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The way in which quantum eigenstates are influenced by the closed
orbits of a chaotic classical system is analysed in phase space x = (q, p)
through the spectral Wigner function W(x;E,¢). This is a sum over
Wigner functions of eigenstates within a range ¢ of energy E. In the
classical limit, W is concentrated on the energy surface and smoothly
distributed over it. Closed orbits provide oscillatory corrections (scars)
for which explicit semiclassical formulae are calculated. Each scar is a
fringe pattern decorating the orbit. As x moves off the energy surface the
fringes form an Airy pattern with spacing of order A3. As x moves off the
closed «cbit the fringes form a complex gaussian with spacing A3.

1. INTRODUCTION

When the orbits of 2 classical system are chaotic, it is natural to conjecture that
in the semiclassical limit of small Planck’s constant & the quantum eigenstates are
associated with the whole energy surface explored ergodically by the orbits. This
is a special case of the ‘semiclassical eigenfunction hypothesis’ (Berry 1983);
semiclassical states are associated with minimal generic classical invariant sets. In
phase space the conjecture implies that the Wigner function of a state is a delta-
function concentrated on the surface with the same energy as the state. The
conjecture is supported by a theorem of Shnirelman (1974): the quantum
expectation value of a smooth operator is the classical microcanonical average for
almost all states. Berry (1977a) and Voros (1979) formulated the conjecture and
showed how it leads to predictions about the wavefunctions in configuration
space. Numerical tests of the predictions have been made by McDonald &
Kaufman (1988) and Shapirc & Goelman (1986).

Thanks to the computer explorations and theoretical arguments of Heller (1984,

1986) we now know that thic picture is too simple. Quantum eigenstates are
influenced not only by the energy surface, which is the generic invariant manifold,
but by individual closed orbits, which are invariant sets of zero measure. The
imprints of closed orbits persis¢ up through thousands of states and probably
survive into the classical limit. Heller calls these imprints scars.
A major step in the theory of scars has been made by Bogomolny (1988) (see also
Ozorio de Almeida 1988), who calculated the probability density smoothed over
small intervals in energy and in space. The scars that he found were oscillations
centred on the closed orbits and superiniposed on the dominant contribution from
the energy surface.

In this paper my purpose is to show that the scar formulae become very simple
when expressed in phase space rather than in configuration space, that is in the
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220 M.V. Berry' .

Wigner-Wey] representation (Groenewold 1946 ;\Moyal 1949 ; Takabayashi 1954 ;
Baker 1958). For any isolated periodic orbit .of & system with any number of
freedoms, the scar is concentrated near the orbit and surrounded by fringes whose
characteristic forms are different off and on the energy surface. This development
of Bogomolny’s idea extends to chaotic systems my earlier analysis (Berry 1977 b)
- of integrable systems, whose Wigner functions are concentrated ne‘ér invariant
tori in phase space, with characteristic fringes away from the tori.

The technique I shall use is a lift into phase space of the analysis by Gutzwiller
(1671) of the Green function as a sum over classical paths; with orbits near closed
ones being approximated by linéar maps on Poincaré sections. This 5is;simila,r to
‘the method. used by Bogomolny (1988), but without the spatial soothing
employed by him (and also by Berry 1977a), which is unnecessary. The central = -
result is the scar formula (38). D L SO LB A e

: |
‘ 2. SPECTRAL WIGNER FUNCTION _
Let the classical system have N freedoms, and phase-space variables

x=(q.p)=(qy---,Py) | ' C(1)

where q are the coordinates and p the momenta. Let the hamiltonian be H(x).
From the corresponding quantal operators (denoted by carats) we can construct

the lorentzian-smoothed spectral operator

A(E;e) = 6B~ H) = —n~'Im (E+ie— A) . <T@
T_he trace of the spectral operator is the smoothed spectral density
| Trd=d@E;e) = SoE-E,), B
n B .
where £, are the eigenvalues. The spatial matrix elements are . »
@dlgp) = S0 E-B) Y34 ¥ulas) (@)

where ¥, (q) are the eigenfunctions. ‘ . A
Our interest will focus on the Weyl transform of the spectral operator, which we
will call the spectral Wigner function: : : '

W(x;E,€) = k¥ Tr Ad(£—x) | B
= f dq’exp{—ip-q'/#}{q+1q'|dlq—1q’> 4 (50)
=WIaE-E )W), “59)

where 8(£ — x) is defined by its Fourier transform and W, are the Wigner functions
- of the eigenstates .. In all these formulae the effect of the energy smoothing ¢

will depend on its size in relation to inner and outer scales AE, ;. and AE, ..

