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Relaxation times for elastic electron scattering in III-V compounds of InSb type are
calculated taking into account consistently the nonparabolic structure of the conduction
band, both in the density of states and electron wave functions. The calculations are based
on the Kane model of band structure, including explicitly mixing of p-like components
into the total wave function of the conduction band. Electron scattering by charged
impurities and heavy holes, optical phonons (polar interaction), acoustic phonons, and
piezo-acoustic modes are considered. Screening by free electrons is included in the long-
range interactions and shown to play an important role at higher electron concentrations.
Both spin-conserving and spin-flip transitions are considered for all modes. It is demon-
strated that transverse branches participate appreciably in acoustic scattering at high
electron energies. In all cases, the presented calculations give much higher values of the
theoretical mobilities for heavily doped samples than those obtained up to now taking into
account only the proper density of states.

Die Relaxationszeiten fiir elastische Elektronenstreuung in IIT-V-Verbindungen vom
InSb-Typ werden unter konsistenter Beriicksichtigung der nichtparabolischen Struktur des
Leitungsbandes sowohl in der Zustandsdichte als auch in der Wellenfunktion berechnet.
Die Berechnungen beruhen auf dem Kaneschen Bandstrukturmodell, wobei explizit die
Zumischung von p-artigen Komponenten in die Gesamtwellenfunktion des Leitungsbandes
eingeschlossen wird. Elektronenstreuung durch geladene Defekte und schwere Locher, op-
tische Phononen (polare Wechselwirkung), akustische Phononen und piezo-akustische Moden
werden beriicksichtigt. In den langreichweitigen Wechselwirkungen wird Abschirmung
durch freie Elektronen eingeschlossen und gezeigt, daB sie eine bedeutende Rolle bei hoheren
Elektronenkonzentrationen spielen. Es werden sowohl spin-erhaltende als auch spin-flip-
Ubergiinge fiir alle Moden beriicksichtigt. Es wird gezeigt, daB transversale Zweige einen
betridchtlichen Anteil an der akustischen Streuung bei hohen Elektronenenergien haben.
In allen Fillen ergeben die dargelegten Berechnungen viel hdhere Werte der theoretischen
Beweglichkeiten fiir stark dotierte Proben als die bisher erhaltenen, die nur die richtige
Zustandsdichte beriicksichtigen.

1. Introduetion

Since the nonparabolic structure of the conduction band in InSb was derived
by Kane [1], it has been realized that the non-parabolicity must strongly affect
transport properties of small-gap materials. General formulas for various kinetic
coefficients in terms of the relaxation time have been derived by various authors
for a spherical nondegenerate energy band with arbitrary non-parabolicity [2].
Tt has been demonstrated among other things that the effective mass which
enters the general transport theory is not the one given by the second derivative
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of energy versus momentum, which had been in common use for parabolic
bands, but one deals with the energy-dependent mass defined as
11 de
m* R kdk’
It was also realized that the scattering itself is affected by the non-para-

bolicity of the band. The relaxation time in case of elastic scattering isin general
given by

(1.1)

1
0"~ ole) W(e), (1.2)
where p(¢) is the density of states per unit energy and Wi(e) is the scattering
probability. In early attempts to calculate the relaxation times for various
scattering modes the nonparabolic character of the band was taken into account
only via the appropriate change of the density of states, g(¢), which is deter-
mined by the dispersion relation (k) of the band in question. And so, for polar
optical phonons it was done by Howarth and Sondheimer [3], for acoustic
scattering by Radcliffe [4], for charged impurities and nonpolar optical modes by
Barrie [5]. It turned out that the final results of these theories can be obtained
from the corresponding formulas for a parabolic band by replacing the usual
effective mass by the mass defined in equation (1.1). This property becomes
clear if one notices that the density of states per unit energy for a spherical
band is

1. dk

— 2 "
ele) = k2 - (1.3)
For a parabolic band, where ¢ = 42 k?/(2 mg), this gives g(¢) = (1/n2%) (m$/%2) k,
whereas for an arbitrary band using definition (1.1) we get g(¢) = (1/n2) (m*/%2)k.
Thus, both results look the same, with m§ for a parabolic band replaced by m*
in the case of general spherical band. The above-mentioned results were sum-
marized by Kolodziejezak and Sosnowski [6], whose procedure was subsequently
widely used in interpretation of experimental results in small-gap semiconduc-
tors. In particular, using this procedure it was possible to deseribe all transport
coefficients for single scattering modes by generalized Fermi-Dirac integrals [7].

Recently this formalism was extensively quoted by Askerov [8].

