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Abstract. A novel all-optical orthogonal frequency division multiplexing
�AO-OFDM� scheme is proposed and demonstrated. Ultrashort optical
pulses are used as samples for optical discrete Fourier transform �DFT�
and the inverse DFT process. Different subcarrier channels can be par-
allelly processed by fiber Bragg gratings. A 20-Gb/s two subcarrier AO-
OFDM experiment is carried out with narrowband filtering and optical
cyclic postfixes �CP� inserted. Experimental results show that this
scheme has good spectral efficiency. Furthermore, the received signals
have better eye diagrams and bit error rate performance with the help of
CP. This scheme can be used in high-speed optical transmission sys-
tems.
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Introduction

n optical orthogonal frequency division multiplexing
OFDM� method recently arises as a potential technology
or a future high-speed communication system.1–4 It is con-
idered to have large tolerance for different fiber transmis-
ion impairments, such as chromatic dispersion,5–7 polar-
zation mode dispersion,8–10 and optical fiber
onlinearity.11–13 Many existing optical OFDM systems use
n electrical circuit to multiplex parallel data into multiple
ubcarriers �SCs� due to OFDM principle and modulate
hese signals in optical domain by a modulator. Thus, elec-
rical OFDM modulation is limited by electronics process
peed in a discrete Fourier transmission �DFT�–inverse
FT �IDFT� �DFT/IDFT� module and also the bandwidth
f digital-to-analog/analog-to-digital converter. If the DFT
rocess can be realized by optical method, then the OFDM
ignal process will be very fast and the transmission data
ate will also increase greatly. All-optical DFT methods
ombining optical delays and phase shifters have been in-
roduced recently. Continuous wave with data modulated is
sed for transmission, and the Mach–Zehnder interferom-
ter is used as the IDFT module.14,15 Also, a coherent
avelength-division multiplexing signal utilizing OFDM
rinciple is proposed with either a coherent comb optical
ource16 or coherent detection.17 And a scheme using ul-
rashort optical pulses as samples for an optical DFT/IDFT
rocess is proposed in Ref. 18, which has a complex struc-
ure of all-optical OFDM DFT/IDFT modules. Considering
he good performance of fiber Bragg gratings �FBG� in op-

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 065002-
tical code-division multiple-access �OCDMA� systems19 it
is promising to use FBGs as all-optical OFDM DFT/IDFT
modules.

In this paper, we report a novel all-optical OFDM �AO-
OFDM� scheme for AO-OFDM system applications. This
scheme uses ultrashort optical pulses as sample pulses and
can operate different SC channels multiplexing �MUX� and
demultiplexing �DMUX� in parallel. Each AO-OFDM
channel can be processed by a pair of FBGs as correspond-
ing OFDM MUX/DMUX. And for the first time, optical
cyclic postfixes are inserted to improve the quality of re-
ceived eye diagrams and system performance.

2 Principle
Because of the mathematical definition of DFT/IDFT
method, samples are considered to be phase shifted and
time delayed for calculation. In optical domain, ultrashort
pulses can also be used as samples for the all-optical DFT/
IDFT process. In Ref. 18, optical DFT modules are com-
bined by phase shifters and time-delay units, while these
two parts are separated and complex for implementation. In
fact, in one symbol period T, the samples ST can be ex-
pressed as

ST = �
m=0

M−1

Sm =
1

N
�
m=0

M−1

�
k=0

N−1

Xm�A�m�t��exp�− j2�
m

M
k�

=
1

N
�
k=0

N−1

Sk, �1�

where M is the number of samples in one symbol period,
A�t� is the profile of ultrashort optical pulse, �t is the time
interval of optical pulses and equals T /M, N is the number
June 2009/Vol. 48�6�1
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f SC, and X is the sample value. X keeps to constant in the
hole symbol period. Thus, the samples in different sub-

arrier �Sk� can be processed in parallel as long as they are
ynchronous.

The k’th optical IDFT �OIDFT� module has the same
tructure of an optical DFT �ODFT�. Thus, this signal after
’th OIDFT module can be demodulated as

Pk�t� = �
m=0

N−1

Sk�t�exp�− j2�k
m

N
� = �

m=0

N−1

�
n=0

N−1

A�t + �n

+ m��t�exp�− j2�k
1

N
�n + m�	 �2�

his signal is the result of linear convolution; thus, the total
ample number of one bit becomes 2N−1. When n+m
N−1, that is at ts= �N−1��t, there is a superposition of N

amples, which can be expressed as

P�k,ts�
�t� = N · A�t�exp�− j2�k

N − 1

N
� . �3�

igure 1�a� is the schematic of OFDM DMUX with MAT-
AB simulation. If the signal of the other SC channel
asses through this OIDFT module, for example, f-th chan-
el signal passes through k-th OIDFT module, then it will
e

