Here the radiation is incident in Brewster’s angle (73°
for GaAs with np = 3.3}, resulting in # = 17° = 90° — 73°.

In MQWs it is commen to define a three-dimensional absorption coeffi-
cient o, with dimensions in inverse centimeters. This can be achieved by
simply dividing a,p, by d, the MQW period. Yet we must recognize that o,y
then becomes dependent on the barrier thickness. This concept becomes
more useful (and even necessary) when the barriers are thin (for strongly
coupled superlattices). In this case, one can actually proceed just like for
bulk material and extend the integration in Egs. (17) and (18) over k,, k,,
and k,, leading to a three-dimensional absorption coefficient in the most
natural way. We come back to this point in Section VI on superlattices. A
third alternative definition of an o, that is sometimes used in the literature
is obtained through normalizing «,,, by the quantum well thickness.

IIl. The Symmetric Quantumn Well

In this section, we discuss in more detail the properties of a single,
symmetric quantum well, with both infinitely high barriers and finite
barriers. Especially the case of the infinite quantum well is very instructive,
since all the energy levels, wave functions, and matrix elements can be easily
calculated analytically.

For an infinitely deep quantum well (i.e., with a potential that is zero from
z=0to z =L and infinity everywhere else), the following eigenvalues and
envelope wave functions are obtained

_ 'tk Rk
T m*12 T 2m*

o.(z) = \/% sin (%) (30)
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The momentum matrix element between the ground state (n = 1) and the
n = 2 excited subband can be calculated explicitly to yield

. 8h '
|<1|pal2>] = I (3L

which results in an oscillator strength

256
572 = 096 (32)

Jiz=
where Eq. (29) must be used for the energy difference E, — E; = hw,,. The
oscillator strength has the nice feature of being independent of the quantum
well width. The same expression for the oscillator strength -can be obtained
by using the dipole matrix element

16L
[KU2AD] =5 = (33)

It is even possible to derive a general expression for all allowed transitions
in an infinite quantum weli:

2.2
Fon= (39
7wt (n* — m*)

Only parity changing (odd—even or even—odd) transitions are allowed due
to the inversion symmetry of the potential. As further examples, f;, = 0.03,
f,5 = 1.87, and so on. Thus, we see that by far the strongest transition is the
one with n = m + 1. The higher ones carry a smaller and smaller oscillator
strength. We can also see that transitions between excited states are much
stronger than transitions from the ground state, a fact well known from
atomic physics and necessary to full the oscillator sum rule. For large n, it
can actually be shown using Eq. (34) that f, .., increases lineatly with n. In
Fig. 3 an infinite square quantum well is sketched together with the allowed
intersubband transitions.

A more realistic description must include the finite depth of the quantum
well. This can be done either analytically (in the case of a symmetric square
well) or numerically with the transfer matrix method, as mentioned in
Section II. In general, the subband energies will be somewhat lower than for
a structure having the same width, but infinite barriers and the wave
functions penetrate into the barrier. But no matter how low the barriers and

e
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Ey

Fic. 3. Possible intersubband transitions in an infinite quantum well; only transitions with
a change in parity are allowed.

how thin the quantum well, for a one-dimensional binding potential there
will always be at least one confined state, which is well-known from
quantum mechanics. Figure 4 shows a state-of-the-art absorption spectrum
of an Ing 5:Gag 47AsS—Ing 5;Al; 45As quantum well (barrier height approxi-
mately 500 meV) with two bound states. The measurement here has been
performed with the sample prepared in a multipass waveguide geometry (see
Section 1V) and taking the ratio of the transmission signals of two
orthogonal polarizations, where only one polarization has an intersubband-
active component (z direction).

In the remainder of this section we look at transitions from the ground
state to the continuum in a finite, symmetric QW, which has some practical
relevance for infrared detectors. For simplicity, we assume that the QW is
reasonably deep so that we can approximate the wave function of the first
subband by the infinite-well wave function. Taking the center of the well to

be at z = 0, we have
2 nz
@,(z) = ﬁ cos (I) (35)

and the continuum wave function is simply written as

1
0(z) = —= explikz) (36)

NG

where we have neglected the effect of the boundaries between the well and
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FI1G. 4. Absorption spectrum of an In, 5,Gag ,As—Ing 5,Al, 4gAs quantum well sample
with two bound states (width 52 A) obtained by taking the log of the transmission ratio of the
twao orthogonal polarizations. The subband levels and squared wave functions are shown in
the inset (from Sirtort et al, 1994).

the barrier, which normally give rise to standing-wave (Fabry—Pérot} effects
in the continuum, and £ is the normalization length of the continuum. With
these wave functions, the momenium matrix element can be calculated to
give (Bastard, 1988}

2 kL 1 1
(oulpdos = \/;}cos (7) [k p /L} WG

Summing over the continuum states (k-integration) leads to the 2D absorp-
tion coefficient

me’ 4 r 2k 1/2)| — LY (38)
Uyp = ——— -
P 2e0enew° 05" o koL +7 koL —m

with k3 = 2m*/R%)(kw — ¥, + E,) and V, is the barrier height. This function
yields a steep rise at the iomization threshold hw = ¥, — E,, and a more
slowly decaying tail on the high-frequency side. Liu (1993) performed an
exact analytical calculation of the absorption of a finite, symmetric QW. He

ag WA
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showed that the inclusion of a broadening parameter I' removes all
divergences and there is a smooth transition between bound-to-bound and
bound-to-continuum transition. This is shown in Fig. 5, where the absorp-
tion is plotted for a QW with varying thicknesses (with I' = 5meV). For
L <49 A the QW binds only one state, and the three curves for L = 47, 41,
and 35 A corresponds to continuum transitions. Only a decrease of the peak
absorption and an asymmetric broadening is observed. Liu (1993) compared
this calculation with experimental data of Asai and Kawamura (1990) and
found good agreement. Figure 6 shows the bound-continuum absorption
spectrum of a narrow (30 A) Ing 53Gay 4,AS—Ing 5,Al, 45 As multiqguantum
well that has only one bound state. _
Standing-electron-wave effects in the continuum can be used intentionally
to drastically modify the absorption of the gquantum well structure. For
example, so-called Bragg confinement (Lenz and Salzman, 1990; Capasso et

al., 1992, Sirtori et al., 1992) can be achieved by embedding a quantum well

with one bound stated is into a superlattice, where the superlattice has to

- act like a quarter-wave dielectric stack for electrons. This is discussed more

extensively in Chapter 2 of the present volume.
Dupont et al. (1995) have observed a photocurrent due to transitions into
the continuum of a multi-QW structure, which was excited by simultaneous

—
n

Absorption (%)

0.5}

0.1 0.15 0.2 0.25
Photon Energy (eV)

FiG. 5. The calculated intersubband absorption spectrum of a single GaAs—Al, ,Ga,, ;As
QW plotted for different quantum well thicknesses as indicated. The second subband is bound
only for thicknesses greater than 49 A, otherwise the absorption is to the continuum {after Liu,
1993).
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Fic. 6. Bound-to-continuum absorption spectrum of a 30-A-wide Iny 5;Gag o,As-Tng 5,
Al 4pAs quantum well sample with one bound state obtained by taking the log of the
transmission ratio of the two orthogonal polarizations. The bound state with its squared wave
furiction is shown in the inset (from Sirtori et al., 1994).

one-photon and two-photon absorption at a wavelength of 5.3 and 10.6 um,
respectively. Since the 5.3-um radiation was generated through frequency
doubling from the 10.6-ym radiation, the two waves had a constant but
tunable phase relation. They were able to coherently control the direction
of the induced photocurrent by changing the phase difference.

Before we proceed further and discuss other types of quantum wells, it
seems appropriate to devole a section to some experimental techniques
commonly employed for the study of intersubband transitions.

IV. Experimental Geometries and Their Electromagnetics

The specific nature of intersubband transitions —that is, the selection rule
requiring an electric-field component perpendicular to the QW layers —
necessitates the use of nonstandard geometries to perform absorption
experiments, which in turn require a careful consideration of the electromag-
netics (i.e., the spatial distribution of the electromagnetic field in the sample).
These two issues are the topic of this section.

USRS
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In a standard transmission geometry, where the light is incident perpen-
dicular to the sample surface, the electric field has components only in the
QW plane and intersubband transitions cannot be induced (at least in the
simple band structure discussed so far; exceptions are discussed in Sections
VIIT and IX). The simplest way to overcome this problem is to shine the
light on the sample at an oblique angle of incidence. A frequent choice is
Brewster’s angle (73° for GaAs with a refractive index of # = 3.3) (see Fig.
2 in Section II), at which the reflection on the surfaces also vanishes (West
and Eglash, 1985; Levine et al., 1987). However, due to the high refractive
index of most semiconductors, the angle of incidence within the sample is
still rather small (8 = 17° for GaAs) leading to a small intersubband-active
electric-field component E_. The effective coupling factor sin®8/cos # in this
case is given by 1/, /7% + 1 = 0.09 for GaAs. Due to this small coupling,
the Brewster-angle geometry i1s normally used only for relatively highly
doped multi-QW systems. An advantage, however, is the very well defined

electric-field strength and intensity at the QW position.

For samples exhibiting weaker absorption (e.g., for lower doping, single
QWs or large linewidths), several types of waveguide geometries have been
devised by various authors, where the incident radiation undergoes several
total internal reflections in the sample (Fig. 7). In these geometries the light
is coupled into the sample at the edges, which are wedged at a certain angle
. The number of passes through the active layer, M (=twice the number
of reflections), is determined by the length (L. and thickness (D e of
the substrate, M = L e /(Dounstr *tan ). For a sample with 0.5 mm thick-
ness, 5mm length, and an angle of = 45% one obtains five total internal
reflections at each surface (M = 10), leading to a coupling strength of
10 x sin®45°/cos 45° = 7. Two frequently employed types of waveguides are
shown in Figs. 7a and 7b. The geometry (Fig. 7a) (Levine et al., 1987; Kane
et al., 1988; Wieck et al., 1988) has the advantage that the surface reflection
loss of the incident light is the same for both orthogenal polarizations,
which is convenient for taking reference spectra. (The TM or p polarization
is the one that couples to the intersubband transition, since the electric field
contains a z component, whereas the TE or s polarization does not couple,
since the electric field lies in the QW plane) A slight drawback is the
displacement of the beam after traversing the sample. In geometry (Fig. 7b)
(Hertle et al., 1991; Fromherz et al., 1994) the surface reflections are different
for both polarizations, but the beam is not displaced. The internal angle £
is given by # = a + arcsin[sin(90° — «)/#], and when « is chosen so that
H=90" — o (= 38°, # = 52° for GaAs), the propagation direction inside
the sample is parallel to one of the wedged facets. Variations of these
geometries contain a two-pass arrangement, where either the sample is so
short (e.g., an etched mesa structure, Capasso et al., 1994, see Fig. 7c), or the
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(b)

FiG. 7. Several common waveguide geometries for the measurement of intersubband
absorption are shown. Top (a) and (b}: two types of multipass waveguides. Bottom (c) and (d):

Two types of two-pass waveguides; (¢} shows an etched mesa structure. For a discussion, see
text.

wedge angle « is so large (nearly 90°, Seilmeier et al., 1987, see Fig. 7d) that
the light undergoes only one total reflection. This is especially useful when
the intersubband transition is pumped with a laser and one wants to know
the effective light intensity in the QWs accurately.

To calculate the absorption of an electromagnetic wave in such a
multipass waveguide structure, it is essential to consider what is happening
at the boundary of the semiconductor slab, that is, at the semiconductor—air
interface. Due to the interference of the incident and reflected wave, a
standing-wave intensity pattern of the field component E; will form along
the z direction having a periodicity 4/2%cos 8 (Vodopyanov et al., 1997).
Thus it is clear that only as long as the total thickness of the active layer
(=Nd) is larger than this standing-wave period (or essentially the resonant
wavelength in the sample, A/n), the nodes and antinodes are largely averaged
out and the preceding simple approach for calculating the absorption will
work. As an example, if the resonant wavelength is 10 ym, the corresponding
intensity pattern has a period of 2.15 um (for n = 3.3, § = 45°). On the other
hand, a multiquantum well system with N = 100 periods of d = 300A
thickness (well pius barrier width) yields a total thickness of 3 pm, and the
preceding condition is satisfied. If this condition is not fulfilled, as is

e
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obviously the case in a single quantum well, the absorption strongly depends
on the position of the QW relative to the intensity nodes and antinodes.
Let us now consider a QW near the surface —that is, near the semicon-
ductor-air interface (see Fig. 8)—and the corresponding electromagnetic
boundary conditions for light incident from inside the semiconductor at an
angle of & = 45°. According to Fresnel’s formulas, the totally reflected wave

will undergo a phase shift of 168° (for # = 3.3), which corresponds to an

almost complete phase reversal, and produces a node in the perpendicular
field component E_. Therefore there is virtually no interaction of the light
with the intersubband transition, when the active layer is thin in the
preceeding sense. This can, of course, be remedied, when the QW is moved
away from the surface to the next antinode; that is, by half a period of the
intensity pattern. There is, however, another method, which was first
discussed by Kane et al. (1988) for quantum wells, but has been routinely
used in the seventies in connection with Si inversion and accumulation
layers (Kamgar et al., 1974; Kneschaurek et al., 1976). When a metallic layer
is deposited on the sample surface, the boundary conditions are changed,
leading to a maximum of the field component E_ at the semiconductor-metal
interface, as illustrated in Fig. 8.

Quantitatively, the transmission through such a multipass waveguide
structure can be approximated by

L
T~ exp(—C-M-N-a,y-sin?f/cos ) = exp(—CﬂN-am-sin 9) (39

Dsuhstr

Here Loypse and Dgype, are the length and thickness, respectively, of the
sample including substrate, N is the number of multiquantum well periods,
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FiG. 8. Sketch of the electric-field distribution for a multiquantum well structure on a
substrate, with (left) or without (right} a metal coating of the surface. A standing-wave pattern

with period Afn cos @ is formed that has a crest or node at the surface, respectively.
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M is the number of passes through the active layer, and C is a coupling
factor between 0 and 2, which depends on the active layer thickness Nd
relative to the wavelength /¢ and on the position of the QWs with respect
to the standing-wave pattern.

For a thick MQW layer (Nd > i/n), where the standing-wave effect is
averaged out, C = 1, identical to what one gets in a simple traveling-wave
picture. For a thin MQW layer (Nd « i/n), C depends on the location of
the active layer relative to the electric-field nodes and crests. If the MQW is
in a crest of the electric-field- pattern (for example, near the metal-coated
surface), C = 2, whereas C « 1 if the MQWs are located at an electric-field
node (for example, near the uncoated surface).

In summary, at a semiconductor—air interface the E, component is nearly
zero and the in-plane component E,, is finite, whereas at a semiconductor-
metal interface, the E, component is finite {(even enhanced) and the E,,
components are shorted out to zero. Therefore, intersubband absorption
experiments with a small number of QW periods located near the surface
require 2 metal coating of the surface.

Note that for ronlinear experiments (such as saturation measurements)
even for a thick MQW layer, the local peak intensity is crucial, which can
be a factor of four larger than in the traveling-wave picture (Vodopyanov
et al., 1997).

For a consistent treatment of the waveguide transmission, the electromag-
netic wave propagation through the multilayer stack of the sample should
be calculated using proper expressions for the dielectric functions for each
layer as well as the electromagnetic boundary conditions between the layers.
The quantity of interest describing the absorption is then the reflectivity at
the semiconductor—air or semiconductor—metal interface. The numerics can
be done, for example, using a transfer-matrix method (Harbecke, 1986;
Terzis et al., 1990). In this way, the substrate and (un)doped buffer or cap
layers can be included in addition to the active MQW layer as well as a
possible metallic layer on the surface, which may result in Fabry—-Pérot-type
fringes. For the substrate, buffer and cap layers, a classical Drude expression
for &(w) can be employed (plus a phonon term, if any phonon resonances
are close in frequency). The metal can be described in a similar way. The
active MQW layers can be treated as a single layer (cffective medium
approximation), since the individual quantum well thicknesses are two
orders of magnitude smaller than the wavelength of the light, and can be
described with a simple anisotropic plasma model with an oscillator in the
z direction (compare Eq. (27)) (Chen et al, 1976; Kane et al., 1988)

&1 2“’%

£, 2
2 2 . =§
w* — wy, + 2iwy

WU w? +imft

(40)
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Here y is the HWHM of the intersubband absorption, 7 is a in-plane
scattering- time, and m, is the two-dimensional effective plasma frequency,
given by w, = \/(nsez/smaom,*Le“), where L is an effective quantum well
thickness (see also Section VII, Eq. (58)).