However, the non-parabolicity of the band structure affects the relaxation
time not only via the density of states but also through the scattering prob-
ability W(e). In order to calculate properly the electron scattering in the non-
parabolic band one should use not only the appropriate £(%) relation but also
the electron wave functions for the region of the band in question. The first
consistent scattering theory for the nonparabolic band structure has been
carried out by Ehrenreich [9], who considered scattering of electrons in InSh
by heavy holes and optical phonons (polar interaction), solving the Boltzmann
transport equation by a variational procedure. Also Haga and Kimura [10]
used proper wave functions when calculating the free-carrier optical absorption
in n-InSh. A systematic calculation of relaxation times for main scattering
modes in the nonparabolic conduction bands of InSb-type materials, as described
by the Kane model, has been carried out by Korenblit and Sherstobitov [11].
Unfortunately, this work contains numerous errors and, having in mind wide
applications of such a theory, we decided to recalculate this problem. Still, the
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general approach follows that of reference [11]. A similar calculation for acoustic
and polar scattering for lead-salt band structure has been recently done by
Ravich and Morgovskii [12], and for charged impurity scattering in HgSe-
type materials by Broerman [13].

In the present paper, we calculate relaxation times for the main elastic scat-
tering mechanisms in InSb-type materials taking consistently into account the
non-parabolic structure of the conduction band. Scattering of electrons by
ionized impurities and heavy holes as well as by optical (polar), acoustic, and
piezo-acoustic interactions with lattice vibrations are considered. Spin-flip
scattering and free-carrier screening effects are shown to play an important
role in the theory. It is also demonstrated that at higher electron energies the
transverse acoustic modes give appreciable contribution to electron scattering.
The theory presented here has been recently used by the authors to describe
transport phenomena in n-InSb [14]. It has been shown that the consistent
calculation of scattering is necessary to explain the behaviour of various transport
effects in a wide range of temperatures and electron concentrations. Estimating
parameters appearing in the theory we shall mostly refer to InSb as a typical
example of ITI-V compounds.

2. Kane’s Band Model — Eigenenergies and Eigenfunctions

In this paragraph we shortly summarize Kane’s results [1] on the conduction
band structure of some III-V compounds. The model holds particularly well
for InSb due to the very narrow gap in this material, but it is believed to
describe quite well other compounds of this group, in particular InAs and GaAs.

The initial unperturbed Hamiltonian for an electron is

2 h
Ho = 5+ Vot) + 550XV V) - P, (2.1)
My

4 m? c?
where V(r) is the periodic potential of the lattice and the last term represents
the spin—orbit interaction in the standard notation. The eigenvalue problem

FHo Pnrejn(1) = njp(K) Prrin(r) (2.2)
is satisfied by the Bloch wave functions, normalized over the crystal volume V:

1/2
Porilr) = ()t exp (i) 23)
Here n denotes the band (being interested in the conduction band alone we shall
leave out the band index in the following), k is the wave vector, 4, the projection
of the total angular momentum on the z-direction (j is a good quantum number
for non-vanishing spin—orbit interaction). The eigenvalue problem (2.2) is
solved by the k . p method expanding k-dependent Bloch amplitudes in terms
of k-independent Luttinger-Kohn amplitudes taken at the band’s extremum,
i.e. at k = 0 in our case. In the simplified model one takes four bands (eight
including spin) neglecting all other bands. Thus we have at k = 0 an s-like
conduction band (j = 1/2) separated by the energy gap &, from degenerate
light- and heavy-hole valence bands (j = 3/2) and the p-like band (; = 1/2)
separated from the j = 3/2 bands by the energy of the spin-orbit interaction 4.
The k- p Hamiltonian is diagonalized exactly for this model, without the
usual Luttinger-Kohn canonical transformation. Apart from ¢, and 4 there is
one more parameter in the theory: P = — (¢ &/m,) <S| p. |Z>, which charac-
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terizes the interband interaction. S, X, Y,Z denote the Luttinger-Kohn
amplitudes, which transform under the tetrahedral group like s, p;, py, and p,
atomic wave functions, respectively. For the Bloch functions in the form (2.3)
they are normalized to (1/2) <S|8> = (1/82) <Z|Z) = 1, where the integration
is over the volume of the unit cell, 2. The value of P remains almost constant in
different TII-V compounds [15], whereas the value of ,/A varies widely.