AE,;, is the mean level spacing, of order ¥, and AR,y = h/Tyy, where T, is

i
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the period of the shortest closed orbit of energy E. If ¢ < AE|;,, W is dominated
by the single eigenstate n(#) closest to £, :hat is

W(x;E,€)>hY0 (B =B, g) Wounix) (s <ABL,). (6)
(If £ is midway between two eigenstates, W is the avsrage of their Wigner

functions.) If e > AE_ .., Wis an average over many states near £, in which as we
shall see all oscillatory structure is washed away and we regain the classical limit

W(x;E,¢e)~3(E—H(x)) (e¢>AE,,,). (7)
To motivate the analysis that will follow, note first that in terms of W the

spectral density (3) is
d(E,e)=hr" fdx W(x;E,e). (8)

Second, recall that d can be expanded as an average plus corrections in the form

of oscillations from the closed orbits (Gutzwiller 1971 ; Balian & Bloch 1972 see

~ also Ozorio de Almeida 1988). The average is obtained by substituting (7) into (8),
that is by integrating over the smoothed energy surface in phase space. It is then
natural to expect that the corrections to d will appear as integrals over phase-
space functions localized near the closed orbits. These contributions are the scars.
They will emerge in the form of oscillatory corrections as (7) is unsmoothed by
reducing €. ’

The analysis will be based on the formula (5b), whose lack of symmetry hides .
the invariance of W under linear canonical transformations of x (Balazs 1980). The
fact that in the final scar formulae this invariance will be obvious provides an
assurance that the analysis is correct, just as it did in our earlier study of
integrable systems (Berry 19775).

We could perform a phase-space gaussian smoothing of cur formulae for W; and

_thereby obtain the Husimi distribution that has been employed by some authors
(e.g. Takahashi 1986; Leboeuf et al. 1988). This is non-negative (unlike W), and
the smoothing may cause classical structures to stand out more clearly as & — 0.
But the smoothing brings two disadvantages. First, it destroys the invariance
under linear canonical transformations (because of the arbitrariness in the
eccentricity and orientation of the gaussian ellipse contours, originating in the
arbitrariness in the underlying harmonic oscillator). Second, it destroys fringes
that display essential quantal information (about non-locality, for example); after
smoothing, this information may still be recoverable (Kano 1965), but this
involves an analytic continuation which can be tricky (Takahashi 1986).

3. SEMICLASSICAL THEORY
Writing (2) as

A e) = %Ref dtexp {i(E — H) t/h}exp (—et/#), (9)
) 0
we obtain the spectral Wigner functions (5) as a time integral over the Wigner
propagator, . :
Ky(x,t) = fd‘l’ exp (—ip-q'/h) K(q—29",9+49',0), (10)
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' involving the coordinate propagator,

K(44.95.%) = {gslexp (—iflt/n)lq >, (11)
from g, to gy in time t, where the end-points satisfy
9 =3(¢s+qy). = ' (12)

The entry point for semiclassical analysis is an approximation for K ag a sum over
all classical paths (labelled j) starting from ¢, and ending at g, in time ¢, derived
by Van Vleck ( 1928) (see also Berry & Mount 1972);

K(ga g5, t) ~ 3 (A det [Bamsn, s Iexp{iR,(q,, gz, 0)/%+iy,). (13)
K : N

In this formlﬂa, B, is the time-dependent action (Hamilton’s principal function,
see, for example, Synge 1960) along the path J» and

RAmBn,j = asz/ O am 0/ (14)

The phase ¥; i a multiple of in determined by the focusing of paths close to 7
for economy of notation we shall henceforth denote all such focal indices by the
generic symbol y without specifying their precise values, which will change under
the transformations of X that we shall soon carry out. '

The semiclassical Wigner Propagator is obtained by evaluating (10) by the
method of stationary phase. Stationary points are defined by

Vol-Pa'+Rqg~1q',q+1g. 0] = 0, ~ (15)
ie. ' - P=}(ps+py). © o (16)

Togethez:' with (12) this gives the midpoint rule: the semiclassical Wigner
propagator at x contains contributiong from the classical paths j that in time ¢ link
phase points X a7 Xp; centred on x. ’ :
The phase of each contribution is
v LY
TP a+RG—1g,,q+1q;) = —p- (@5—q4)) + f Py(q)-dg—H,t
945
= Ay(x,t)—H,s. (17)