Dahl and Sham (1977) and Nakayama (1995, 1977} carefully considered
the nonlocal electromagnetics of a quasi-2D electron system. Liu (1994} has
even included retardation effects. In a nonlocal effective-medium approach
for multiquantum well systems, Zaluzny and Nalewajko (1997, 1998) derive
the dielectric tensor component ¢,, from the two-dimensional dynamic
conductivity of each individual quantum-well layer. The conductivity ¢
can be calculated microscopically, including depolarization shift and all
many-body effects (see Section VII) properly, and with the resulting dielec-
tric tensor, the transmission can be calculated. It turns out that not only the
absorption strength but also the absorption frequency and the line shape
may depend on the electromagnetic boundary conditions {semiconductor—

-air or semiconductor-metal); a metallic surface shifts the absorption to

higher frequencies (related to this is the so-called Berreman effect, an
absorption occurring in thin films at the LO-phonon frequency (see Berre-
man, 1963; Harbecke er al, 1985). In general, the MQW absorption is
usually proporticnal to Im(—1/g.,), and not to Im(z,.). In many cases,
however, especially if the absorption of each individual QW is small, the
transmission can be wetl approximated by Eq. (39).

Note that a detailed analysis of intersubband absorption strength, energy,
and lineshape must include both many-body effects (see Section VII) and
electromagnetics. The level of sophistication of the theoretical description
must be chosen depending on the sample structure, the geometry, and the
absorption strength.

A number of other geometries have been used to excite intersubband
transitions, including a type of transmission line arrangement. Here the light
is coupled directly into a cleaved facet of the semiconductor slab, which
must be covered by a metal for the reasons already discussed. This technique
has mostly been employed in the far-infrared spectral range (4 > 50 um), for
example, in the earliest experiments on Si-MOS (metal-oxide semiconduc-
tor) accumulation and inversion layers (Kamgar er gl.,, 1974; Kneschaurek
et al., 1976), and theoretically discussed by Nakayama (1977) and Zaluzny
(1995). It has also been used in intersubband absorption experiments
performed with a far-infrared free-electron laser (Heyman er al.,, 1994). Note
that an experimentally relevant 3D absorption coefficient can be obtained
here by dividing «,, by the sample thickness, which is identical to the
second expression in Eq. (39) for # = 90°. In another method, a Si or Ge
prism is attached to the substrate and the radiation is coupled into the
sample through the prism, thus avoiding refraction at the semiconductor—
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air interface and retaining a large E, component (McCombe et al., 1979). A
particularly elegant and useful way is the so-called “critical incidence
coupling” proposed and demonstrated by Keilmann (1994), where radiation
is coupled into the sample at the critical angle for total reflection, which
forces the p-polarized light to be exactly perpendicular to the QW layer.
Finally, a technique that has proven very useful for many applications is
the use of a grating coupler, either by etching a grating into the surface of
the sample or by depositing a metallic grating. This enables coupling of
normal-incidence radiation to the intersubband transitions. Two regimes
can be distinguished: When the period of the grating is of the order of the
wavelength in the semiconductor, the first diffracted order propagates nearly
parallel to the surface, thus providing a large electric-field component E,
(Fig. 9, right). This has been applied in mid-infrared detectors based on
intersubband transitions (Goossen and Lyon, 1985; Goossen et al, 1988;
Hasnain et al., 1989; Andersson et al., 1991; Andersson and Lundqvist, 1991;
Yu et al., 1992; Ralston et al., 1992), and here the light is often incident from
the substrate side (reflection grating mode). If, in contrast, the grating period
is much smaller than the wavelength of the radiation (Fig. 9, left), which
corresponds to a quasi-static rather than the optical regime (the diffracted
modes are evanescent and not propagating), the electric-field components in
the near field of the (metallic) grating get scrambled and, in particular, a
finite component E, results (Heitmann et al, 1982; Heitmann and Mackens,
1986; Batke et al, 1989; Helm er al, 1991). Nonvertical intersubband
transitions with a finite wavevector can also be excited (Heitmann and
Mackens, 1986). This regime has mostly been employed for the far-infrared
spectral region. Coupling efficiencies up to 30% in the FIR region (Li et al,

-
-

'

d<<Am d=nm

FiG. 9. Grating coupling for intersubband absorption: quasi-static regime (left), where the
grating period is much smaller than the wavelength, and diffraction regime (right), where the
grating period is of the same order as the wavelengih. For the quasi-static regime the
electric-field lines in the near field of the grating are sketched.
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1990z, 1990b), and up to near unity in the midinfrared (MIR) region
{Hasnain er al, 1989; Andersson et al, 1991; Andersson and Lundqvist,
1991) have been reported. The drawback of the grating coupler is that the
exact coupling strength and field distribution are not very well known, so
the light intensity and absorption strength cannot be gquantified very
accurately. Furthermore, a reliable theoretical treatment requires a non-
trivial electromagnetic calculation (Zheng et af,, 1990; Li and McCombe,
1992; Andersson and Lundgvist, 1992; Duboz, 1996; Xu and Hu, 1997,
Wendler et al., 1997). Wendler et al. (1997) also studied the influence of the
grating period on the absorption line shape. In some experiments, the
metallic grating coupler was used as a Schottky gate to modulate the
electron concentration, which results in increased sensitivity and in absorp-
tion spectra free of system artifacts (Helm et al, 1991). The same can be

done in waveguide geometry using the metal coating as a Schottky gate

(Helm et al., 1993),

V. Asymmetric Quantum Wells

In this section, we discuss quantum wells where the inversion symmetry
with respect to the quantum well center is broken by some means. This leads
to a relaxation of the selection rules (i.e., transitions between all subbands
become allowed). The symmetry breaking can be achieved in several
different ways:

1. Applying an electric field along the growth direction.

2. Varying the material (alloy) composition in the QW (e.g, “step
gquantum well”).

3. Two quantem wells with different thicknesses separated/coupled by a
thin barrier (asymmetric coupled QW; ACQW).

Of course, all of these three methods can be incorporated at the same time
in a single structure, making possible true band-structure engineering. In
addition, the symmetry can be broken through asymmetric doping profiles,
generating an internal electric field in a quantum well or a heterostructure.
An important example for an asymmetric quasi-two-dimensional system is,
of course, also the inversion .or accumulation layer at the interface of a
heterostructure or at the surface in a MOS structure. In this case, the
potential near the band edge has an asymmetric triangular shape.

The case of a square quantum well in an electric field F can be treated by
second-order perturbation theory, as long as eFL is small compared to the
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confinement energy E,. In this case, the r = 2 level remains nearly unper-
turbed, since it still “feels” mainly the vertical energy barriers, whereas the
n = 1 level is shifted down by an amount AE, = — C(m*e2F2L*/h?); that is,
it is quadratic in the electric field. Here C = 0.0022 is a numerical constant
(Bastard ef al, 1983). This results in a blue shift of the intersubband
absorption and corresponds to the quantum confined Stark effect. (Note,
however, that this term was originally coined for interband transitions,
where the electric field causes a red shift of the absorption edge.) This effect
can be used for electrooptic devices such as modulators. Experimental
results were reported by Harwit and Harris (1987). In the nonperturbative
regime of high electric fields and/or large well widths the energy levels can
be calculated variationally (Bastard et al., 1983) or by the usual numerical
methods such as the transfer matrix (Ahn and Chuang, 1986, 1987). Figure
10 shows the calculated dependence of the subband separation E,; on the
electric field for a GaAs-Al, ,Ga, ;As QW with three different thicknesses.
The initial quadratic behavior turns into linear at higher fields. For
extremely high fields (eFL » E,,), E,, finally becomes independent of QW
thickness, corresponding to the situation of a triangular potential. The
conduction-band profile of a 120-A-wide QW with F = 100 kV/cm is shown
in Fig. 11. The deformation of the ground-state wave function can clearly
be seen, giving rise to a partial transfer of oscillator strength from the 1 — 2
to higher transitions (1 = 3, 1 — 4, ctc.).

A simple way of breaking the symmetry with varying alloy composition
is to introduce a potential step into the QW (Yuh and Wang, 1989).

40 E L L L L L P 1 1 PR ] X 1 1 1 P
0 40 80 120 160
Electric field (kV/cm = mV/1004)
FiG. 10. Stark shift of the intersubband absorption. The energy separation of the two

lowest subbands for GaAs—Al, ,Ga, ¢As quantum wells with different thicknesses (as in-
dicated) is plotted vs electric field. Note the transition from guadratic to linear behavior.
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Fic. 11. Potential profile, energy levels, and wave functions of a 120-A-wide GaAs-
Al ,Ga, As quantum well with an electric field of 100 kV/cm. '

Absorption experiments in such structures were first performed by Mii et al.
(1990a), also including an additional electric field (Mii et al., 1990b; see Fig.
12). The abserption spectrum (Fig. 12, right panel) shows two strong peaks,
which correspond to the 1 — 2 and 1— 3 transitions. Depending on the
polarity of the applied electric field, a red or blue shift can occur (Yuh et al.,
1990). This Stark shift is much stronger than for a square well and nearly
linear in the electric field, and is therefore useful for electrooptic modulators.
A particularly valuable feature of step quantum wells is that the energy
differences E; —E, and E, — E, can be made equal, which opens up the pos-
sibility of observing doubly resonant nonlinear optical phenomena (Rosen-
cher and Bois, 1991; Rosencher er al, 1992) such as second-harmenic
generation. Such applications are discussed in great detail in Chapter 6 by
Sirtori, et al., in the present volume.

The same can be achieved with asymmetric coupled quantum wells. The
additional application of an electric field enables one to observe anticrossing
between different subbands (Yuh and Wang, 1988) and tuning of the oscil-
lator strengths of the various transitions (Yuh and Wang, 1988; Faist
et.al., 1993a). Such structures have again been used for giant nonlinear
optical effects (Capasso et al., 1994) and they also serve as the active cell in
quantum cascade lasers (see Chapter 5 in the present volume). In Figs. 13
and 14 examples for the intersubband absorption in such structures is
presented. The InGaAs-InAlAs structure in Fig. 13 has been optimized
for doubly resonant nonlinear effects (E, — E, = E, — E,), and in the
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60};‘16. ?2. Stark effect in a GaAs-Al, ,gGig gA5-Aly 4.Gag A8 step—quanium well (width of the GaAs part
width of the step 90 A), Left: Potential profile and wave functions for posilive and negative bias. Right:

Measured absorption spectrum for positive, zero, and negative bias (from Mii et al,, 1990b),
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FiG. 13. Absorption spectrum of a strongly asymmetric InGaAs—InAlAs coupled quantum
well structure with three bound states (thicknesses are 59, 13, and 24 A for the first well, barrier,
and second well, respectively). The subband levels and squared wave functions are shown in
the inset (from Sirtori et al., 19%4),
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FiG. 14. Absorption spectrum of a weakly asymmetric GaAs—Al, ;;Gag z,As coupled
quantum well structure with four bound states {well, barrier, and well thicknesses are 70, 20,
and 60 A). The subband levels and squared wave functions are shown in the inset. The solid
curve is recorded at T = 10K, the dashed curve at T = 60 K. The relevant transitions are
indicated; note the sharpness of the 1-3 transition (from Faist et al., 1994b).
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GaAs—AlGaAs structure of Fig. 14 the energy difference E, — E, is so small

that the second subband can be populated with increasing temperature,

allowing for the observation of the transitions 2 —+3 and 2 —+ 4.

Finally, we briefly discuss the “oldest” two-dimensional system, the
inversion or accumulation layer in a heterostructure or MOSFET. Such a
structure is also asymmetric due to the built-in electric field, and intersub-
band transitions from the ground state to several excited states were
observed long before the investigation of quantum wells began. As examples,
note the work of Heitmann and Mackens (1986) on Si inversion layers and
of Batke et al. (1989) and Batke (1991) on GaAs inversion layers; the latter
article contains many references to previous investigations. A sketch of a
modulation doped GaAs—AlGaAs heterostructure is depicted in Fig, 15 and
the intersubband absorption spectrum for such a structure is shown in Fig.
16 for different electron densities. Transitions from the ground state (labeled
0 in Fig 16) to three excited states can be observed. '

To summarize, by introducing several symmetry-breaking elements into a
QW structure, the subband energy levels and the resulting absorption
properties can be specifically tailored with great design freedom. Such
structures can, in some sense, be regarded as artificial, man-made atoms or
molecules, although they contain two-dimensional subbands and not really
discrete energy levels such as, for instance, quantum dots. But because the
joint density of states for intersubband transitions is essentially a § function
{(when nonparabolic effects are neglected; see Section VII), quantum wells
behave like atoms as far as their intersubband absorption properties are
concerned. (One big difference are the short relaxation and dephasing times,
as discussed in Section X). This can be exploited for novel, efficient devices
like harmonic generators (see Chapter 2 on nonlinear optics in Volume 66)
or infrared lasers (Chapter 1 of Volume 66).

E
AlGaAs f / :

FiG. 15. Conduction-band edge of a modulation doped GaAs—AlGaAs heterostructure. An
inversion layer with a two-dimensional electron gas is formed at the interface. Three subbands
and possible transitions from the ground state are indicated.
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Fic. 16. Intersubband absorption in a gated GaAs—AlGaAs heterostructure. Plotted is the
transmisston change (relative to the depleted sample) for different electron concentrations as
indicated. Transitions to three excited states are observed. (Note that the level numbering starts
with 0 in the figure.) In the reststrahlen regime the sample is opaque; the sharp features above
350cm ™! are related to AlAs photons {from Batke et al., 1989).

V1. Multiguantum Wells and Superlattices

From a theoretical point of view, there are some fundamental differences
between an isolated system of one or several quantum wells and a periodic
sequence of an infinite number of quantum wells (with periodic boundary
conditions). In the first case, the energy spectrum always consists of a set of
bound states (subbands)} and a continuum, where the bound states become
more and more closely spaced, when the number of quantum wells becomes
larger. For a large number of identical quantum wells, the system is better
described by periodic boundary conditions. In this case, one obtains energy
bands E (k,), where k, is the wavevector component parallel to the growth
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direction, which is now a good quantum number. This description is
especially adequate if the barriers are so thin that strong coupling between
different QWs occurs. Such a system is normally called a superlattice and
the resulting energy bands are called minibands. There is no essential
difference between minibands below and above the top of the barriers. When
the barriers are thick (multiquantum well system), the minibands below the
top of the barriers are extremely narrow and we have degenerate states
localized in each quantum well. Above the top of the barriers we still obtain
minibands, as in the case of strong-coupling superlattices, but they are very
dense, forming a quasi-continuum. The energy spectrum of a MQW system
and a superlattice are schematicaly shown in Fig. 17. For a review article
on superlattices, see Helm (1995).

A superlattice with, ideally, an infinite number of periods, can be de-
scribed by the Kronig-Penney model of a one-dimensional lattice with
periodic boundary conditions. The z-dependent part of the envelope wave
function can then be written as the product of a Bloch part, which is
periodic in the superlattice period, and a slowly varying plane-wave part

0a(2) = e*u,(2) (41)

where u,(z) = u,(z + d) and d is the superlattice period. Note that u,(z) is
different from the u.(r) in Eq. (1), but there should be no confusion, since
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Fig. 17. Schematic conduction band profile and minibands of a multiquantum well
structure (top) and a strongly coupled superlattice (bottom).
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the two functions never appear in the same equation in this article. The
resulting transcendental equation which yields the dispersion E,(k,) reads

cos(k,d) = cos(aa) cos(fib) — % (é + é) sin(xa) sin{fb) (42)

where

*
N W BN
b
where a and b are the superlattice well and barrier widths, and m* and mj¥
are the well and barrier cffective masses, respectively. In Fig. 18, the first
three minibands of 2 GaAs—Al, ,Ga, ,As superlattice with a = 75A and
b =25A are shown. (The 1s and 2p, impurity levels, also shown in Fig. 18,
are discussed in Subsection 3 of Section XI.) When the widths of the
minibands are smaller than the gaps between them (which are, of course,
not real gaps, since they contain a constant, two-dimensional density of
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FiG. 18. Calculated miniband dispersions of the three lowest minibands of a GaAs—
Al, ;Ga, ;As superlattice with a = 75 A and b = 25 A. The horizontal dashed line indicates the
top of the barriers. The 15 and 2p, impurity states are also included schematically (for a
discussion, see Subsection 3 in Section XI}. The interminiband transitions at the center and the
edge of the mini-Brillouin zone are indicated as well as the impurity transition.
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states), the miniband dispersions can be approximaied by the explicit
analytic expression

A2 k2 + k2)

API
E (k) =¢, + ?(1 +cosk,d) + P

(43)

where the minus sign holds for odd minibands (n = 1,3,...) and the plus
sign for even ones (n = 2,4,...}. We no longer distinguish between well and
barrier effective mass. Equation (43} corresponds to a tight-binding approxi-
mation, taking into account the nearest neighboring wells.