P�f ,k��t� = �
m=0

N−1

Sf�t�exp�− j2�k
m

N
� = �

m=0

N−1

�
n=0

N−1

A�t + �n

+ m��t�exp�− j2�
1

N
�fn + km�	 �4�

hus, at ts= �N−1� �t, the signal superposition can be ex-
ressed as

ig. 1 Principle of optical OFDM modulation �a� without and �b� with
Ps.
ptical Engineering 065002-
P�f ,k,ts�
�t� = A�t��

n=0

N−1

exp

�− j
2�

N
�nf + mk�	 = A�t��

n=0

N−1

exp
− j
2�

N
�n�f

− k� + �N − 1�k�� = A�t�exp�− j
2�

N
�N

− 1�k	�
n=0

N−1

exp�− j
2�

N
n�f − k�	 = A�t�exp�

− j
2�

N
�N − 1�k	1 − exp�− j�2�/N�N�f − k��

1 − exp�− j�2�/N��f − k��

= 0 ��f − k� is integer� . �5�

It is very clear that at ts moment, orthogonality of different
SC channel samples can be obtained, while it is not true at
the other moments. This is because the optical DFT/IDFT
process is based on linear convolution. In time slot T, only
one demodulated sample can keep orthogonality, while
other samples cannot.18 Thus, at the receiver, the eye dia-
gram has a very narrow decision width, and synchronous
pulse carver modulation is needed to extract the correct
sample.18 In order to solve this problem, the optical
samples can be partly cyclically extended, which can keep
the SC orthogonal in the cyclic prefix or postfix samples.
This ensures that the replicas of the OFDM symbol always
have an integer number of cycles within the DFT interval,
which has the same function in wireless OFDM systems.20

In this paper, optical cyclic postfix samples are inserted
in one symbol period, which can be easily fabricated by the
FBG technique. The samples of SC k in one period can be
expressed as

Sk = �
n=0

N−1

Xn · A�n�t�exp�− j2� ·
n

N
k� + �

c=0

C−1

Xn · A��N

+ c��t�exp�− j2�
c

N
k	 = �

n=0

M−1

Xn · A�n�t�exp

�− j2�
n

N
k	 , �6�

where C is the number of cyclic postfixes, �t equals
T / �N+C�, and other symbols are same as in Eq. �1�. Thus,
the correct demodulated samples after the optical IDFT
module increase to C+1. The comparison of signals with
and without CP is shown in Fig. 1. With the increased
orthogonal samples, the decision range in eye diagrams can
be enlarged, and it may also give some benefits for disper-
sion walk-off as the electrical CP’s function in a wireless
multipath environment.

In order to realize our scheme, FBGs are used. The FBG
is designed to have many sample subgratings along its
length. With the scan-exposure technique, each subgrating
can have the same refractive index modulation amplitude
but different modulation phase shifts. For example the re-
fractive index’s spatial modulation function of the FBG has
the following form:
June 2009/Vol. 48�6�2
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n�z� = �
m=0

M−1

A�z − mZ0��km exp� j
2�

�
z� + c.c., �7�

here � is the period of the grating, Z0 is the chip period,
�z� is the profile of each chip’s amplitude, and �km is each
hip’s phase shift. If A(z� is very small, then the FBG’s
mpulse response can be approximately given by h�t�
K�n�ct /2n�, where K is a constant coefficient, n is the
ffective refractive index, and c is speed of light. Thus, the
nput optical pulse x�t� and the reflective signal have the
elation

�t� = x�t� � h�t� = �
m=0

M−1

B�t + m
2n

c
Z0��km, �8�

here B�t�=2Kx�t� � �A�ct /2n�cos�2� /���ct /2n��. If we
et Z0= �cT /2nM��km=exp�−j2��m /M�k�, then y�t� has the
ame structure as Sk�t� in Eq.�1�. Thus, it is reasonable to
se FBGs as ODFT and OIDFT modules in AO-OFDM
ystems.

Experiment and Results
two-SC AO-OFDM experiment is carried out and shown

n Fig. 2 An optical pulse train with a pulse width of �2 ps
s generated by a mode-locked laser diode �MLLD�. The
enter wavelength is 1554.9 nm, and the repetition rate is
0 GHz. The non–return-to-zero �NRZ� on-off keying
odulation pulse train from a pulse pattern generator is a

31−1 pseudo-random bit sequence �PRBS� at 10 Gb /s. An
lectrical delay line �EDL� is used to confirm the synchro-
ization. Then, the signal is fed into a coupler and reflected
y two ODFT FBGs for different SC channels �SC1 and
C2�. An optical delay line �ODL� is used in one arm to
eep the synchronization. Erbium-doped fiber amplifiers

Fig. 2 Experimental setup. ATT-attenuator, DS
PD, and PPG. �A� An original single input ultras
after OIDFT SC1, and �D� signal B after OIDFT
ptical Engineering 065002-
�EDFA� and optical attenuators are used to confirm that
they have the same power entering into another coupler.
Then, the combined AO-OFDM signals are amplified and
pass through a Gaussian-shape optical bandpass filter
�OBPF� with a 3-dB bandwidth of 0.3 nm. The signal can
be demodulated with corresponding OIDFT FBG and then
detected by a 12.5-GHz photon detector �PD�.