Here H, = H(x a5(%, 8)) is the energy of the path (which need not be the same as the
energy H(x) of the point X). 4, is defined by the following chord rule (figure 1): it
is the symplectic area of the circuit that starts from Xas> 80€8 to xp; along the
classical path, and returns straight to x,, via x. Similar chord and midpoint rules
were found in the semiclassical theory of Wigner functions of eigenstates, both
integrable (Berry 1977; Balazs 1980; Ozorio de Almeida & Hannay 1982) and
non-integrable (Ozorio de Almeida, 1988). _ :

The amplitude of each contribution is 2ND§, where (omitting the Iabel 7

D= detR,

= e . 18
det (£, , —R,g—Ry, +Ryp) (18)
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Fieure 1. Chord construction for phase of contribution to Wigner propagator
and spectral Wigner function at x.

(Note that the N x V matrices R, , and R, are symmetric and B , 5 is the transpose
of Ry,.) This determinant can be expressed in terms of the symplectic map from
x, to xg, that is in terms of the 2N x 2N matrix
m = dxp/dx, - (19)
for it can be shown (appendix A) that
D = (—1)Y/det (m+1), - (20)

where I denotes the identity matrix.
Thus the semiclassical Wigner propagator takes a form that is manifestly
invariant under linear canonical transformations;

exp {i[4,(x,t)— H(x,,(x,t)) t]/f+iy;}
{det (m,(x,t)+ )} ‘

Ky(x,ty = 2V 3, (21)
i
When t — 0 there is only one contributing path, with x, and xg close to x and
m close to the identity. The area 4 -0 (cf. figure 1), so

Ky(x, ty>exp{—iH(x)t/f} as i{->0. (22)

This is the obvious semiclassical limit for short times. For larger ¢, a path
contribution will diverge if det (m;+I) vanishes, that is if m; has an eigenvalue —1,
because then the midpoint rule at x,¢ is satisfied not only at x,,xy but also for
some first-order variations away from x,, xy. The divergences signal jumps of 1
in the phase v (which is zero for short times).

Combining (9) and (21) we obtain an integral representation for the spectral
Wigner function:

N+1 «© —
Wix:E,e) fdt exp (—et/#)

2R Y et mye )+ I
><exp{i[Aj(x,t)-i-(E—Hj(x,t))t]/ﬁ-%-i'yj)}. (23)

In the semiclassical limit, there are two sorts of contribution to the integral. First
there is the neighbourhood of the endpoint ¢ 0. For this, the limiting form (22)
gives the classical limit (7). Second, there are contributions from those finite ¢ for
which the phase is stationary. The condition is

d,[4+(E—H)t] = d[R(q,, gs, )+ Bt—p- (g5 —q4)]
=0,R+E—d,q, pr+d,qp Pe—P d{qs—q,)
=E—H(x,(x,t)) =0, ~ . (24)
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where (12) and (16) have been used. Thus we see that these contributions tg
W(x:E,¢) come from the finite classical paths with energy & linking states X4 Xxp
with midpoint x. The phases are again given by the arcas 4 (figure 1).

The spectral Wigner function can be written

Wix;KE. €)= 6|E—H(x)]|+3 Wi(x:E. e), : (25)
J
where W, comes from the jth classical path. Scars are associated with the W, as will
now be explained. ' ' ' -

- 4. SCAR EXPANSION .

1t is possible to pursue the stationary-phase analysis just outlined, to obtain the
path contributions W, for arbitrary x. More explicit and. transparent formulae are
however obtained by making a transitional approximation for phasé points x close
to closed orbits with energy E.,Points on these closed orbits are s‘%qcial because
they are associated with degenerate stationary points of the integral (23) and so
their semiclassical contributions to W are larger. - s ;

To see that there is a degeneracy, note first that on a closed orbit with energy
E the stationary-phase condition (24) is satisfied when x, =x;=x and t = 7
where 7'is the period of the orbit. Next note that when differs to first order from
T the midpoint rule can be satisfied by sliding x, and xj in opposite directions
along the orbit, so that the energy H(x,(x,t)) remains equal to E. Therefore
0, H(x,(x,t)) vanishes on a closed orbit. But according to (24) this quantity is the
second derivative of the phase of (23), so that we have indeed established that
there is a degeneracy. i o