The calculation of the absorption coefficient a proceeds in a manner
similar to that in Section II for quantum wells, with the difference that we
are now dealing with a three-dimensional problem. Therefore « is obtained
through integration over k,, k,, and k,, leading to (Helm et af., 1993)

x3 »?

__ekr [ 21y | L eXPLEF—E,(k)I/KT)
D!——gocnﬁznm*m J;] dszlez!z)l In |:1 +exp([EF—E2(kz)]/kT)

I'/n
"((Ez(k,)—El(k,)—ﬁw)2+r2) “9

The k k, integration has already been performed, assuming parabolic bands.
The integral over k, must be evaluated numerically, using the miniband
dispersions E;(k_) in the Lorentzian. Note that also the matrix elements are
k,-dependent.

Further note that in a periodic system with unbounded wave functions
the A -p interaction for the ¢lectron—photon coupling is preferable over the
eE 1 interaction, since the latter can lead to wrong results (edge terms
related to the choice of the unit cell would have to be included; Peeters et
al., 1993),

It is now instructive to analyze the different contributions in the preceding
formula, namely, the oscillator strength (or the squared matrix element), the
Fermi-Dirac thermal occupation factor, and the Lorentzian, Together with
the k, integration the latter is nothing less than the joint density of states
(JDOS), which has two singularities at the center (k, =0) and the edge
(k, = n/d) of the mini-Brillouin zone with a 1/m divergence, characteristic of
its one-dimensional character. The JDOS for transitions between the two
lowest minibands of the above superlattice is shown in Fig. 19 (dotted
curve). The singularities are smoothed out by a broadening parameter of
I' = 10meV. Note that due to the different curvatures of the bands near
k,=0 and k, = n/d, respectively, the shape is not symmetric. {In the
tight-binding approximation of (Eq. (43)) the shape can be described
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Fi1G. 19. Calculated JDOS (dotted) and absorption coefficient (solid line) for the above
superlattice with 7 =6 x 107 cm ™ at T = 5 K. The units for the JDOS are arbitrary (from
Helm et al, 1993).

analytically and turns out to be symmetric (Helm ef al,, 1991). The full curve
in Fig. 19 reflects the total absorption coefficient according to Eq. {44) using
an electron concentration of 6 x 1017 ¢m ™2 and a temperature of T = SK.
(At this doping level the Fermi energy lies above the top of the first
miniband, ie., the first miniband is “full.™) Now the asymmetry is further
enhanced so that the low-frequency peak, resulting from transitions at the
edge of the mini-Brillouin zone, becomes much stronger than the high-
frequency peak (corresponding to transitions near k, = 0), which is merely
visible as a shoulder. (Note that naive use of the ¢E-r interaction leads just
to a reversed asymmetry; Kim et al, 1990). The reason for this is the
variation of the oscillator strength, f7,(k.), across the Brillouin zone (Helm,
1995) illustrated in Fig. 20 for GaAs—Al, ;Ga, ,As superlattices with 75-A
well width and barrier widths of b = 15, 25, and 40 A, corresponding to
miniband widths A, of 36, 18, and 7 meV, respectively. For comparison, the
oscillator strength f,, of an infinite single QW is also shown. Evidently, for
wider minibands, more and more oscillator strength is concentrated near the
zone edge. In the opposite limit of very narrow minibands, the oscillator
strength is independent of k, and of the order unity, Note that the average
of f,tk,) across the minizone remains of the order unity even for wide
bands. This can be understood with the help of the extension of the
oscillator sum rule (Eq. (16)) for energy bands {(and not only discrete levels),
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FiG. 20. Oscitlator strength f,, as a function of k, for superlattices with the same well
width (75 A), but different barrier widths b, as indicated. The horizontal line represents the case
of an infinite QW (from Helm, 1995).

which reads

* 2K, (k, *
Zf}j(kz)+%a—;é')=1 or Z;ﬂj(kz)=1—;1'%,.TL (45)

i

Here my)}, is the effective mass along the z direction, which is related to the
curvature of the miniband at a certain point along k.. In the preceding
equation, the first term describes transitions between different minibands
(interminiband transitions), whereas the second term corresponds to free-
carrier type of transitions within one miniband (Helm, 1995). From Eq. (43)
it is clear that a large curvature (or a small effective miniband mass along
the z direction) will strongly influence the values of f;(k.). Since the
miniband curvature is positive near k, = 0, the oscillator strength must be
recduced there, whereas it must be enhanced due to the negative curvature
near k, = n/d. Thus, near k, = 0, the sum rule is completed through free-
carrier absorption, whereas near k, = =/d it is accomplished through free-
carrier emission processes {Helm, 1995).

Experiments on intersubband absorption in strongly coupled superlattices
for interminiband absorption) are rather scarce. After some initial reports
in connection with infrared detectors (Byungsung et al, 1990; Gunapala et
al, 1991), Helm et al. (1991, 1993) presented absorption spectra clearly
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showing the predicted asymmetric line shape resulting from the singularities
in the JDOS. As can be seen in Fig. 21, when compared to the calculated
spectrum (Fig. 19) the interminiband absorption is well described by the
above theory. In this superlattice (n = 6 x 107 cm™?) the Fermi energy at
low temperatures lies above the top edge of the first miniband, and thus the
spectra are basically temperature independent (apart from some additional
line broadening at high temperature). The situation is different for a lower
doping level (n = 6 x 101°cm ™), when the Fermi energy lies approxi-
mately in the middle of the first miniband (Fig. 22). In this case the top edge
of the first miniband can be populated with electrons by increasing the
temperature, and thus the absorption spectrum becomes strongly tempera-
ture dependent. The additional line appearing at low temperature at hw =
125meV is due to the 1s-2p, donor transition, as discussed in more detail
in Section XI, Subsection 3.

At the end of this section, we mention another experiment in which Streibl

et al. (1996) observed the interminiband absorption in a finite superlattice,
-which was embedded in a modulation doped, wide parabolic quantum well
(see Section X1, Subsection 2). In this way, the donor impurities are spatially
separated from the entire superlattice (Jo et al., 1990), leading to a higher
electron mobility. The authors observed an indication of a line narrowing
due to the collective effects (see Section VII), which was predicted by
Zaluzny (1992b).

a8 . n=6x107cm-3
® 061 ]
£ ]
8 [ ]
B 04f ]
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< ]
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Fig. 21. Measured absorption spectrum for a GaAs—Al, ;Ga, -As superlattice (z = 75 A,

b=25A) with n =6 x 10" cm~? at T =20 and 300 K. This should be compared with the
theoretical curve in Fig. 19 (from Helm, 1995).
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VII. Nonparabolicity and Many-Body Effects

So far we have discussed the basic energy level structure of quantum wells
] and superlattices (SLs). In reality, however, it turns out that the exact energy
3 4 levels and the measured absorption line positions can significantly differ
from these simple predictions. There are a number of physical effects that
] . can cause such energy shifts, all of which were studied in detail over the past
: decade. They can be divided into

1 1. Band structure effects: nonparabolicity in the z direction (Nelson et al.
; 1987; Yoo et al, 1989), nonparabolicity in the QW plane (Ekenberg,
1987, 1989), and its effect on the intersubband absorption line shape
{(Newson and Kurobe, 1988; von Allmen ef al., 1988)
2. Effects of Coulomb interaction on the energy levels (Hartree self-
consistent potential and exchange-correlation energy)
3. Effects of Coulomb interaction on absorption frequency (depolariz-
ation shift, exciton shift) (Ando et al., 1982; Batke, 1991).

-
—td

300

serlattice (a = 75 A, . . .
compared with the i In the following, we briefly summarize all these effects, but we see that not

all of them can simply be separated.
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For many experimental situations (such as GaAs QWs with thicknesses
between. 50 and 100 A and sheet electron density of 10! to 10'2 cm™2), all
of the preceding effects contribute not more than around 10% to the
absorption peak position, so they often can be neglected as long as only a
crude estimate is desired. A detailed understanding, however, requires
inclusion of all of them, since they are of the same order of magnitude and
partly compensate each other. For wide quantum wells, on the other hand,
the Coulomb eflects 2 and 3 become very important, since the Coulomb
energy becomes of the same order of magnitude as the subband separation.

1. NONPARABOLICITY

The parabolic approximation for the band structure is valid only at low
energies, close to the relevant conduction band minimum, which is the T
- point in most cases. At higher energy, coupling to different bands (the
valence and higher conduction bands) plays a significant role, especially for
narrow-gap materials, which makes the effective mass energy-dependent.
The theoretical standard approach for, for example, the electrons in the
conduction band of GaAs—AlGaAs quantum wells, is the evaluation of the
full 8 x 8 or 14 x 14 k- p matrix Hamiltonian by applying Kane’s theory to
heterostructures (Bastard, 1981, 1982, 1988). Simpler k- p models (such as
the Kane—Bastard two-band model), which are desired for less cumbersome
calculations, put severe restrictions on the effective masses involved (e.g.,
masses of electrons and light holes are equal, as are the well and barrier
masses at the same energy). Therefore some simple, more semiempirical
methods have been proposed, which use a larger number of independent
input parameters. Nelson ef al. (1987) proposed an “empirical two-band
model,” which is based on Kane’s two-band model, but three independent
parameters are taken either from experiment or from a more accurate
(14 x 14) k-p calculation for the bulk material. Within this model the
energy dispersion can be written in the following form:

Rk hk?
= E 1 ’ =
e {1 + E/E) or E A

(1 — v&k?) (46)

A relation of this type is valid for the well and barrier materials, leading
to totally four parameters: the band-edge masses m* in the well and the
barrier, and the nonparabolicity parameter y in both materials (or, equival-
ently, an “effective” energy gap E;). The band-edge masses in the well and
barrier materials can be taken from experiment and are known with high

“best agre

acCcuracy |

extensive |
set (mh,
(mE/mk)* |
assumed
simplest

theory, t
eliminate
parabolici
A detailed
and Yoo
Persson a
Meney et |

on the 14

E(k) = :xUk_.

Here the sp



with thicknesses
»10%2em ™), all
nd 10% to the
s long as only a
'Wever, requires
"magnitude and
the other hand,
:e the Coulomb
»and separation.

alid only at low
, which is the I

rent bands (the-

e, especially for
iergy-dependent.
electrons in the
wvalvation of the
Kane's theory to
models (such as
less cumbersome
;5 involved (e.g.,
well and barrier
re semiempirical
- of independent
pirical two-band
iree independent
| more accurate
this model the

pk?) (46)

1aterials, leading
the well and the
rials (or, equival-
3 in the well and
tnown with high

1 TuE BaSIC PHYSICS OF INTERSUBBAND TRANSITIONS 41

accuracy in most materials. The value of y (or E}) is chosen to achieve the

“best agreement with the experiments, or can be obtained from a more

extensive k - p calculation with the results fitted by Eq. (46). Then for a given
set (m%, mf,v.), v, 18 uniquely determined through the condition v, /y, =
(m¥/m¥)? (or mi/m¥ = E,/E}), when the interband matrix elements are
assumed to be the same in both materials. Thus, this scheme uses the
simplest possible functional form to describe nonparabolicity and cures the
remaining inaccuracy by determining the relevant adjustable parameters by
some other means. Another way to put it is that the usual parametersin k+p
theory, the (real) energy gap E, and the Kane matrix element P are
eliminated in favor of m* and y (Zaluzny, 1991). For example, the non-
parabolicity parameter for GaAsis y = 4.9 x 10™'? m? (Nelson et al., 1987).
A detailed description of this procedure can be found in Nelson et al. (1987)
and Yoo et al. (1989). For further discussions, see Eppenga et al. (1987),
Persson and Cohen (1988), Winkler and Rdssler (1993), Burt (1992), and
Meney et al. (1994). A simple approximate description was also presented
by Altschul et al. (1992).

One interesting result of this model concerning subbands in QWs is that

 the position of the lowest subband is virtually uninfluenced by non-

parabolicity, no matter how narrow the QW and how large the confinement
energy. This is so because the strong nonparabolicity in the well material
(increasing cffective mass with cnergy} is compensated due to the strong
wave function penetration into the barriers, where the nonparabolicity acts
the opposite way (decreasing mass deeper in the barriers). The largest energy
shifts (toward lower energy) are observed for subbands with high quantum
numbers, since they are high in energy with respect to the QW band edge,
but very close to the barrier band edge. This behavior obviously gives rise
to a red shift of the intersubband absorption.

Nonparabolic effects, of course, not only shift the subband edges, but also
increase the effective mass for electrons moving in the quantum well planes.
Ekenberg (1987, 1989) presented a thorough discussion of the effect of
nonparabolicity on the perpendicular mass, m¥ (which influences the sub-
band energies) and the in-plane mass, m{f (which influences the in-plane
dispersion), starting from a fourth-order expansion of E(k), which is based
on the 14 x 14k - p model (R&ssler, 1984; Braun and Rossler, 1985) -

W #
EK) = 4 2 2 2 2 2
) = aok? + [2m, + Qo+ Bo)liS + k,,)}kz g+ KD

+ 20 + folkzky + ag(ks + k) (47)

Here the spin splitting is neglected and the k, terms are collected separately.
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Note that «; and f, are negative. For heterostructures, k, must be replaced
by —id/dz-and the QW potential ¥(z) must be added. He obtains approxi-
mate expressions for m¥ and mf§, which are

mHE) = m*(1 + aF) (48)
and

mi(E) = m*[1 + (2o + P)E] (49)

Here m* is the band-cdge effective mass, and « and § are related to the
fourth-order coefficient of the E(k) expansion (x= —(2m, /h%)’a,, f =
—(2m/h*)*B,, given by & = 0.64eV ™! and f = 0.70eV !, respectively, for
GaAs. Therefore, the nonparabolicity enhancement in the QW planes is
about three times larger than along the growth direction. Ekenberg’s result
-also confirm the weak influence on the ground-state binding energy. He
further discusses the effect of different boundary conditions for matching the
wave functions at the interfaces (Ekenberg, 1989; Burt, 1992).

The influence of nonparabolicity on the intersubband absorption (News-
on and Kurobe, 1988) is, from a theoretical point of view, a crucial one,
since the integration over k, and k, cannot be performed analytically and
the JDOS is no longer a é function. Thus, the absorption coefficient must
be calculated through a two (for QWs) or three (for SLs) dimensional
integration over k-space using some form of energy dispersion E(k k,), as
in Eq. (18) of Section II. The intersubband absorption line shape then
acquires some additional, asymmetric broadening on the low-frequency side,
which should become relevant at high doping levels, when the Fermi energy
is large. Recently it has been shown, however, that this broadening can be
entirely compensated by many-body effects (see below in Subsection 4; also
Zaluzny, 1991; von Allmen, 1992; Warburton et al., 1996),

2. SELF-ConsISTENT COULOME POTENTIAL

To provide the electrons or holes necessary to observe intersubband
transitions, quantum wells have to be doped. Since the electron charge
distribution, which is determined by the wave functions of all occupied
subband levels, will never be identical to the spatial distribution of the donor
host ions, the positive and negative contributions do not cancel and there
will be a remaining electrostatic potential. Although this effect is relatively
weak, when the doping is placed directly in the QWs, it becomes very large
when the doping is placed into the barrier material. In this case, the
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electrons are transferred to the well and are spatially separated from the
dopants, leading to a strong modification of the potential. This is called
modulation doping and is known to increase the electron mobility and
decrease the intersubband absorption line broadening, since impurity scat-
tering becomes suppressed due to the spatial separation of the electrons
from the impurities.

This contribution to the potential energy is called Hartree potential ¥}

and can be calculated via Poisson’s equation (with Vg = —e®)
3P e
57 [z} ~ Np(z}] (50)

the solution to which is obtained by two integrations, but it can be brought
into a form containing only one integration, which is more convenient for
numerical evaluation

) = —

0

r (2 — 2)[(z) — Np(z)] d 1)

—w

In these equations, N ,(z) is the donor doping profile (ionized donors only)
and ni(z) is the three-dimensional ¢lectron density, given by

m

* — 0.
e) = Enlo@ =S T L exp (BB Lo 50

for finite temperatures and multiple subband occupancy. If different effective
masses m¥ are used for the different subbands, m* must be taken under the
sum. Here n; is the areal electron concentration in the ith subband and ¢;(z)
is the respective wave function. The Fermi energy E; must also be deter-
mined self-consistently so that {n{z) = Z;n, = n,, where n, is the total areal
electron concentration. Equations (50} and (52) must be solved self-consist-
ently together with Schrodinger's equation with ¥y added to the Hamil-
tonian. Both are coupled via the appearance of the wave function in
Poisson’s equation.