In experiment, FBGs are used as optical DFT/IDFT
modules for N=4, C=1 case, which means the sample
number in one symbol period is 5 and the CP length is
25%. The ODFT FBG for the i’th �i=1,2� SC is designed
to have five reflection subgratings as shown in Fig. 2. The
time delay between each subgrating �t is 10 ps and the
phase shift of m’th �m=1,2 ,3 ,4 ,5� subgrating ��i ,m� is
2�i�m−1� /4. And the corresponding OIDFT FBG for the
i’th SC is designed to have four reflection subgratings, as
shown in Fig. 2. The time delay is the same as ODFT FBG,
and the phase shift is still 2�i�m−1� /4 �here m=1,2 ,3 ,4�.
In order to test the ODFT/OIDFT performance, single bit
transmission with one ODFT FBG �SC1� used is carried
out without the OBPF. Figure 2 also shows optical samples
in different position. There are five samples after ODFT-
SC1 FBG �Fig. 2�b��. After corresponding OIDFT-SC1,
there are two highest pulses in the middle �Fig. 2�c��. While
after noncorresponding OIDFT-SC2, there are no pulses at
the same position �Fig. 2�d��, which means the there are
two samples with orthogonal characteristic. In PRBS case,
two ODFT FBGs are both used; the eye diagrams of re-
ceived signals without the OBPF are shown in Fig. 3 to
show the difference between the signals with and without
CP. The signals are directly detected by a digital sampling
oscillator ��DSO�, Tektronix TDS8200� with a detection
bandwidth of 65 GHz. It is clear that the orthogonal
samples increase with the help of CP.

In order to test the spectral efficiency of this scheme, an

A, EDL, MLLD, OBPF, optical delay line ODL,
lse, �B� signal A after ODFT SC1, �C� signal B
O, EDF
hort pu
SC2.
June 2009/Vol. 48�6�3
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BPF mentioned previously is used. Figure 4 shows opti-
al spectra of AO-OFDM signals after OBPF and without
P. The combined OFDM signal has a bandwidth of
.218 nm �interval of first null point�, which equals

ig. 3 Eye diagrams without OBPF of �a� without CP and �b� with
P.

ig. 4 Optical spectra of AO-OFDM signals without CP and de-
odulated SC1 and SC2 channels.
ptical Engineering 065002-
27.25 GHz, and the spectral efficiency is 0.74. Figure 5
shows optical spectra of AO-OFDM signals with CP. The
combined OFDM signal has a bandwidth of 0.254 nm,
which equals 31.75 GHz, and the spectral efficiency is
0.63. The blue and red lines in Figs. 4 and 5 are spectra of
demodulated SC1 and SC2 channel, respectively. Com-
pared to a traditional 20-Gb /s NRZ signal �0.32-nm inter-
val of first null point�, this AO-OFDM signal has better
spectral efficiency. The bit error rate �BER� curves and eye
diagrams of different cases are shown in Fig. 6. In 2-SC
channel cases, the system without CP has an obvious BER
floor at 10−4 for the narrow decision width of the eye dia-
gram. However, the system with CP has no BER floor with
good eye-diagram quality. Furthormore, there is less power
penalty between the cases with and without OBPF, which
means the system can work at high spectral efficiency with
the help of CP. In order to test the transmission perfor-
mance of our scheme, the AO-OFDM signal is fed into a
20-km single-mode fiber link, which has chromatic disper-
sion of 17 ps /nm /km at 1550-nm. Figure 7 shows the BER
curves of B2B and after 20-km transmission. The power
penalties of both SC1 and SC2 are �0.5 dBm.

Fig. 5 Optical spectra of AO-OFDM signals with CP and demodu-
lated SC1 and SC2 channels.

Fig. 6 BER curves with eye diagrams inserted.
June 2009/Vol. 48�6�4
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Conclusions

n AO-OFDM scheme with optical cyclic postfix is pro-
osed and demonstrated. Ultrashort optical pulses are used
or ODFT/OIDFT samples and different SC channels can
e processed in parallel with the FBG technique. A
0-Gb /s two SC AO-OFDM experiment is carried out with
arrowband filtering. Experimental results show that this
cheme has good spectral efficiency and BER performance.
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