It is necessary to expand the phase in (23) to third order in

T=(—T - (26)

to evaluate the integral asymptotically. Referring to figure 2 we see that the

endpoints of the chord centred on x are, in lowest order,
Xy =X—3%; xp=x+lr%, : (27)

where X is the phase velocity on the orbit at x. The energy of the orbit is

y
L4

H(x,) = H(xy) = H(x—}¥7)
=H(xj+¥%%-Vi-VH (28)

(the term linear in 7 vanishes because % lies in the energy surface and so is
perpendicular to the gradient of H). From Hamilton’s equations, the coefficient of
72 can be put in the form ' :

—%Vi-VH=—§p+p-g

()0 )

= KAX ‘ (29)
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interval 7

H[ zp(2t=T—7))

H(z)=E

F1eure 2. Chord construction when x is on a closed orbit
and ¢ is close to the orbit period 7.

where the last two terms define the 2N x 2N unit symplectic matrix and the
symplectic product. Thus (28) becomes

H(x,(x, T+7)) = H(x)— 1% A %. (30)
To get the full lowest-order expansion of the phase in (23), we must now move

x off the closed orbit. Define Poincaré surface of section coordinates (figure 3)
X=(Q.P)=(9,---,Qn_1, P, ..., Py (31)

transverse to the orbit. On the closed orbit, X = 0. Together with the energy H
and time ¢ along an orbit these define a new set of canonical variables. The surface
contains x and corresponds to ¢ = 0. The closed orbit will be assumed to be isolated
on each energy surface, as is typical for chaotic systems. It is part of a manifold
of closed orbits parameterized by H and filling a two-dimensional region of phase
space (the other variable eing ¢).

manifold of

closed orbits
energy ,Z
surface ; : ¢
H = E i

closed orbit
with energy E

Fieure 3. Poincaré section coordinates X in phase space near a closed orbit.

When x is not on the orbit, X # 0 and X, and X lie on an orbit that is not
closed (figure 4). The area 4 contributing to (23) is (cf. figure 1) that of the loop
from X, to Xy along the orbit and straight back via X to X, in the surface of
section. In lowest order 4 is simply the area '

S(E) = 3€p-dq (32)



226

>

T1cURE 4. Energy surface E showing closed orbit and nearby orbit from X, to X,
: contributing to spectral Wigner furiction at X. ‘

of the closed orbit. The correction can be calculated as indicated in figure 5, with-
the result » ’ ‘
A=§pdg—YPQsPur Q)

= S(E)—1X, A Xg. (33)

A simple explicit expressioh for X, A Xy can be obtained in terms of the
symplectic Poincaré map defined by

Xg=MX, (34)
relating successive intersections with the surface of section of an orbit near the
closed one. The expression is (appendix B)

X, A Xy = X[JM-D)/M+D]X, (35)

where now J is the 2(N—1) x 2(N—1) unit symplectic matrix (cf. (29)).
Combining (33), (35), (30) and (24) we obtain the expansion of the phase in (23)
for times 7 = {— T small and x near a closed orbit and near the energy surface £;

A(z,t)+(E—H)t ~ S—R[IM—~I)/M+1)] X+[E—H(x)]r+3r* %A% (36)

In evaluating (23) we can replace the determinant by its value on the closed orbit.
This can be expressed in terms of the Poincaré map M because of the trivial
. dependence of the full map m.on the variables H and ¢;

-~ detim+I)=4det M. (37)

In the resulting integral the exponent has two stationafy poihts, corresponding
to two non-closed orbits with ¢ slightly smaller and slightly larger than T (figure
9 shows the first of these; the second is got by interchanging x, and xg). As
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F1uRrE 5. Geometry of calculation of symplectic area near a closed orbit. In the second line the
middle term vanishes because it is the actior. of a reducible curve on a manifold of orbits.
- The last term in the third line is the shaded area in figure 4. )

B A

]

H(x)->E these coalesce in the degeneracy described at the beginning of this
section. The integral is an Airy function (Abramowitz & Stegun 1964). We immedsi-
ately obtain the central result of this paper: in the spectral Wigner function egch
closed orbit gives a contribution '

W,

scar

(x; B, ¢) = [2¥/+/det (M + 1)) exp (—eT/k)
x cos {[S(H) — X[J(M~1)/(M +I)] X/ ++)
X 2/ (BH% A 3|} Ai {2[H (x) — B]/(— K25 A X)), (38)

(In the expansion (25), W,.,. represents a single term W,.)