In the usual picture, where electron energies are counted positive, negative
charge gives rise to negative curvature of the potential profile, while positive
charge results in positive curvature. As an example, let us consider an 80-A-
wide GaAs—Al, ,Ga, As quantum well. Using the bare confining potential
(barrier height 240 meV) leads to two bound states, E; =42.3meV and E, =
153.5meV, corresponding to a subband separation of E,, = 111.1 meV.

e LW
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Now the self-consistent Hartree potential is taken into account for two
doping profiles. Figure 23a shows a modulation doped structure, where the
barriers are doped with N, = 5 x 10 em ™2 over 10 A, 40 A away from the
quantum well. This yields an areal electron density of n, = 1 x 102 cm ™2 in
the QW. The strong band bending reduces the subband separation to E,, =
104.4 meV. The second structure (Fig. 23b) is doped over the center 50 A of
the well with N, =2 x 10'®cm™3, resulting in the same areal electron
concentration. The band bending is, however, much weaker, and the
subband separation is slightly increased to 112.3 meV with respect to the
bare potential.

(a) 00 T —————y .
[ E =104.4 meV ]

250 F / 2 \ .
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g : | 3
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0 :u | I T ST NS OUT S T R R R T B ]

-50 0 50 100 150

z()-?\)
®) 2350 3
F E, =112.3 meV
o 200 F E
Esof ——.\J/-\\.\__ ]
& ; ]
g 100 F 3
= - ]
52 L /—-———-\ 1
50 R . ]
0F
-50 ¢ 50 130 150
zZA)

Fig. 23, Conduction-band profile, energy levels, and wave functions of an 8§0-A-wide
GaAs-Al, 3Ga, ;As quantum well with an arcal electron concentration of 1, = 1 % 10*2cm %
(a} doping in the barriers (modulation doping) and (b) doping in the well. The energy
separation E; — E| is given in the figure.
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Some complication arises, when a nonparabolic variation of the effective
mass is taken into account, since due to the band bending m* becomes
z-dependent even within in the same material. In this case, a weighted
spatial average of the effective mass can be used (Bastard, 1988), defined
through

1 ﬁ” o . )

mf ) M)

3. Mawny-Bopy EFFECTS ON THE ENERGY (EXCHANGE AND
CORRELATION)

At the electron densities usually encountered in semiconductor QWs and
heterostructures, many-body effects on the energy of the electron gas also
play a nonnegligible role (i.e., the exchange and correlation energies). Two
methods for their calculation have been frequently used for the quasi-two-
dimensional electron gas in a quantum well: The Hartree—Fock method,
which yields an explicit expression for the exchange energy but neglects
correlations, and the local-density approximation (LDA) within the Kohn-
Sham density functional theory (Kohn and Sham, 1965).

The exchange integral in the Hartree—Fock equation, which represents a
nonlocal potential, has been evaluated in an approximate way by Bandara
et al. (1988, 1989) for electrons in the ground subband using infinite QW
wave functions. This leads to

et

Foa) = — ks E Bk ) — o.sz(kp/ka} (54)

4mee,

for k < kg. Here k; is an inverse length characteristic of the QW (e.g., k; =
#/L for an infinite QW), and E{k/k;) is a complete elliptical integral of the
second kind. For k > kg, a similar expression results (Bandara et al., 1988,
1989; Manasreh et al., 1991; Szmulowicz et al., 1994); also Zaluzny (1992a)
provided a simple expression.

Within the Kohn—Sham density functional theory using the LDA, the
combined exchange-correlation potential can be written as a functional of
the electron density V. (n(z)) and added as a (now local) potential in. the
single-particle Schrodinger equation, in a way similar to the Hartree
potential Vg(n(z)). (Note that for the LIDA to hold strictly, the electron

_ density is required to exhibit only slow spatial variations, which is, in fact,

not well fulfilled in QWs.) Various forms for V_(n(z)) have been suggested
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in the literature. The following expression given by Hedin and Lundqvist
(1971) has also been used frequently for electrons in quantum wells (Bloss,

1989):
9\ 2 B A e?

V. = —|— — |1l +—=rIn{l+—]i* 55

*e (4) m’s[ +Arsn( +rs)j' Bree,a* (33)

Here r, is the dimensionless parameter characterizing the electron gas, given
by r, = [(4n/3)a*3n(z)]~1/* and corresponding to the mean electron distance
normalized to the effective Bohr radius a* = (¢/m*)a,. The constants 4 and
B were quoted as 4 = 21 and B = 0.7734 (in a later paper, Gunnarsson and
Lundgqvist, 1976, give values of A = 11.4 and B = (.6213, see also Chuang
et al., 1992: Luo et al., 1993); both values probably lic within the uncertainty
of the theory with the approximations made). This expression is claimed by
its originators to be valid in a rather wide range of r,.

In contrast to Eq. (54), Eq. (55) does not exhibit any k-dependence and
leads to a correction that is two to three times smaller than in the
Hartree—Fock approximation (Zaluzny, 1992a), which tends to overesti-
mate the energy correction. For a discussion of the use of the Hartree—Fock
equation vs density-functional theory, compare Jogai (1991} and the com-
ment by Szmulowicz and Manasreh {1992).

The main effect of including the exchange (and correlation) energies is a
lowering of the total electron energy (or the effective potential) in regions of
high electron density. This results in a lowering of the subband levels. Since
the ground subband is mostly influenced, this leads to a blue shift of the
intersubband absorption. Note that in cases where the doping is placed into
the QW (no charge separation), the exchange effect can be larger than the
effect of the direct Coulomb term (Hartree potential). Especially in systems
with a large effective mass, the exchange energy becomes appreciable when
compared to the confinement energy.

Thus finally, using the preceding parameterization of the exchange-corre-
lation energy, the following Schrédinger equation must be solved together
with Eqgs. (50) and (52):

I:;_':*% + V(z) + Vgnlz) + V..(n(z)) :| @,(2) = E, ¢,(z) (56)

neglecting all complications that arise from a nonconstant effective mass for
simplicity.

As an illustration, the preceding GaAs-Al, ;Ga, ;As QW (with doping
in the well) is shown again in Fig. 24, now including the exchange-
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F1G. 24. The GaAs—Al, ;Ga, -As quantum well of Fig. 23 doped in the well, but with the
gxchange-correlation energy added to the potential.

correlation potential according to Eq. (55). The potential lowering in the
regions of high electron density is clearly observed, and the subband
separation is slightly increased to E;; = 114.6 meV.

4. CoLLECTIVE EFFECTS ON THE ABSORPTION (DEPOLARIZATION
AND EXCITON SHIFT)

Many-body effects are relevant not only for the energy of the electron gas
but also for its electric conductivity (or polarizability), which must be
calculated to obtain the absorption spectrum in a many-body theory. The
single-particle approach presented in Section II is not sufficient in this case.
It has been shown that there are two main terms that cause a shift of the
absorption maximum with respect to the bare energy levels; that is, the
absorption does not occur at the energy difference E,, = E, — E,;, but
rather at an energy given by

E2, =EL(1 +a—f) (5T

The frequency shifts represented by o« and § (both >0) are known as the
depolarization shift and the exciton or final-state interaction, respectively, in
the many-body calculation of the conductivity or polarizability (Vinter,
1976, 1977, Ando et al, 1982; Batke, 1991, and references therein). Here «
and f should not be confused with the nonparabolicity parameters in the
preceding section.
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The depolarization shift essentially comes from a (time-dependent) Har-
tree term related to the high-frequency field inducing the absorption. Each
electron feels an effective field that is different from the external field by the
mean Hartree field of the other electrons polarized by the external field.
Thus, the external field is screened by the quasi-two-dimensional electron
gas (corresponding to the random phase approximation for the dynamic
conductivity). In this spirit, Allen et al. (1976) calculated the depolarization
shift using time-dependent perturbation theory by introducing a self-consist-
ent AC potential in Schridinger's equation and evaluating the induced
oscillating charge density and AC current self-consistently from Poisson’s
equation. In this treatment, we restrict ourselves to a two-level system,
which requires that there is significant oscillator strength for transitions to
only one excited state. A generalization for several levels was performed by
Allen et al. (1976) and Chun et al. (1993).

The frequency shift « (depolarization shift) is given by

2
i 2e“n,
geaF

S with S= f ” dzUz dz’qoz(z’)qol(z')]2 (58)

— o — o

where § (in the literature often called §,,) has the units of length, and «
is proportional to the electron density, in fact, the squared frequency shift
is of the order of the three-dimensional plasma frequency and the absorp-
tion frequency can be written in the form &3, = w3, + f,,05, as was
recognized by Chen et al. (1976). Here w,, is a 3D plasma frequency defined
by w; = (n,e*/eggm™* L), with L = (h%f,,/2m*SE,,). This is the L that
must be used in Eq. (40) for consistency. Note that the oscillator strength
J12 cancels in the final shift. For an infinite QW of thickness L, the preceding
can be calculated analytically to give the values § = (5/9%%) + L = 0.056- L
and L = f,,°(3/5) L.

The physical content of the depolarization shift can be understood
through the collective nature of the intersubband absorption. Exposing the
system to external radiation not only excites electrons into the higher
subband but also modulates their charge density. The restoring Coulomb
force gives rise to a kind of plasma oscillation. The combined intersubband-
Coulomb problem can thus be regarded as two coupled oscillators with
frequencies w,, and w, (Sherwin et al, 1995).

As evident from the preceding formulas, the depolarization shift is
important only at high electron densities and/or small energy separations.
For quantum wells with E,, around 100meV and n, < 10'?cm™2 it is a
minor correction (see example following).
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The same is true for the second term, f, which acts to reduce the
absorption frequency, and is due to the Coulomb interaction between the
excited electron and the quasi-hole left behind in the ground subband. Since
this is similar to an excitonic electron—hole pair, the effect is called the
exciton correction, or the final-state interaction. It corresponds to a reduc-
tion of the mean Hartree ficld around each electron due to exchange-
correlation effects. In a systematic many-body theory, it can be shown that
B represents a local field or vertex correction to the depolarization shift
(Ando et al,, 1982; Bloss, 1989). Ando (1977a, 1977b) calculated both terins,
o and f, using the density functional theory in the local density approxi-
mation and obtained

_ Ing (" av,.[niz)]
p=- E,, J_m dz,(z) ¢ (2)° TonG) (59)

where F,, is the exchange-correlation energy of Eq. (55). Since dV,_ /dn is
negative (V,, becomes more negative, when n is increased), § is a positive
number. For GaAs QWs, £ is usually much smaller than «. However, in the

* two-dimensional electron gas in Si accumulation or inversion layers, they

can be of the same order of magnitude (resulting mostly from the higher
effective mass), so that both effects nearly compensate each other.

Ando (1977a, 1977b, 1978) presented a treatment using the two-dimen-
sional conductivity ¢, and modified (observable) conductivity &, that
reflect the response to the total electric field and external electric field,
respectively. The induced current can be written as

J: = 0,E (60)

The external field E_, is related to the total field through

ext

E=¢,E (61)
where ¢, is the dielectric function,
[
g,=1+i—=2— 62
= SogstwLeff ( )

and ¢, the static background dielectric constant. The current can be
expressed as

Il
Qi
by

jz zzext (63)
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As a consequence, the absorption of the 2D layer occurs not at the poles,
but at the zeroes of the dielectric function. If o, is the conductivity of 3
two-dimensional electron gas with parabolic energy dispersion (i.e., E,, is
independent of k), the resulting 6, has the same Drude-form as o, (see
Eq. (27)), however, with a renormalized resonance frequency &, ,:

P _nsezflz —iw 65
= m* @ — o = 2iyo _()

The absorption A4 (if A<« 1) is then again given by A = (Red,,/e.cn)
(compare Eq. (26)).

To determine some numerical values let us go back to the earlier well. .
doped, 80-A-wide GaAs—Al, ,Ga, -As QW. For this structure, we obtain 3
o =0.16 and § =0.058, which corresponds to a depolarization shift of

8.8 meV and exciton correction of —3.4 meV, if each is considered alone,

and in a combined shift (according to Eq. (57)) of 5.7meV. We can calculate :§
now the position of the resonance absorption E,, when the various :§

correction terms are added successively:

Resonance position

bare potential 1112 meV
+ Hartree 1123 meV
+exchange correlation 114.6 meV
+depolarization 123.4meV
+exciton 120.3 meV

The total shift is less than 10% and is dominated by the depolarization:
effect. Tt is clear, however, that for wide QWs with a bare subband’

separation of less than 20 meV the collective energies can become as large

as E,,, and an intersubband transition cannot be described in a single-

particle picture anymore.

For systems with nonparabolic energy dispersions (which require integra-:

tion over k_ and k,) the conductivity takes the more general form (And
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1978; Zaluzny, 1991, 1992a; Warburton er al., 1996)

ey —io Gl
Pl = R0 T4 o — G ©o
with
_ }_ 2 . @31(0)
)=, Gy J T D — @ iy ©n

The integration goes over all occupied states up to the Fermi wavevector.

- The change of the oscillator strength with k, has been neglected. For

superlattices, one proceeds similarly (Zaluzny, 1992b), except that the
integration is over k. At finite temperature, G{w) would contain the
difference between the initial and final state distribution functions in
addition.

Zaluzny (1991, 1992a, b) noted that under such conditions, the depolar-
ization effect not only shifts the absorption resonance but can also induce a
significant modification of the line shape. For a highly doped QW with large
nonparabolicity, one expects a broad absorption line due to the k; depend-
ence of the transition energy E,,(k,). When the depolarization effect is
included, however, it turns out that the absorption spectrum consists of a
narrow line near the high-energy side of E,,(k }; thus nonparabolicity is
compensated by the depolarization field (Zaluzny, 1991). This effect was also
confirmed through experiments on InAs—AlSb QWs (Warburton et al,
1996). Figure 25 shows the calculated absorption for a 150-A-wide InAs—
AlSb quantum well with an electron concentration of n, = 1 x 10*2cm ™2,
The small effective mass of InAs results in a large Fermi energy (over
50 meV) and a high nonparabolicity. Note that E,, varies by nearly 20meV
between k, = 0 and k, = kg, as can be seen from the dotted curves, where
the depolarization effect is neglected. When it is included (full curves), the
absorption is shifted above the single-particle excitations (which are still
visible as a low-energy shoulder) and its width is determined by the
Lorentzian broadening parameter y (in Fig. 26, the HWHMs are hy = 0.5
and 2.5meV, respectively) and not by the variation of E, (k). The
corresponding experiment (Fig. 26) clearly confirms the validity of the
collective-excitation picture: the absorption consists of one narrow, nearly
Lorentzian peak with no obvious sign of nonparabolicity broadening,

According to Zaluzny (1992a), the nonparabolicity due to the k-depend-

. ence of the exchange energy (Eq. (54)) is also eliminated in the same way.

A similar mechanism is predicted to narrow interminiband absorption in

g W T
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Fi1G. 25. Calculated real part of the conductivity (proportional to the absorption) of a
150-A-wide InAs—AlISb quantum well. For the dotted curves, the depolarization effect was
neglected; in the solid curves it is included. Spectra for two values of the broadening parameter
F are shown. Note that here I' is the FWHM, whereas in the main text we have used I (ory)
for the HWHM (from Warburton et al, 1996).

strongly coupled superlattices (Zaluzny, 1992b). Nikonov et al. (1997) calcu-
fated the intersubband absorption in the framework of the semiconductor
Bloch equations (Haug and Koch, 1993) in the Hartree—-Fock approxi-
mation. In particular, they study the situation of two different effective
masses in the first and second subbands, and find a similar line narrowing
induced by the Coulomb and exchange interactions.
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Fic. 26. Measured transmission spectrum of a 150-A-wide InAs-AISb quantum well. The
experimental geometry is schematically showa as well as the angle (§) dependence of the
integrated absorption (from Warburton et al., 1996).

A systematic treatment of many-body effects in intersubband transitions
was presented by Chuang et al. (1992} and Luo et al. (1993) on the basis of
the Bethe—Salpeter equation, and also by Huang et al. (1995). Other related
approaches are due to Jiang (1992) and Boykin and Chui (1997).

It is interesting to note that in Raman scattering experiments (for a review
see Pinczuk and Abstreiter, 1989), both the bare and dressed intersubband
resonance can be measured (Pinczuk and Worlock, 1982; Pinczuk et al,
1989; Ramsteiner et al., 1990; Chuang et al., 1992; Luo ef al, 1993). When
the pump and scattered light have crossed polarizations, one measures the
spin-density excitation (SDE), which is (nearly) coincident with the single-
particle subband separation, whereas in crossed polarizations the charge-
density excitation (CDE) is measured, which is identical to the depolariz-
ation shifted intersubband resonance. Intersubband excitations with a finite
wavevector ¢ have also been discussed (Heitmann et al., 1982; Heitmann
and Mackens, 1986; Yi and Quinn, 1983; Batke et al.,, 1991).

The conclusion of this section is that a proper description of intersubband
absorption has to proceed via a full quantum mechanical calculation of the
conductivity or polarizability including band-structure and many-body
cffects on the same footing, and even treat the electromagnetics dictated by
the sample geometry as outlined in Section IV. In other words, strictly the
collective modes of the interacting system in response to the total (not
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external) field have to be evaluated, taking into the correct boundary con-
ditions and mode propagation. Still, in many realistic cases, the approach of
Section II, which is based on the single-particle calculation of the absorption
coefficient, can lead to satisfactory results within 10% accuracy.

VIII. Mechanisms for In-Plane Absorption

We have seen in Section 11 that the main intersubband absorption occurs
for an electromagnetic wave polarized along the growth direction (ie.,
perpendicular to the layer planes). This selection rule holds very well for
many cases (such as, e.g., a typical n-type GaAs QW), but there are several
mechanisms that can lead to relaxing this rule. In fact, theorists have
actually searched for such mechanisms, since it would be useful for applica-
_ tions in infrared detectors (see Chapters 3 and 4 of this volume) to obtain
absorption of mn-plane polarized light, which can then be utilized in a
normal-incidence geometry.

Strong normal-incidence intersubband absorption has been predicted and
observed for holes in valence-band quantum wells, which is due to the
mixing of the various hole bands. This is discussed in detail in the next
section. In this section, we focus on mechanisms that enable in-plane
polarized absorption in the simpler band structure of the conduction band.

1. INDIRECT-GAP SEMICONDUCTORS

In semiconductors with an indirect bandgap, the conduction-band mini-
mum is located away from the Brillouin-zone center either near the X point
(in the (001) direction) or near the L point (in the (111} direction). The
constant-energy surfaces are then ellipsoids characterized by a longitudinal
and a transverse effective mass. If the principal axis of such an ellipsoid is
tilted with respect to the QW growth and confinement direction, the
effective-mass tensor provides coupling between the parallel and perpen-
dicular motion of the electrons. As a consequence, normally incident light
(polarized in the plane of the layers) light leads to an ¢lectronic polarization
component perpendicular to the layers and thus to intersubband transitions
(Yang et al, 1989; Brown and Eglash, 1990; Xu et al, 1993, 1994). This
concept was recognized many years ago in connection with Si-MOSFETs
on (110) and (111) Si substrates (Yi and Quinn, 1983; Cole and McCombe,
1984). Interest has revived in this subject due to the prospect of realizing
normal-incidence infrared detectors based on QWs.
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The main candidates for this effect are of course Si and Ge, the former
with the conduction-band minimum along the (001) direction (A) near the
X point, the latter in the (111) direction at the L point. In addition, some
II-V semiconductors are indirect as well: For an Al content x > 0.45
Al Ga,_,As becomes indirect with the minimum at the X point, and
Al Ga, _,Sbis indirect for 0.25 > x > 0.55 with the minimum at the L point
(Xi¢ et al,, 1991a), among others,

For electrons in an elliptical valley of a semiconductor heterostructure the
Hamiltonian in the effective-mass approximation has the form

H=1p-%p+ V) (68)

where W is the 3 x 3 inverse effective mass tensor (Stern and Howard, 1967).
The perturbation Hamiltonian for the electron—photon coupling is given by

H’=—-§(A-W-p+p-ﬁ-A) (69)

- The absorption coefficient is now calculated in the same way as in Section

II, by using the transition matrix elements Hi; = {y;|H’|\{y,;> and the dipole
approximation. Since intersubband absorption is induced by the z compo-
nent of the electronic polarization, only terms that contain a p_ component
give a finite contributions. (Mathematically, the operators p, and p, have no
net effect on the wave function and the matrix elements vanish due to the
orthogonality of the wave functions.) Making also use of the symmetry of
the inverse effective mass tensor, w,,, = w,,,, we obtain the transition rate

2n
Wy = ?92(Axwxz + A,wy, + A w ) KipOIOE ; — E; — hw) (70)

¥ Vyz zWzz

where 4, are the Cartesian components of the amplitude of the vector
potential. The absorption coefficient follows analogous to that in Section I1.
Xu et al. (1993, 1994) showed that with a proper coordinate transformation
very general expressions for different material systems, substrate orienta-
tions, and polarizations can be obtained.

In the late 1970s it was predicted that the two-dimensional electron gas
(2DEG) in 8i-MOSFETs on (110) and (111) Si substrates should exhibit
intersubband absorption for in-plane polarized radiation. Both theoretical
(Ando et al, 1977; Yi and Quinn, 1983) and extensive experimental (Cole
and McCombe, 1984; Nee et al., 1984; Wieck et al,, 1984) investigations have
been carried out. One important result was the absence of the depolarization

RV
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shift for parallel excitation (Nee et al, 1984). Chun and Wang (1992) (also
Wang and Karunasiri, 1993; Wang et al., 1994a) extensively discussed the
intersubband absorption in n-type strained Si/SiGe quanium wells for
various growth directions. Here, conduction-band QWs occur in the §j
layers, when grown on a relaxed SiGe buffer. Experimental work include g
study of n-type §-doped 8i/SiGe QWs on Si (110) (Lee and Wang, 1992) and
Ge/SiGe QWs on Si (001) (Lee and Wang, 1994).

AlAs-Al Ga, _, As X-valley QWs were investigated theoretically by Xie
et al. (1992a, 1992b) and experimentally by Katz et al. (1992) for severa)
substrate orientations other than (001). Here, an AlAs QW is embedded
between AlGaAs barriers with x = 0.4. Wang et al. (1993) and Zhang et al.
(1994) have fabricated a normal-incidence infrared detector using this
scheme, the latter, however, grown on a Si substrate.

L-valley QWs and SLs based on the Al,Ga,__Sb-AlSb system were
discussed by Xie et al. (1991a) and by Shaw and Jaros (1994). The latter
work includes a microscopic calculation of the band structure and the
linear and nonlinear susceptibilities. The normal-incidence absorption of an
Al, 00Gag 0,Sb QWs was experimentally demonsiraied by Brown et al
(1992}, Abramovich et al. (1994) studied the photoinduced intersubband
absorption in GaSb-AlSb superlattices. Zhang et al. (1993) reported nor- :
mal-incidence absorption and photoresponse in GaSb QWs, where the
ground state is an L-type subband due to the confinement and the larger
effective mass at the L point as compared to the I' point. Normal-incidence
electrooptic modulators were also proposed on this basis (Xie et al., 1993,
1994).

Finally, another approach worth mentioning are QWs oriented vertically
with respect to the wafer plane. Berger et al. (1995) [abricated such vertically
oriented AlGaAs QWs (with low Al content) through growth on a patterned
substrate and reported normal-incidence intersubband absorption of I’
point electrons. This is just the usual intersubband absorption, which is
made possible here through the vertical orientation of the wells.
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- 2. SPATIAL VARIATION OF THE EFFECTIVE Mass

Yang (1995a, 1995b) has proposed a mechanism for in-plane polarized
intersubband absorption, which applies even at the T point in a spherical
conduction band, and relies on the spatial variation of the effective mass (i.e.,
m* takes a different value in each of the material layers). When the variation
of the effective mass along the z direction is taken into account, the proper
form of the electron-photon Hamiltonian is
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o_eaf t oo 1
# = (g ) 7y

When the polarization of the perturbing electromagnetic field is taken in the
QW plane, for instance, in the x direction, the induced transition rate
according to Fermi’s golden rule is then given by

11

If the effective mass were constant throughout the quantum well system, it
is clear that this rate would identically vanish due to the orthogonality of
the wave functions. A z-dependent effective mass, however, leads to a finite
value of the matrix elements and thus, of the absorption. For a symmetric
quantum well, the mairix element is finite only when initial and final state
have the same parity, which implies the selection rule An=n"—n =24, ...,
in contrast to usual intersubband transitions. Candidates for observation of
this effect are, for instance, step quantum wells, but so far no clear
observation has been reported. Note also that in a multiband model, this
effect actually tends to come out weaker, since the effective masses are
energy dependent and become more alike in different materials at the same
energy.

2n 5 2p2y2 z
W;f=?e A3h2k2 SE ; — E; — ho) (72)

3. COUPLING TO THE VALENCE BanD

There is another mechanism that can give rise to in-plane polarized
intersubband absorption of electrons at the I" point. If one goes beyond the
effective mass approximation (ie., taking into account nonparabolicity),
then not only the energy dispersions but also the electronic wave functions
are modified. That is, they are not simple products of the conduction-
band Bloch functions and an envelope function, but due to the band mixing
in k- p theory, they acquire a contribution from the valence band. The wave
functions are then linear combinations of electron as well as light, heavy,
and split-off hole Bloch functions. The complete optical matrix clements
within the 8 x 8 kp model can thus be written (Yang et al,, 1994) (cf. Eq.

(1))

Wlepldred>= 3 [Ke™ @y ler ple™ T d<uyluy> + {@pyluwydusle- plu; ]

JJ=1

(73)
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where ¢, is the z-dependent part of the envelope function (1 is the subband
index) and u; is the rapidly varying, periodic Bloch function of the jth band
(with {u;lu;.> = 6;;). The first term is the envelope-function matrix element,
which is responsible for the “wsual,” z-polarized intersubband absorption.
The second term, which reflects the admixture from the other bands, can
give rise to transitions for both orthogonal polarizations, and also transi-
tions with and without a change of parity become allowed in principle. This
issue was discussed in detail by Yang et al. (1994), Lew Yan Voon et al.
(1995), Warburton et al. (1996), and Flatté et al. (1996). In most common
quantum wells, the by far strongest transition is still the one with z \
polarization and parity change (Ar odd; e.g, the 1-2 transition). The matrix | et al. (198
element for xy polarization with odd An reaches at maximum a few percent |
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where E, and E,, are the subband energies, E, is the band gap, and A is
the spin—orbit splitting of the valence band. Evidently the spin—orbit inter-
action is crucial here. The transitions with even An are still weaker
(Warburton et al.,, 1996) for both polarizations (of course not for asym-
metric structures; there z-polarized transitions with An even can be very
strong, cf. Section V). These effects should be (relatively) strongest in
narrow-gap semiconductors such as InAs (small E,, large A), where the
band mixing is largest and also large k values are usually involved due to
the small effective mass (Warburton et al.,, 1996}, but most likely still too
small to be observed. Note that in the late 1970s and early 1980s in-plane
polarized absorption was observed in surface layers of the narrow-gap
semiconductors InSb (Beinvogl and Koch, 1977; Wiesinger et al., 1982) and
InAs (Reisinger and Koch, 1981), and corresponding calculations were
performed by Zawadzki (1983), however on the basis of 2 4 x4 k'p model
completely neglecting spin. In view of today’s knowledge (Yang et al,, 1994;
Warburton et al., 1996), these calculations as well as that of Shik {1988,
1992) appear to overestimate the strength of the normal-incidence absorp-
tion. To date, only a few reports exist on the observation of in-plane
polarized intersubband absorption in quantum wells ascribed to this mech-
anism. Peng et al. (1992, 1993), Peng and Fonstad (1993), Hirayama et «l.
(1993), and Smet et al. (1994) published a series of papers reporting both
TM- and TE-polarized intersubband absorption of similar strength in
InGaAs-InAlAs and InGaAs—AlAs structures prepared in slab waveguide

structure
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structures down to 40 um thin and also in direct normal-incidence geometry.
The peaks of the TM and TE mode were reported to be shifted from each
other (polarization splitting) by a magnitude proportional to the strain in
the structure. The authors have claimed to substantiate their experiments
with 2 14 x 14 k-p calculation {Peng and Fonstad, 1995), but this in turn
was questioned by Lew Yan Voon et al. (1996). To our knowledge, the
controversy on this topic has not yet been completely settled. In case the
theoretical analysis by Yang et al. (1994), Warburton et al. (1994), and Lew
Yan Voon et al. (1996) is correct, the origin of the observations of Peng et
al. (1993) would still not be clear. The same is true for another work by Li
et al. (1993) and Karunasiri et al. (1995), who have reported similar
experimental results. Liu et al. (1998) conducted a systematic study of TE
vs TM absorption and found the ratio to be less than 0.2% for a GaAs QW
and still less than 3% for an InGaAs QW.

Finally, note that the band mixing just described as a mechanism for
in-plane intersubband absorption is much more important in the valence
band, where, in fact, it leads 1o strong, observable, normal-incidence inter-
subband absorption. The valence band is the topic of the next section.

IX. Intersubband Absorption in the Valence Band

So far we have considered only intersubband transitions of electrons in
the conduction band of quantum wells. In a similar way, of course, valence-
band intersubband transitions can be observed in quantum wells that are
p-type doped. The main difference arises from the complexity of the valence
band, which makes reasonably accurate calculations significantly more
difficult, but also gives rise to some new phenomena, especially related to
normal-incidence absorption. This is the reason why p-doped quantum wells
are mainly being studied for applications in infrared detectors.

The valence-band maximum of most common semiconductors is located
at the I" point of the Brillouin zone, where it is fourfold degenerate (heavy
holes (HHs) and light holes (LHs), each being doubly spin-degenerate). The
degeneracy between heavy and light holes is lifted for nonzero values of the
wavevector k. In addition, a doubly degenerate band is split off by an
amount A through the spin-orbit interaction (spin-orbit split-off band, SO).
At k = 0 all bands are decoupled, whereas for k # 0 all bands are coupled
(except in the (001) direction, where there is only a LH-SO coupling). In
the case of a large spin-orbit splitting A, the interaction of the HH and LH

. bands with the SO band can be neglected. In Fig. 27 the valence-band

structure is depicted schematically as it occurs in GaAs, Si, Ge, and other
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Fig. 27. Schematic of the valence-band structure of most common semiconductors at the
I' point. HH, LH, and SO indicate heavy-hole, light-hole, and spin-orbit split-off band,
respectively. The splitting due to the spin-orbit interaction is A.

semiconductors. In a quantum well the degeneracy of the HH and LH bands
at k, = 0 is removed due to the different effective masses, which results in
different binding energies (see Fig. 28). Yet (for QWs grown in the (001)
direction) they are still decoupled from each other at k;, = 0 and thus the
energetic positions of the subband edges can be obtained from a simple
one-band calculation for HH and LH separately (as long as the SO band is
neglected; for more details, see below),

The nonparabolicity of the conduction band is usually described with
Kane’s model, where the six (including spin) valence bands and two (or
more) conduction bands are taken into account (8 x 8 k-p model). This
procedure, however, leads to an free-electron like heavy-hole mass (with the
wrong curvature) and is therefore not well suited to describe the valence
band. Instead, the Luttinger— Kohn (LK) model (Luttinger and Kohn, 1955)

---------- LH2
HH3

Fic. 28. Subbands of a typical valence-band quantum well (e.g., in GaAs). The energetical
order of the HH and LH subbands depends on the QW thickness (see later in the text).
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js appropriate; here, only the six valence bands are treated exactly, but the
interaction with remote bands is taken into account perturbatively to
second order in k- p (for the energies; to first order for the wave functions).

. This interaction gives rise to a finite heavy-hole mass and to the warping of

the constant-energy surfaces.
Due to its crucial importance for calculating the valence-band structure

--and, of course, also intersubband transitions in the valence band, we briefly

discuss the Luttinger—Kohn Hamiltonian, although good descriptions can
be found in several textbooks. First, the theory is outlined for bulk
semiconductors and then extended to quantum wells. The description
closely follows the textbook by Chuang (1995).

The Schrodinger equation for the complete Bloch wave function including
the spin-orbit interaction is given by (neglecting higher relativistic terms)

2 h '
[;—% + Vi + W(VV X p)- 0] Yulr) = E (K () (7%

- where # are the Pauli spin matrices. The relevant quantum numbers are the

band index v and the wavevector k. According to the Bloch theorem, the
wavefunction i, (r) is written as y,, (r) = ¢*"u,,(r), which is introduced in
Eq. (75). The lattice-periodic basis functions u,,(r) are expanded as a lincar
combination of the six zone-center Bloch functions of the hole bands u,,(r)
and the remote bands (called set 4 and set B, respectively):

u,(r) = Zai(k)uio(r) + Z aj(k)uj(](r) (76)

The six valence bands contained in set A are included exactly, whereas the
remote bands in set B are treated perturbatively.