5. Discussion

A number of interesting features of the scar formula (38) will now be
enumerated. , . o '

(i) According to (9), the weight of a scar, defined as the phase-space integral of
its spectral Wigner function, should give the contribution of the closed orbit to the
¢ smoothed spectral density. The integral is easily evaluated in H,t, X variables
‘because the trigonometric and Airy factors contribute separately. For.the H
integration we use : ‘ ‘

. +
f du Ai (v) = 1. (39)

—00
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The ¢ mtegratlon gives the period T'/k, where k is the number of repetitions of the
primitive orbit. The X integration involves a 2(N—1)- dlmensmna,l quadratic form.
We obtain

d (T/knk)exp (—eT'/k) cos (S/h+y)/vdet —1), ' (40)

scar

which is precisely the result already obtained by Gutzwiller (1971).

(ii) The Airy function shows that as x moves off the energy surface in one
direction, W,,, oscillates with a fringe spacing of order E. In the other direction,
W, .or decays exponentially. The directions of oscillation and decay are determined
by the sign of X A X, a quantity whose geometrical significance has been explained
by Balazs (1980). (In one dimension, the closed orbit coincides with the invariant
torus, ¥ A X is negative where the orbit is convex in phase spdce and then the
fringes decorate the interior of the orbit, see Berry (1977b).) These Airy fringes are
not confined to the scars. They also occur (lorentzian-smoothed) in a more refined
semiclassical theory of the energy-sulfface term in (25), based on correcting the
phase in (22) with the term in #. This implies mterestmg oscillations of
wavefunctions near the boundaries of classically allowed regions in conﬁguratlon
space. Details will be published elsewhere.

(iii) The cosine in (38) shows that as x moves off the closed orbit W,,, oscillates
with a fringe spacing of order %3 The pattern of these ‘transverse’ fringes varies
. with position along the orbit because the Poincaré map M does. But the amplitude
does not depend on position along the orbit because det (M+ 1) does not.

(iv) For N = 2, M is a 2 x 2 matrix with eigenvalues exp (4 A) (which are real if
the orbit is unstable). The amplitude of the oscillations is then

{det (M+I)}* = {2 cosh G} R

and the transverse fringes on the Poincaré sectlon are hyperbolae with (in suitable
Poincaré coordinates @, P) phase

—X[JM—-1)/(M+1)] X = —2QP tanh (}A). | (42)

. As the orbit bifurcates (e.g. when a parameter is changed) M degenerates, either
because A0 (e.g. M —I) or because A —ir (e.g. M -—1I). As A0 the amplitude
(41) remains finite, but (42) shows that the fringe spacing diverges indefinitely lead-
ing to a divergence in the scar weight (40) (because det (M —I) = 4sinh?(3A) - 0).
As A —in the amplitude (41) diverges, the frmge spacing vanishes and the fringe
weight remains finite. -

(v) As the classical limit 2 = 0 is approached, the fringes become too close to be
resolved, and (38) can be written

Weear(x; B, €) > [2RN 2 [k +/det (M —I)] exp (—eT'/)
: x cos (S/h+v) {E—H(x)} 8(X). (43)
When combined with (25) this gives the picture of the spectral Wigner function

as a distribution concentrated on the energy surface with additional weak
concentrations (of order AV~') on the closed orbits. For scales of resolution
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between Af and Ai the Airy fringes cannot be resolved but the transverse (off-orbit)
fringes can. In this limit, :

Wioas (%3 B, €) > [2¥ /+/det (M -+ B exp (— eT /) (B — H(x))
x cos{[S—X[JM—I)/M+D)] X1/hi+7y}, (44)

so that the scars decorate the energy surface with oscillations whose amplitude is
of order zero and depends only on the stability of the orbit (via M ), as argued in
a different way by Heller (1984, 1986). -

(vi) When projected ‘down’ p onto g, (38) reproduces the configuration-space
formulae of Bogomolny (1988).

(vii) W(x;E,¢)is the superposition of scars (38) from all the closed orbits. These
include all repetitions of each primitive orbit. If 7' and M refer to the primitive
orbit, the scar for the kth repetition is obtained by substituting k7" and M* (in (41)
and (42), A becomes kA). Repetitions do not affect the Airy factor in (38), but do
change the transverse fringe..