The wave functions near the top of the valence band are p-like, and the
bands can be best classified using the total angular momentum j ={ 4 s =
1+ 1/2 and its projection m,. The basis functions u,,(r) = |j,m,> in set 4

are then explicitly given by (Chuang, 1995)

uor) =

313 -1 .
§:§> =ﬁl(X+ iY))

o) = . )= \'}—% X + )05 + ﬁ 21

Ly wh T
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aglt) = %—‘2—1> =\—}—;|(X — i +ﬁ|21>
N
:

3 : 7
,T> = Ix -

UgolT) =

usol) = f5,3) = \%KX Finly + \/§|ZT>
1 —1
=[5, 5 ) = Z3E—imp - \@IZD |

The order for the j = 3/2 bands is with descending quantum number m,.
Thus u,, and u,, represent the HH bands, u,, and 4, the LH bands, and

5o and ug, the SO bands.

Now the coupling of the lattice-periodic functions u,,(x) (v = 1,...,6) to
the remote bands of set B can be removed by k-p perturbation theory
(Loéwdin method) via the transformed basis

b & Cuglke plu,
a9 = o) + 1 S B 9)

Here ve A and je B. The E,, and E, are the respective band-edge energies
at the I point. There is no sum over set A, since the k+p coupling within
the valence band vanishes. When this expression is substituted into the
Schrodinger equation, one obtains a 6 x 6 matrix Schrédinger equation

26: Hy¥(K)av(k) = E(k)a, (k) (79

¥=1

where H'® is the Luttinger—Kohn Hamiltonian, which is of the form

HY = E 6, + ¥ Dtk k, (80)
a. g

The matrix D™ (a, 8 = x, y, z), which represents the nondiagonal elements of
the LK Hamiltonian and comes from the interaction with the remote bands,
plays the role of an inverse effective-mass tensor and is given by

h? [ o PLiply + Phins ]
D = | 8,8,y + Y T T 2T (81)
2mg 4 ; mo(Eq — Ej)
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Here E, is the average value of the band-edge energies in set .4 (valence
band); its use instead of E,, is an excellent approximation, when the
spin-orbit splitting A is much smaller than the energy separation from the
remote bands.

The total Luttinger—Kohn Hamiltonian matrix then reads

H (k)=
P+Q -s R 0 -s//2 /2R
—§* P—9Q 0 R -J/20 /328
| R 0 P-Q S J3ss /20 )
0 R* s*  P+Q

— . /2R* _St/ﬁ
—s* /2 —J20% /328 - /2R P+A - 0
VIR s 20% —si /2 0 P+A

where

hz 2 2 2
P= 2_”!0’})1(;‘:3: + k}' + kz)

2

" .
= — (k2 + k2 — 2k2
Q 2m0 '}’2( x + ¥ z)

#2372+ 75 Y27
R=— il 32 2 3 : 2
———-—2m0 |:——————2 (k —ik )+ = (k,+ik,)

/3 .
- - 2};{ [— 70k =)+ 2rsho k]

2

h/3
8= l},3(kx - Iky)kz

my

where y,, v, and y, are the so-called Luttinger parameters (related to the
elements of the matrix D) and describe the influence of the remote bands on
the valence band. They can be expressed as a sum over momentum matrix
elements between the valence band and the remote bands (compare Eg.
(81)). Usually, however, they are not explicitly calculated, but taken from
experiments and used as empirical parameters (e.g., to fit the experimentally
obtained hole masses), in the same way as the effective mass is introduced
in the single-band k-p perturbation theory. A closer inspection of the
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preceding shows that y, and y, give rise to an anisotropic dispersion
(warping) of the valénce bands. When the coupling to the SO band is
neglected, diagonalization of the Hamiltonian leads to a simple analytical
result (see for example Bastard, 1988, p. 54, or other semiconductor physics
textbooks).

When k, =k, =0, the HH + LH part of the matrix (SO neglected)
becomes diagonal. The diagonal elements P+ Q and P — @ are propor-
tional to y, — 2y, and y, 4 2y,, respectively. Thus, these two expressions
can be viewed as the inverse cffective masses for the heavy and light holes,
respectively (note that this cannot be seen so easily when setting, e.g.,
k, = k. = 0, since the z direction has been used as quantization axis for the
angular momentum).

To solve not the bulk but the quantum well problem, k, must be replaced
by the differential operator —id/dz in Eq. {82), which, however, must be
symmetrized before with respect to k, to ensure Hermiticity. The resulting

- system of six coupled differential equations has to be solved for the

six-component envelope wavefunction F, (with proper boundary conditions,
see, e.g., Altarelli et al, 1985; Altarelli, 1986):

6
Z [H!F-IIV( + V(z)5 vv’]Fv’nkl(r) = Evnlemk,_(r) (83)

vi=1

Here V{z) is the gquantum well potential (the proper offsets for each hole
band—HH, LH, and SO—must be taken). Instead of the wavevector
coemponent k. we now have the subband index » as a new quantum number,
and k, is the in-plane vector (k, k). Thus E,,, gives the in-plane energy
dispersion of the nth subband of the vth band. The envelope function F,,.(r)
can be separated into a z-dependent and an in-plane part;

ml( (r) - —\/_Z e’(k; r)gmkl( ) (84)

The total wave function is a linear superposition of the six basis functions,
where the Fourier transform of g,,, (z) = Z,, Gun, (k) - €% is introduced for
convenience {Altarelli, 1986; Chang and James, 1989):

nk(r) Z gvnk (k )6 ik u vk(r) (85)

vl

with u,, (r) from Eq. (78). With this Fourier transform Eq. (83) is conveni-
ently reduced to an algebraic matrix equation. The probability density (of
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the envelope function, i.e., averaged over one lattice constant) along the
quantization direction z for a state (n, k) is then given by

. _
Y 9k (2) * Gom,(2) (86)
v=1

" Several factors should be noted about the Luttinger—Kohn Hamiltonian
applied to quantum wells:

1. When the spin-orbit splitting A is much larger than all energies of
interest, the coupling to the S0 band can be neglected. Then the
Hamiltonian of Eq. (82) reduces to a 4 x 4 matrix. This is the case for
the lowest subbands in not too narrow GaAs—AlGaAs quantum wells
(A = 340meV), but never for 85i—-8iGe quantum wells, since A is as
small as 45 meV for Si.

2. As a further simplification, one can put y, =y; =7 =(y, + y3)/2 in
the expression for R. This is called the axial approximation and
removes the valence band warping (i.c., the in-plane dispersion be-
comes spherical).

3. As a main cffect of the confinement, the degeneracy at k;, = 0 of the
HH and LH bands is lifted. In the 4 x 4 Hamiltonian (neglecting the
SO band), the band-edge energies of the heavy and light holes can be
determined separately like in the one-band model, since the Hamil-
tonian becomes diagonal for k, = k, = 0. The corresponding effective
masses (which are relevant for the confinement energies) are given by

mf-lH 1 miH 1
= and —_——
My P — 2y, my 71+ 2y,

(&7)

Approximate effective masses in the quantum well plane can be obtained
by setting k, = 0 and an expansion for small k, and k,. The result is

mih 1 mu 1

my  Yi+7v. My ¥ — 7,

(88)

This approximation is never really good, since a finite confinement energy
already corresponds to a nonzero value of k.. Note that these expres-
sions predict a light in-plane mass for the heavy-hole band and vice
versa, which inevitably leads to an anticrossing of the light- and
heavy-hole subbands at some finite k, value. Interaction between light
and heavy holes also often leads to a negative (electron-like) in-plane
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effective mass of some of the subbands. Figure 29 shows the hole
subband dispersion along the (100) and (110) directions for a 50-A-
wide GaAs—AlAs quantum. well, calculated with the full 6 x 6 LK
Hamiltonian. The negative mass of the LH subbands is clearly ob-
served. Near k, = 0.035 A~! there is an anticrossing between the HH1
and LH1 states. The LH2 and HH3 states interact strongly near

k, =0.

The energetic order of the HH and LH bands is determined by the
confinement effective masses and the quantum well width, In GaAs QWs,
the LH1 subband is below the HH2 subband for narrow wells (since in the
extreme quantum limit, only one HH and one LH state are bound), while

~~ -100 F HH2 I | 1
- : :
z .
)
>, -150
18]
i
5 | (110) I
2200+ I ! -
LH2
I I
250 F : P
HH3 I
_300 1 I 1 1 L
000 001 002 003 004 005
k, (A1)

FiG. 29. In-plane hole-subband dispersions of a 30-A-wide GaAs—AlAs quantum well
caleulated with the 6 x 6 Luttinger-Kohn theory along the (100) (solid curves) and (110)
{dotted curves) directions. The vertical dash-dotted lines indicate the Fermi wavevector for
p=3x10"em™? and p =13 x 10'2em™?, respectively. The character (HH,LH) of each
subband at k, = 0 is indicated.
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there is a crossover around L = 190 A (Schulman and Chang, 1985). In
asymmetric QW potentials, one would observe the lifting of the twofold spin
degeneracy for k| # 0. _

Many quantum well systems are built from strained heterostructures, such
as Si-8i; _,Ge, or In,Ga, _,As—Al,Ga,_,As. In this case, strain terms
must be added to the LK Hamiltonian following Pikus and Bir (1960) and
Bir and Pikus (1974), which leads to a lifting of the HH-L.H degeneracy at
k =0 For biaxially strained QWs this yields additional terms for the
diagonal elements of the HH and LH bands, leading to a shift of the
respective band edges (which can change the order of HH and LH
subbands) as well as a nondiagonal term, coupling the LH and SO bands
(People and Sputz, 1990; Fromherz et al., 1994; Chuang, 1995). In tensile
strained QWs the ground state can be a light-hole subband (Xie et al,
1991b, Stoklitsky et al., 1994, 1995).

Now we proceed to the next step, the calculation of the optical matrix
elements for intersubband transition in the valence band (Chang and James,
1989; People et al, 1992a, 1992b, Fromherz et al, 1994; Szmulowicz and
Brown, 1995; Kim and Majerfeld, 1995; Tsang and Chuang, 1995). Here we

- restrict ourselves to the 4 x 4 LK Hamiltonian neglecting the spin-orbit

interaction. The matrix elements of the momentum operator between the
complete wavefunctions i, have to be taken (k = k' during a transition)

llm> (89)

h
m_ € Py = <¢nk

L
0 My
Due to the formal analogy of the expression e'p with k-+p, the maltrix
element can be expressed through the inverse-mass tensor elements D%, of
the LK Hamiltonian (Chang and James, 1989; Kim and Majerfield, 1995):

h . .
o (ualespluny =Y (DY, + Dilek; (90)
0 iJ

Separating terms containing &, (which actually becomes —id/dz) from the
rest it can be shown that the preceding can be written in the form

h 4 . .
m_e' P = €° Z (Ivv’ ::’ + waR:g') (91)

0 =1

Here the indices v and v' go over the four (or six) valence bands, whereas n
and »' indicate the respective subband levels. Note that 0™ and R™ have
nothing to do with Q and R of Eq. (82). The preceding quantities are given
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by
€ Ivv’ = Z ei(Div::" + D\ch\i")kx + (Di\'lvv’ + D{i')k}.
i=x.yz
e.Jw‘ = Z ei(Divzv' + Dﬁf')
[=x,y,2
and

= f dzF¥n k , 2)F (v, k,, 2)
. d '
R,\::‘” = J dZF'f(na k_Ls Z) (_ i EE) Fv' (n,3 kJ_’ Z) (92)

The index i extends over the Cartesian components and represents the dot

* product. These terms of the transition matrix elements p,, can be written in

the form of the following matrix, which contains the Luttinger parameters,
;. explicitly (Kim and Majerfeld, 1995):

1. x polanization

HH(3/2) HH(—3/2) LH(1/2) LH(—1/2)
HH(3/2)  hk(p+7,)0™ 0 — /3y, R =k, — iy O™
HH(-3/2) 0 By +1)0 —S3hlyak, ik O J3hy R
LH(1/2) — R = bk =ik O Rk, — 10" 0
LH(~1/2) /3h(psk, + iy k)0 3y R 0 hk (1, —7,)0™
(93)

The y polarization or any linear superposition would be analogous.

2. z polarization

HH(3/2) HH({—3/2} LH(1/2) LH(—1/2)
HH(3/%) hly, —2y,)R™ 0 — Wl ik, )0 0
HH(-3/2) 0 hy; —2y)R™ 0 sl — k)0
LHQ/D  —\/Bhyylk, — ik Q™ 0 hly, + 29 JR™ 0
LH{~1/2) 0 o Bk ik YO 0 By, + 2y )R™
(94)

nn’

For easier reading, the lower indices (v') are suppressed in R!™ and Q7
since the corresponding band (HH, LH) is already clear from the respective
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row and column of the matrix. Note that now the bands have not been
ordered by descending angular momentumn componegnt, but have been
grouped into heavy and light holes.

Let us now try to get some understanding of the transition matrix
elements and selection rules. According to Eqs. (93) and (94) there are two
types of contributions:

The terms containing JR™: These contain a dipole matrix element of the
envelope function (R™). Due to the dipole matrix element only transi-
tions between states of different parity are allowed. Since they are not
proportional to k,, they are allowed at k, = 0. That these terms corre-
spond to “usual” intersubband transitions, like in the conduction band,
can be seen in the following way: J contains only clements of the D tensor
with a z component (Eq. (92)), so it couples z- or xy-polarized radiation
to an intersubband transition, analogous to the situation in an ellipsoidal
conduction valley (compare Eq. (70)). Looking up the HH-HH transition
in z polarization (Eq. (94)), one sees that the transition matrix element is
proportional to (y; — 2y,) - R™, which is just the inverse heavy-hole con-
finement mass (Eq. (87)) times the dipole matrix clement, identical to
intersubband absorption in a spherical conduction band. The same is true
for LH~I.H transitions. In addition, however, HH-LH transitions arc
allowed in xy polarization.

The terms containing IQ™: They contain an overlap integral between
envelope wave functions, and thus only transitions between states of the
same parity are allowed. Furthermore, they are proportional to k;, and
are thus allowed only for k; # 0. Looking at Egs. {93) and (94) one can
see that HH-HH, LH-LH, and HH--LH transitions arise from these
terms in xy polarization, but only HH-LH transitions in z polarization.
These transitions are a specific feature of the valence band, and they
originate from interband coupling to the remote bands (the direct
interband coupling between different valence bands vanishes).

Finally the 2D absorption coefficient is given by analogue to Eq. (18)

%yp = Z e P (kDI - [AEL (kD) — f(En (k)]

€ Cﬂﬂ)mo 'k

I'/n

E&)—E &) —for+rz

From this discussion, we see that both the dipole and the overlap terms
give rise to normal-incidence intersubband absorption. For illustration, the

s MR
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calculated absorption spectrum of the previously discussed 50-A-wide
GaAs—AlAs QW is shown in Fig. 30 for both polarizations and for two
different hole concentrations of 3 x 10!! and 3 x 10'2 cm™2. The relevant
transitions can be identified with the help of Fig. 29, where the correspond-
ing Fermi wavevectors have been indicated by the dash-dotted vertical
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Fig. 30. Calculated absorption spectrum of the GaAs—AlAs quantum well of Fig. 29 for
two different hole densities, p =3 x 10 em™? (upper panel) and p =3 x 10'2em ™2 (lower
panel). The spectra for z and xy polarization are represented by the dotted and full curves,
respectively. For a discussion, see text.
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lines. (For ease of calculation, k-space integration was not performed
over the complete 2D space, but only along several representative direc-
tions with proper averaging). The z-polarized peak at 700cm ™" (87 meV)
results from the HH1-HH? transition. At 10 times higher hole concentra-
tion, it is (nearly) 10 times stronger, since the corresponding matrix element
is independent of k,. This is the “usual” intersubband transition. The
broadening at higher density is due to the nonparabolic dispersion. The
xy-polarized HH1-L.H1 transition occurs at 280 cm ™! (35 meV). Since its
matrix element is proportional to k|, its size increases stronger than linear
with the hole concentration, and in the lower panel it has become stronger
than the HH1-HH2 transition. The doublet around 1700cm™! (or
210meV, upper panel) is due to the HHI-LH2, HH3 transition, which
latter are strongly mixed due to their proximity. The HH1-LH2 transition
is allowed at k, = 0 for xy polarization, but in z polarization its strength is
proportional to k, so it appears only at high density (lower panel). The
strength of the HH1-HH3 transition should be proportional to k, but due
to the strong mixing of the HH3 with the LH?2 state, it can already be
observed at low hole density. One has to keep in mind that a clear
assignment of a specific subband to a band type {HH, LH, or 80O) can
strictly be done only at k, =0. For k, # 0 the wave functions become
strong mixtures of all basis states and thus basically all transitions become
allowed to some degree.

Similar calculations were carried out for various material systems by Man
and Pan (1992), Xie et al. (1991b, 1992¢), and Stoklitsky et al. (1994, 1993).
Chun et al. (1993) incloded many-body effects such as the depolarization
shift properly into the multiband model. Corbin et al. (1994) employed a
full-scale pseundopotential calculation for computing band structure and
absorption of p-type QWs.

There have been a number of intersubband absorption studies in p-type
quantum wells, interestingly mostly in Si-SiGe QWs (Park er al, 1992;
Fromherz et al., 1994; Boucaud et al., 1995; Zanier et al,, 1995). The reason
is that in this material system p-type QWSs are more easily achieved than
n-type QWs (Wang and Karunasiri, 1993). Clear experimental identification
of the various valence-band intersubband transitions has, however, re-
mained rather scarce (Fomherz et al, 1996), in part due to the large
broadening one usuvally has In p-type quantum wells. Moreover, most
experimental investigation were performed in structures where the final
states of the strongest transitions already lie in the continuum, as desired for
detector applications (Levine et al, 1991; Wang et al, 1994b; Szmulowicz
and Brown, 1995), which leads to additional broadening. Often only
photocurrent, but no transmission measurements have been performed on
such samples. There have been two reports on far-infrared hole—intersub-
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band absorption in relatively wide GaAs quantum wells (Shayasteh et al,,
1996; Cole et al., 1996).

As an example, the transmission spectrum of a modulation doped Si-
Sig.71Geg 29 multiquantum well structure is shown in Fig. 31 (Helm et al,,
1997). Both p- and s-polarized spectra (full curves) were obtained by
normalizing the transmission against the transmission of an undoped Si

substrate in the same polarization. By comparing with a calculation as -

already outlined, but including an electromagnetic simulation of the wave-
guide transmission (lines with open symbols), one can identify the main
absorption features. In s polarization, the absorption at 400cm ™! corre-

1 g -
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Frc. 31. Polarization dependent waveguide transmission spectrum (at T=10K) of a
Si—5iGe multiquantum well, as described in the inset. Solid curves: experiment; lines with open
symbols: calculation. Note that the s polarization contains only xy components, whereas the p
polarization contains both z and xy components. For a discussion, see text (from Helm et al.,
1997).
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sponds to the HH1-LH1 transition, and the broad minimum around
1800cm™! stems from transitions to a continuum SO subband (with
admixtures of HH and LH character). The p-polarized spectrum shows a

~ strong absorption at 1000cm ™!, which can be identified as the “usual”

HH1-HH?2 intersubband transition. For the interpretation of the additional
features one has to keep in mind that p-polarized light contains both z and
xy (in-plane) electric-field components, so these features are the same as in
the s-polarized spectrum. Note that the spectra (s polarization in particular)
contain a background that can be ascribed to free-carrier absorption.

X. Line Broadening and Relaxation

So far we have dealt with the mechanism of intersubband absorption in
various systems and calculated the absorption coefficient on the basis of
Fermi’s Golden Rule or including many-body effects. We have, however, not
discussed any dissipative processes, which give rise to line broadening and

‘relaxation, but we have simply introduced a phenomenological line-

broadening parameter . In this section, we expand somewhat on which
mechanisms give rise to the finite linewidth and discuss the experimental
situation. The linewidth is an important parameter for many applications;
in particular, narrow lines give rise to a larger peak absorption in intersub-
band detectors or to a larger gain in intersubband lasers. Also any
experiments or applications making use of the coherence between quantum
mechanical energy levels (see Chapter 2), such as dressed states (Sadeghi et
al, 1995) or lasing without inversion (Imamoglu and Ram, 1994), require
very narrow absorption lines. On the other hand, energy relaxation, which
is described by an intersubband lifetime, is important for the electrical
bandwidth of intersubband detectors (where a fast relaxation is desired) or
for the possibility of achieving population inversion between subbands and
hence for intersubband lasers. :

In atomic physics, the relaxation processes in an optical transition are
usually described in the framework of the density matrix. One can distin-
guish between a population decay time T, which describes the decay of the
diagonal elements of the density matrix, and a polarization (or coherence)
decay time T,, which describes the decay of the nondiagonal elements
(Milloni and Eberly, 1988). We assume a Lorentzian line shape

I'f=
(E,, — haw)® + T2

Lihw) = (96)

BT




74 MAnFRED HELM

where T is the half width at half maximum, which is composed of two

contributions.
1 1 '
=hl— 4 =
T (2T1 + T2> on

Note that T, contributes only half as strongly as T,. In atomic physics, T,
is normally related to elastic collisions, whereas 7T, relates to inelastic
collisions and spontaneous photon emission. (Note that the total relaxation
time #/" is sometimes expressed as T). In quantum well subbands, the
situation is slightly more complicated, since due to the free-electron subband
dispersion along k_ and k, even elastic scattering processes can induce a
transition to another subband (at a different k - however).

Let us now take a look at the various scattering processes in a semicon-
ductor. As for inelastic processes, we have acoustic and optical phonon
scattering, the former with a typical time constant of a few 100 ps; the latter,
about 1ps. At low temperatures, when there is no optical phonon popula-
tion in the crystal, only emission processes are relevant. To emit optical
phonons, electrons require a threshold energy of hw,,. So naturally there
will be a quite different behavior depending on whether the subband
separation E,, is larger or smaller than hw,,. Both situations together with
the relevant scattering processes for relaxation are sketched in Figs. 32a and
32b. Elastic processes can be, for example, scattering by ionized impurities
or scattering from interface roughness. Impurity scattering can be quite
effective with a time constant of 1 ps, but in modulation-doped QWs with a
large setback of the dopants, the scattering rate is reduced to the order of
10 ps. Interface roughness scattering (with respect to the electron mobility)
is known to exhibit a strong L™ dependence on the well width L, becoming
significant around L < 100 A (Sakaki er al, 1987). If we now consider a
typical GaAs-Al; ;Ga, ;As QW with 100 A thickness (leading to E, =~
100meV), we see that optical phonon emission will be the dominant
contribution to T, (see Fig. 32a), whereas impurity and interface roughness
scattering will determine T,. We discuss this situation, as well as the more
intricate case of wide QWs, where E,, < ha,, (Fig. 32b), in the following.

In the first intersubband absorption experiments on GaAs—AlGaAs QWs
with E,, of the order of 100 meV the measured full newidths (FWHM)
were of the order of 2I' & 10-20 meV and were attributed to a combined
effect of optical phonon emission, impurity scattering (only for well-doped
samples), interface roughness, and, for MQW systems, also thickness fluctu-
ations from layer to layer. Later, the material quality was improved
significantly, and in 1994 Faist et al. (1994b) reported a linewidth of 2I" =
2.66 meV. They claimed to have reached the intrinsic broadening limit due

;
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to optical phonon emission. Remarkably, the sample was not a square well,
but rather an asymmetric coupled MQW system (50 periods), where the 1-3
transition showed this narrow linewidth. Campman et al. (1996) conducted
another study, showing that a linewidth of 2I" = 2.5meV can also be
achieved in a 100-A-wide GaAs—AlGaAs square QW. They demonstrated
that, under the same growth conditions, the linewidth increases when the
well width gets smaller (to 44 meV for 75 A QW in their study). Opticai-
phonon scattering, on the other hand, should get stronger for wider QWs,
since its strength is proportional to 1/4%, with ¢ the momentum transfer.
This tendency, together with an evaluation of the optical-phonon scattering
rate, led them to conclude that the intrinsic limit has not been reached vet,
but should lie around 2T = 1.2 meV for a 100-A well. Interestingly, they
found that the electron mobility varies much stronger with the well width
than does the intersubband linewidth. Also, the linewidth is not too much
affected by using an alloy QW (In,Ga, _ . As or AlLGa, _ As with x < 10%,

. see Fig. 33). So the conclusion here seems to be that, although technology

has driven the guality of QWs close to its intrinsic limit as far as
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F16. 33. Measured absorption spectrum of four single 100-A-wide quantum wells with
varying alloy composition. The well materials are (from left to right) AlgosGag o5As, GaAs,
Ing ¢5Gag gsAs, and Ing  Gag gAs, the barrier material is Al, ;Gag -As for all samples (from
Campman et al., 1996).
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intersubband transitions are concerned, this limit has not been completely
reached as yet, leaving some room for improvement. Finally, note that
nearly the same as the record linewidth (namely, 2I' = 2.8 meV) has also
been achieved in an MQW system containing 30 periods of 95-A-wide QWs.
This requires extremely accurate long-term control of the molecnlar beam
epitaxy (MBE) growth (Gauer et al., 1995; see also Fig. 35 in Section XI).
Although intersubband absorption has been observed in many different
material systems to date, the linewidths achieved in GaAs—AlGaAs are still
the narrowest. An additional contribution to the linewidth can be due to
nonparabolicity, but this has not been unambiguously identified, since it
tends to be compensated by many-body effects (see also Section VII and
Zaluzny, 1991; von Allmen, 1992; Warburton et al., 1996).

An interesting issue is the question whether intersubband transitions are
homogeneously or inhomogeneously broadened. Intrinsic processes such as
phonon scattering give rise to homogeneous broadening, but the same is
true for scattering by imperfections such as impurities or interface rough-
ness, as long as their lateral length scale is smaller than the characteristic
in-plane wavelength of the electrons. A lower bound for this is the Fermi
wavelength, which is typically a few 100 A for n, = 10''-10"2cm 2. Com-
pared to this, the mean distance between impurities (in samples doped
heavily in the wells) is somewhat smaller than 100 A. Interface roughness
has the same lateral length scale, but only when the interfaces are grown
without interruption (for a review, see Herman et al, 1991). Thus both
processes will give rise to homogeneous broadening. When the growth is
interrupted at the interfaces, however, the lateral length scale can be much
larger, up to micrometers. In this case, one can expect some inhomogeneous
broadening. The most important seurces of inhomogeneous broadening are
probably vertical, well-to-well thickness fluctuations in MQW samples with
many periods. However, in high-quality MQW structures, the intersubband
absorption could be fitted by a Lorentzian line shape, indicating homogene-
ous broadening (Faist ef al., 1994b).

Experiments specifically investigating this issue were reported by Beadie
et al. (1997) and Vodopyanov et al. (1996). Beadie et al. (1997) analyzed the
saturation behavior in strained, narrow (40-A) In, ,;Ga, ssAs—Aly .5
Ga, s;As MQWs and concluded that both homogeneous and in-
homogeneous processes contribute to the line shape. Vodopyanov et al.
(1996) performed a two-color pump-probe experiment on a somewhat
wider (58.5-A) In, ;Ga, ;As—Al, ,-Ga, ssAs MQW, but could not observe
any spectral hole burning; this indicated homogeneous broadening despite
the quite large linewidth (>20'meV) of the sample used. A direct measure-
ment of the polarization decay time T, in a lattice-matched 60-A-wide
InGaAs/InAlAs QW has been performed by Kaindl et al. (1998) by time-
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resolved four-wave mixing in the mid-infrared. They found a dephasing time
T, of a few 100fs, caused by electron—electron scattering, and could
determine the homogeneous contribution to the linewidth to be 4 meV,
which was about 30% of the total linewidth. ‘

Thus, this issue has apparently not been completely resolved, but as a
preliminary conclusion one can probably say that for very high quality
and not too narrow QWs, the intersubband absorption is homogeneously
broadened, but for many other structures there is a significant part of
inhomogeneous broadening. To conclude this discussion, let us note an-
other fundamentally inhomogeneous (yet intrinsic) broadening mechanism,
namely, subband nonparabolicity. This mechanism, however, is hard to
track down due to its already mentioned (see Section VII, Subsection 4,
Figs. 25 and 26, and Warburton et al., 1996) cancellation through many-
body effects (Zaluzny, 1991; von Allmen, 1992; Warburton et al., 1996).
Theoretical work (Nikonov et al., 1997) suggests that intersubband absorp-
. tion in QWs with a large nonparabolicity (such as InAs—AISb) may be
mostly homogeneously broadened due to the collective character of the
excitation. This view is also supported through experiments by Warburton
et al. (1998), demonstrating the need for a microscopic theory of line
broadening in intersubband absorption, which does not exist to date. The
first step toward such a theory has, however, been published by Ullrich and
Vignale (1998).

A lot of effort has also been put into the measurement of the intersub-
band relaxation time T,. Experimental techniques reaching from interband
(Oberli et al,, 1987; Tatham et al, 1989; Levenson et al., 1990; Hunsche et
al., 1994; Hartig et al,, 1996) or intersubband (Seilmeier et af., 1987; Biuerle
et al., 1988; Elsaesser et al,, 1989; Boucaud et al., 1996; Lutgen et al., 1996a,
1996b) time-resolved pump-and-probe measurements with short-pulse fasers
to steady-state absorption saturation measurements (Julien et al, 1988,
erratum 1993; Faist et al., 1993b; Cui et al., 1993; West and Roberts, 1994)
have been employed. Whereas initially the relaxation time was somewhat
overestimated (Seilmeier et al.,, 1987) due to the specific sample design, there
seems to be agreement now that the intersubband relaxation time is of
the order of 0.3 to 0.6 ps for GaAs QWs with E,, of the order of 100 meV.
This would be in agreement with a intrinsic lifetime broadening of 2I" =
2-h/2T, = 1.1 to 2.2 meV.

In wide quantum wells with E,, < fiw,, the situation is totally different.
Optical phonon emission is irrelevant for the linewidth, but also, monolayer
thickness fluctuations play only a minor role (for a 400-A QW, thickness
fluctuations about one monolayer contribute only 0.1 meV to the linewidth).
This is the reason that linewidths of 2I" < 1.5 meV (Helm er al., 1991) have
been readily achieved even with samples that were doped in the QWs. Here,
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most likely impurity scattering was the dominant broadening mechanism.
In such samples, the intersubband linewidth is also correlated with the
clectron mobility. Thus, it is obvious that the absorption lines can be made
narrower by modulation doping with a large setback (thick spacer layer}. In
this way, linewidths of 2I" = 0.8 meV (=6.5cm™") have been achieved in
multiquantum wells (Fig. 34) and of 2I" = 0.3 meV in single-period QW
systems (Craig et al., 1994, 1996). It is likely that remote-impurity scattering
is responsible for this, but also interface roughness comes back into play in
this regime.

As far as intersubband lifetime and energy relaxation in wide QWs are
concerned, the situation has been far from well understood until recently,
and a wide range of lifetimes from a few picoseconds to a few 100 ps were
reported (Oberli et al., 1987; Levenson et al., 1990; Faist et al, 1994b;
Heyman et al., 1995, 1996; Murdin et al., 1994; Luo et al., 1997, Hartig et
al., 1998). These values were again achieved by a variety of time-resolved
and steady-state experimental methods. The possible relaxation channels are
sketched in Fig. 32b. In principle, acoustic-phonon emission is the only
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Fic. 34. Transmission spectra of wide modulation-doped GaAs—Al; ;Ga, ;As multiquan-
tum wells with thicknesses of 250, 280, 300, and 320 A and an electron concentration of
2-3 x 10"  cm ™2, measured with a grating coupler. The high-energy shoulders in the two
low-energy curves are most likely due to well-thickness variations in the MQW, thus these two
lines are inhomogeneously broadened, whereas the two lines at higher energy appear to be
mostly homogeneously broadened {courtesy of G. Strasser).
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energy-dissipating process in this regime at low temperatures and leads to a
theoretical lifetime of a few 100 ps. Time-resolved pump-probe measure-
ments conducted with the far-infrared free-electron laser (FELIX) as well as
careful analysis of previous experiments have, however, shed new light on
this problem (Murdin et al, 1997). It has been found that the measured
lifetime depends strongly on the experimental situation, such as the lattice
temperature T; of the sample and the optical excitation intensity 1. Both
high 7; and high I lead to a strong reduction of the measured lifetime. This
can be interpreted in terms of the heating and cooling of a hot electron
distribution. For high T, or strong pumping a high electron temperature is
reached within less than a picosecond due to electron-electron scattering
(Diir et al., 1996; Lee and Galbraith, 1997). Some electrons from the tail of
this dlstrlbutlon can then relax by emitting optical phonons, thus giving rise
to a shorter relaxation time (Lee er al., 1995). This cooling takes place until
an electron temperature of around T, = 35K is reached. Below this tem-
perature, there are not enough electrons in the high-energy tail to emit
optical phonons and thus acoustic-phonon emission becomes dominant.
For T, > 40K lifetimes of a few picoseconds and for T, < 30K of a few
100 ps are measured. A detailed analysis and discussion can be found in
Murdin et al. (1997).