(viii) For chaotic systems the closed orbits are unstable. Long orbits contribute
to (38) in a particularly simple way. The amplitude of the transverse fringes
decreases v,ith the orbit period 7 as

[det (M +1)] "t~ exp(—hgsT) (long orbits), (45)

where Ay is the Kolmogorov-Sinai entropy (Lichtenberg & Lieberman 1983). In
suitable Poincar€ coordinates, the phases saturate to

—X[JM—-1)/M+1)]X~>—2QP (long orbits), (46)

which is independent of .

(ix) Smoothing as embodied in e introduces a semiclassical decay factor
exp (—¢eT'/#%) into (38) in addition to the classical decay (45) induced by instability.
Large smoothing, that ise > AE, . (defined before equation (7)) obliterates all the
scars leaving the classical limit (8). As ¢ is reduced the scars proliferate, and
through their superposition W begins to take on the complex oscillatory structure
of the individual eigenstates. The superposition varies rapidly with Z because of
the changing phases S,(E)/# of the individual contributions.

(x) If € < AE,,, (defined before equation (7)) one might hope fully to resolve
individual eigenstates (equation (7)) as a sum over scars. But the convergence of
this sum is doubtful, in view of the known failure of convergence of its phase-space
integral (the unsmoothed closed-orbit sum for the spectral density) in the case of
quantized geodesic motion on compact surfaces of constant negative curvature,
for which the smoothed series (the Selberg trace formula) is exact for sufficiently
large ¢ (Balazs & Voros 1986). The trouble comes from the long closed orbits,
Wwhich proliferate exponentially with increasing period. These.long orbits cover the
energy surface densely and uniformly (Hannay & Ozorio de Almeida 1984), which
suggests that their combined scars might somehow reproduce the first term
(smoothed delta-function on the energy surface) of the semiclassical series (25),
in an ‘analytic bootstrap’. By analogy with the way in which this idea was
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| implemented for the spectral density (Berry 198s), it might be fruitful to demand
that the scar series satisfy the Weyl transform of the operator identity

8B —H) = lim 2ned*(E— H), (47)
>0 .

‘which follows from (2). The transform is

‘ 2N
Wx;E,e=0)= hm( fdxl fdxz
—0

€

x W(x,; B, €) W(xy; B, €) exp {4id(x, x,, x,) /%}, , (48)
where 4 is the symplectic area of the triangle formed by x, .7@:1 and x,, namely
A=Yx,—x)A(x,—x). ' (49)

So far I have not succeeded with this approach.

I thank Professor A. M. Ozorio de Almeida and Dr J. H. Hannay for valuable
- discussions. :

A

APPENDIX A

This is the derivation of (20) The 2N x 2N matrix m can be written in terms of
four N x N matrices: .

m = [mqq mpa], where (7)., = OPp,/0qan, etc. (A1)
: Mpq Mppl

To relate m to the four second derivatives of the action B(q,, qp), we differentiate

98(94:PA(94,95)) and py(qa,Pa(44,g8)) With respect to g, and gg. This leads to

—~R 3T, +1 —R} '
det (m+1) = det[ AB = AA AB ] A2
! ) - LBea—Rpp B 5 Ryy —RppRi3+1]° (A2)

Now add R,z —Ryp times the first ‘row’ to the second ‘row’, to get
—RAR,,+1 -R3}
det (m+1) = det[ ABTRAA AB]

Rps+Ryp—Rys—Ryp 0 ,
= (—1)*D, . o (A9)

where D is defined by (19).

APPENDIX B
i Thls is the derivation of (35). Fi'om (34) and the mldpomt rule

X = HX,+Xy) . ®BY
wefind - X,=2(+M)7X; Xy= 2M(I+ M) X, , (B2)
80 that . X ANXpy=X,JX; = XNX, . (B3)

where - N =4I+ M) JMI +M)™. : _ (B4)
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We can replace N by its symmetrization :

NN, = 2(+3) " JM(I + M)~ = 200+ JI) T+ M) (B5)
(by using J = —J). Now M is symplectic, that is (Lichtenberg & Lieberman 1983)
M = J, o (B 6)

SO M=—-KMJ
and T+ = —JMI + M) . BT

Substitution into (B 5) gives
Ny = 2J{M*I+M)2—(1 +M)2}

=2JM~1)/M+1I), (B 8)
so that (B 3) becomes -
XA/\XB=2X[J(M—I)/(M+I)]X. (B9)
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