XI. Other Phenomena Related to Intersubband Transitions
1. MaGnNETIC-FIELD BFFECTS

When a magnetic field is applied perpendicular to the plane of a quantum
well, the magnetic part of the Hamiltonian is decoupled from the electric
confinement ¥(z) and the energy spectrum consists of a ladder of Landau
levels for each electric subband. The infrared absorption spectrum then
shows cyclotron resonance for in-plane polarized light and intersubband
absorption for z polarization. We won't discuss this case here further, since
it brings no new aspects concerning the intersubband absorption. The
situation is different when the magnetic field is applied in the layer plane or

in some tilted direction. In these cases, the cyclotron and electric motions i

are coupled.

Let us first discuss the geometry, where the magnetic field les in the plane

of the QW layer. The confinement direction is still assumed to be the z axis,
whereas the magnetic field points along the x direction. Using the gauge
Ap = (0, —eBz, () (the subscript B is used to distinguish this from the AC
vector potential) the Hamiltonian is still separable and its z-dependent part
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can be written as

__£6_2+1m* X 2 4 V(z) (98)
T 2o + Ve
where @, = eB/m* is the cyclotron frequency and z, = —#hk feB is the

Landau level center coordinate. The electronic motion is clearly determined
by two z-dependent effective potentials, the electric confinement, ¥(z), and
the parabolically shaped magnetic confinement. Depending on their relative
strength, the motion and the energy levels are clectric or magnetic in
character.

For small magnetic fields, obeying the condition w, « w,,, or equivalently
I> L (where | = ./h/eB is the magnetic length) the electric subbands
(and their energy separation} undergo only a small quadratic shift, the
diamagnetic shift. When the magnetic field increases (w, = @,,), the energy
becomes position-dependent and one obtains hybrid magneto-electric sub-
bands (Zawadzki, 1987). In the limit of large magnetic fields (w, > ©,,) the
electron does not feel the electric confining potential anymore and one
recovers three-dimensional Landau levels.

It is interesting to calculate the optical matrix elements for magnetic fields
so small that the wave functions can be assumed to remain unchanged
(Gauer et al, 1995). In the interaction term (¢/m*)A -P, the canonical
momentum P = p — eA, must be used. The usual, z-polarized intersubband
matrix element then reads

eA,

m¥*

Alp.f2 = ed w,,{1|2|2) (99)

The matrix element for radiation polarized in the y direction (ie., in the
layer plane), but perpendicular to the magnetic field, is

ed
m—: {l|p, — eBz|2) = eAywc(1|z|2> (100)

since the term containing p, vanishes. Thus, we get the remarkable result
that the in-plane polarized absorption is proportional to the usual intersub-
band z matrix element, however reduced by a factor w_/w,,. Physically, the
magnetic field couples the y and z motions of the electrons, thus making
normal-incidence absorption possible. This effect has been discussed and
experimentally observed by Gauer et al. (1995), shown in Fig. 35. (Note the
extremely narrow linewidth of 2I' = 2.8 meV in this sample). When the
magnetic field is increased further, the oscillator strength is transferred from
the z polarization (intersubband type) fo the y polarization (cyclotron
resonance), and the magnetic limit is reached. Note also that somewhat
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Fic. 35. (a) Intersubband absorption of a 30-period, 95-A-wide modulation doped GaAs—
Al, 55Ga, osAs multiquantum well sample measured under an oblique angle (electron concen-
tration n, = 6 x 10! em™ %), (b) The transmission spectra recorded in Voigt geometry with a
magnetic field of B = 6, 8, 10, 11, 12, 13, 14, and 15 T parallel to the layers (geometry sketched
in the inset) (from Gauer et al,, 1995).

related experiments were carried out already by Oelting et al. {1986) on InSb
inversion layers.

For a parabolic potential ¥(z) the Hamiltonian, Eq. (98), becomes
particularly simple, since it consists of the sum of two harmonic oscillators.
Then an exact solution can even be obtained for an arbitrarily tilted
magnetic-field direction (Maan, 1984; Merlin, 1987). Other properties of
parabolic quantum wells are discussed in the following subsection.

If the magnetic field is tilted from the surface-normal (the z direction) by
only a small angle 6, a small coupling is induced between the electric
subbands and the Landau levels. This leads to an anticrossing and an
absorption line doublet near resonance (at hw, = E,,), which can be
observed in a normal-incidence absorption experiment. This was the method
that actually provided the first evidence of the subbands in a GaAs—AlGaAs
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heterostructure (Schlesinger et al, 1983). Later, this technique was applied
by a number of authors for intersubband spectroscopy on 2D systems
(Rikken et al., 1986; Wieck et al., 1987, 1989; Ensslin et al., 1989; Pillath et
al., 1989). In-Fig. 36 this anticrossing is observed at B = 11.25 T at an energy
of 150 cm™* (Fig. 36a) and compared to a direct (grating-coupler induced)
intersubband absorption measurement (Fig. 36b), where the resonance
occurs at 168 cm™!. This experiment was regarded as a proof that the
anticrossing measures the bare energy separation, whereas the intersubband
absorption includes the depolarization shift (and exciton correction) (Pillath
et al., 1989). However, theory (Zaluzny, 1989) and later experiments (Wix-
forth et al., 1994) were in contradiction with this and showed that the
anticrossing is also affected by the depolarization shift.

Away from the resonance (i.e., for hw, # E,,) again the diamagnetic shift
of the intersubband absorption has been observed, but also combined
intersubband—-cyclotron resonances (Beinvogl and Koch, 1978; Wicck et al,
1988; Batke et al., 1991). These resonances involve intersubband transitions,
which are accompanied by a change of the Landau quantum number, so
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FiG. 36. (a} Cyclotron resonance absorption of a GaAs—AlGaAs heterostructure in a
magnetic field slightly tilted from the surface normal. Spectra are plotted for different values of
the normal magnetic-field projection, B,. At B, = 11.25T a line splitting is observed due to
the subband—Landau-level coupling (at 168cm™"). (b} In comparison, the direct (grating
coupled) intersubband absorption peaked at 150 cm ~!. The frequency difference is ascribed to
the depolarization shift (from Pillath et al,, 1989).
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they occur at energies of £ = E,; & nhw,, where n is an integer. A review of
these effects can be found in Batke (1991).

2. ParaBoLIC QUANTUM WELLS

At first sight, parabolically shaped quantum wells are not fundamentally
different from any other QWs. It turns out, however, that they exhibit some
very interesting properties, especially regarding their infrared (IR) absorp-
tion properties.

A parabolic potential shape (see Fig. 37) can be achieved by grading
the Al content continuously from zero to a certain value; the same can be
done using a digitally graded quasi-alloy (Sundaram et al, 1991). In this
harmonic-oscillator potential, the emergy spectrum consists of equally
spaced levels, E, = hwylr + 1/2). The oscillator frequency is related to the
- shape of the parabola by

(101)

] ] ™\

--m-- EF

modul. doped square well

bare square well

] [~

TN R EF
A A A A Y

bare parabolic well mod. dop. parab. well

FiG. 37. Schematic of a rectangular {top) and parabelic (bottom) quantum well, before
(left) and after (right) introducing electrons through medulation doping. The width W and
depth A of the parabolic QW are indicated as well as the subbands and the Fermi energy.
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where A is the depth of the parabola and W is its width (at the top
edge). The ratio A/W? is proportional to the curvature of the parabola.
Thus one can expect that a parabolic QW will exhibit resonant inter-
subband absorption at @ = w, There is also a remarkable facet to
this. Suppose that electrons are introduced in the parabolic QW
through modulation doping. As a consequence, the electrons transferred
to the well give rise to an additional Hartree potential, which is, accord-
ing to Poisson’s equation, also parabolic and exactly compensates the
bare potential over a certain- width near the minimum of the parabola,
the width depending on the electron density. In this way, a high-mobility
quasi-three-dimensional electron system can be tailored (Shayegan et al,
1988), which was the main motivation at the outset of this work. The
remarkable phenomenon now is that, no matter how many electrons are
located in the parabolic QW and change the self-consistent potential
drastically, the resonant absorption always occurs at the bare oscillator
frequency «, (Karrai et al., 1989a, 1989b). This is a consequence of the
generalized Kohn's theorem (Kohn, 1961; Brey et al, 1989), which states
that in a parabolically confined system, the low-frequency excitations are
independent of electron-electron interactions, since they only couple to the
center-of-mass coordinates of the system. The resonance frequency can also
be viewed as the plasma frequency of an 3D electron gas with 3D density
n = 8sg,A/e* W2, Figure 37 schematically shows a rectangular and a para-
bolic quantum well, both before and after introducing carriers through
modulation doping.

Such systems were realized based on GaAs—AlGaAs with A of the order
of 100meV and W around 1000 A, leading to a resonance frequency of
0, & 10meV. The electron density can be varied with a gate voltage from
the low to the mid 10'!cm ™% range. Situations with several occupied
subbands were also investigated. Figure 38 shows absorption spectra
(Wixforth et al., 1994) of a 2000-A-wide parabolic QW for three different
densities (from 1.6 to 2.5 x 10*! cm ™ 2). Here a grating coupler was used to
couple to the intersubband-plasma resonance (see also Wendler et al,
1997). Deviations from a perfectly harmonic potential usually manifest
themselves in the occurrence of additional absorption features (Wixforth et
al.,, 1991},

Other experiments have been performed with a magnetic field applied
parallel to the layers (Voigt geometry) or tilted from the surface normal. A
detailed account can be found in the review by Wixforth er al. (1994).

A nice extension of this concept is realized by embedding a strongly
coupled superlattice into a wide parabolic quantum well (Jo et al., 1990),

. which leads to interesting optical properties (Brey et al., 1990; Streibl ez al.,

1996).
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" Fio. 38, Absorption spectra of a 200-nm-wide parabolic quantum well for three different
gate voltages,” as indicated, corresponding to electron concentrations from 1.6 to 2.5 x
10** cm ™2, The resonance remains at the same frequency (from Wixforth et al., 1994),

3. IMPURITIES

Although impurities are not really a topic of this chapter, we mention a
few things that are related to intersubband transitions.

In a bulk semiconductor the energy levels of shallow donors can be well
described in the usual scheme for hydrogen atoms with the quantum
numbers N, ! (angular momentum), m (magnetic quantum number); that is,
the 1s, 25, 2p (m = +1,0), 35, 3p (m = +1,0), 3d (m = +2, +1,0), etc,,
states. In two dimensions, the classification is different, and, for example, the
2p state is only twofold degenerate. The exact two-dimensional limit corre-
sponds to a situation with a single subband, and is only of limited relevance
for realistic QWs. In a quasi-2D system with several subbands it is still
possible and useful to employ the 3D classification, which, however, be-
comes modified by the QW potential. The breaking of the translation
symmetry in the z direction removes the degeneracy of some states (Greene
and Bajaj, 1985), which become pinned to higher QW subbands. The
subband index n associated with a certain hydrogenic level can be deter-
mined by the relation n =1 — |mf + 1 (Cheng and McCombe, 1990). Corre-
spondingly, the most important levels near the first subband are 1s, 2p, ,,
and near the second subband 2p, and 3d,, (for illustration, see Fig. 39).
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F1G. 39. Schematic of the most important shallow-donor states in a quantum well. The
threefold degeneracy of the 2p state is lifted and the 2p, state moves up to the second subband,
where it becomes the ground state of a new hydrogenic series. Indicated are the intersubband
transition and the ls—2p, donor transition. For details, see text.

The 2p, (or 2p,) state actually becomes the ground state of the hydrogenic
series associated with the n = 2 subband. It turns out that optical transitions
are allowed for the 1s-2p_ transitions when the light is polarized perpen-
dicular to the layers. So this transition follows the same selection rule as the
usual intersubband transition and also occurs at nearly the same energy,
thus it can be regarded as an “impurity-shifted intersubband transition.” A
difference comes about only through the different (and position dependent)
binding energies (Lane and Greene, 1986; Helm et al., 1992) of the donors
with respect to the n = 1 and n = 2 subbands. This is the reason why the
1s—2p, transition has been observed only in wide quantum wells, where the
donor binding energy is comparable to E,, (Helm et al,, 1991, 1992), or in
superlattices, where it is energetically well separated from the critical points
and can actually be used to measure the miniband width of the first and

. second minibands (Helm et al., 1993). For illustration, we refer back to Fig.

22 in Section VL For observation of the impurity transition, the doping of
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the QWs must also be low enough so that the impurity states (“impurity
band”) have not completely merged with the conduction band.

4. Puaoton DRAG ErFreCcT

Finally, we mention an effect, where the momentum transfer rather than
the energy transfer from the photon to the electron system is relevant. This
is the so-called photon-drag effect (Luryi, 1987; Grinberg and Luryi, 1988;
Stockman et al., 1990), which is well known in connection with intervalence
band transitions in bulk semiconductors such as Ge, but has also been
observed with intersubband transitions (Wieck et al., 1990).

Although the photon momentum g is very small as compared to a typical
electron momentum (such as the Fermi momentum k), it is not completely
negligible. Figure 40 shows the intersubband absorption process taking into
account the finite momentum transfer. The energy balance for the absorp-
tion process reads

B? h2k:  h?
Sk, -+ Q) — Im* = "nF(kl q,) (102)

hip — how,, = Y

for q, «k, (k, and k, + q, are the initial and final in-plane wavevectors,
respectively). This can be regarded as a Doppler shift of the resonance

A E

F1G. 40. Tilustration of the photon-drag effect in intersubband absorption. The size of the
photen momentum g is drawn vastly exaggerated for clarity.
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FiG. 41. Dependence of the photon-drag current on the relative detuning, {w — wy, )7,
calculated for a Lorentzian broadened intersubband transition (solid curve). The absorption
line shape {(dashed curve) is also shown for comparison.

frequency. The net drag current can be written as
. eh .
J=—7= [y, +q,) — 7k ]-n (103)

where 7, and 1, are the momentum relaxation times in the first and second
subbands, respectively, and 7 is the number of excitations per unit time and
area (Sigg, 1992). The two terms correspond to a drag current of an electron
in the second subband and a quasi-hole left behind in the first subband,
respectively. Obviously, the current will be large, when the two relaxation
times are sufficiently different. This is indeed the case in a modulation doped
QW with hw,, > fiw,,, the optical phonon energy. Then 7, is determined
by optical-phonon scattering and is of the order of 0.5 ps, whereas t, is
limited by remote impurity scattering and can be 10 times larger. The
quasi-holes are then responsible for the drag current, which gives rise to a
dispersion-like line shape as a function of detuning, (w — ®,,)/y, where  is
the HWHM of. the absorption line (see Fig. 41). Also shown is the
absorption coefficient for comparison. This behavior has been observed
experimentally (Wieck et al., 1990). Due to the intrinsic speed of the photon

-drag effect, which is limited only by the momentum relaxation time, it can

be used for extremely fast infrared detectors (Sigg et al., 1995).
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XIL Concluding Remarks and Qutlook

We have attempted to give an introductory overview over the basic
physics of intersubband transitions in quantum wells and its present
comprehension. Herein a wealth of different aspects of solid state physics
and optics have been shown to play a significant role. The thorough
understanding achieved to date has enabled researchers to develop useful
applications such as infrared detectors and lasers, which are discussed in
other chapters of this volume. At present, much research effort is being
devoted to the investigation of coherent and quantum optical effects related
to intersubband transitions. Among these are microcavities (Duboz, 1996;
Berger et al., 1997; Liu, 1997; Faist et al., 1996a; for a survey, see Burstein
and Weisbuch, 1995; Rarity and Weisbuch, 1996), Fano-resonances and
electromagnetically induced transparency {(Imamoglu and Ram, 1994; Faist

et al, 1996b; Schmidt and Imamoglu, 1996; Schmidt et al, 1997), and’

dressed states (Sadeghi et al., 1995). Many of these new developments rely

- on the similarity of intersubband transitions with atomic transitions. Al-

though the relaxation and dephasing rates in semiconductors are many
orders of magnitudes larger than in atoms, the steady improvement of the
material quality may render possible the observation of presently unforeseen
phenomena.
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