In the above model the energy-wave vector relation in the conduction band
is isotropic and can be obtained from the following equation:

8'(£'+8g)(£'—|—sg+d)—k2P2(8'+€g+~:2;—A)=0, (2.4)

where &’ = ¢ — %% k2/2 m, (the zero of energy is at the bottom of the conduction
band). We shall consider the energy range ¢ < ¢, + (2/3) 4 (for higher energies
Kane’s model is probably not applicable anyway). Moreover we neglect the
free electron term, since the effective mass in small-gap materials is just a small
fraction of the free electron mass. Under these assumptions equation (2.4)
gives for the conduction band (for both spin orientations)

£ £, \2 n2 k2R A2 k2 £
Ic = _ 8 ——— e — — 1 ‘5
e(k) 2+[(2)+sg2m0*] L 8(1+sg) (2.5)
where the effective mass at the bottom of the band is
3

) apm AT 0
m§  3hte; A+ (2.6)
The effective mass, as defined in (1.1), becomes
m* = m} (1 + 23). (2.7)
&

In order to calculate the scattering transition probability one needs to know
also the periodic components of the electron Bloch functions for the same range
of energies. Under the above assumptions they are found to be?)

. b—cy2k b+cy2k_ k,
T e R - DI
k, k, Z
_b(7R+_7V_§) ’
b+ecy2k b—cy2 k #9)
. +ec —¢ 2
Uk, —1/2 :(zaS—I-— T%R'_TRJ'—{_C?Z)‘L—F
k, k. Z
+”(zR-—7VT§)T=

where k. =k, -4k, and Ry = (X £+ ¢ Y)/‘/gand the arrows 4 and | denote
the spin-up and spin-down functions, respectively.

2) The form used in equation (2.8) can be obtained directly from reference [16] by setting ’
the magnetic field strength equal to zero. :
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The total angular momentum § = 1/2 is quantized along the z-direction (in
the following we suppress the subscript z). The coefficients @, b, and ¢ are

s &BteEe N D
¢ g+ 2e—ac’ b 3sg+2£—aaﬁ ’
) 2.9)
62=_—€“}’2,
3et+2e—ac
where
pr = >
= 51
(4 + eg)(A +§ sg)
A—l—%eg
2 _ (2.10)
14 A4¢e
and
— Agg
& = 3 )
2(A +§ eg) (4 + &)

Since « <X 1/10 for all values of g,/4 ratio, the term « & can be neglected in the
above expressions. Hence, to a very good approximation

at=1-1L, b2=%Lﬂ2, 62=—23—Ly2, (2.11)

where L = g/(g, + 2 £). Normalization of the Bloch amplitudes (2.8) is equi-
valent to the condition a? 4 b2 + ¢2 = 1. It can be seen that both Bloch am-
plitudes are not pure spin functions due to the non-vanishing spin—orbit inter-
action (b &= 0). It can also be observed that, due to the small forbidden gap,
the p-like functions X, Y, and Z mix into the total electron wave function for
energies away from the band edge. For small energies this mixing is approxima-
tely proportional to (¢/e,)!/2 in agreement with the complete Luttinger-Kohn
theory which includes second-order k - p terms in the eigenenergies and first-
order terms in the eigenfunctions [17]. Namely this fact has to be accounted
for in a consistent theory of electron scattering, especially for the nonparabolic
region of energies. Very close to the bottom of the band, i.e. for ¢ <¢,, there
isa =1, b =~ ¢ = 0 and the conduction band wave function contains only the
S-component.

In several theories of scattering for the parabolic region of energies (see, e.g.,
[18]) the perturbing scattering potential is subject to the canonical transfor-
mation together with the initial Hamiltonian (2.1) in order to arrive at the
decoupled one-band effective mass approximation. It should be emphasized
that, using Bloch functions of equations (2.3) and (2.8) for the calculation of
scattering, no such transformation of the scattering potential is necessary since,
within the adopted model, the Bloch functions (2.3) are exact solutions of the
unperturbed Hamiltonian and they were obtained without any canonical trans-
formation. Just like in the regular Luttinger-Kohn procedure one has to worry
about the interband matrix elements of the perturbing potential with the band
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in question; in our case we have to worry about interband elements between
8-band set and all other bands, but these are clearly of no importance in scat-
tering problems. ,

When calculating matrix elements of perturbing potentials we shall deal with
integrals over the crystal volume of slowly varying envelope functions ¢ and
quickly varying periodic amplitudes «. According to common procedure these
integrals will be broken into

f(p(r) u(r) ddr= —;jf(p(r) d"rfu(’r) d3r, . (2.12)
v 14 2

Transition probabilities for all scattering modes are calculated in the first Born
approximation.

3. Charged Impurity Scattering

We shall consider electron scattering by the screened Coulomb potential of
a single ion:

Ulr) = %exp(—%) , (3.1)

where z, is the static dielectric constant and A the screening length (see Appen-
dix). We have to calculate the matrix elements of this potential between initial
and final electron states. Since in the Bloch amplitudes of (2.8) the spin variables
are mixed with the coordinate variables, the spin-flip scattering transitions are
also possible. There are four matrix elements

K, 7| U |k, j> = %fe“"‘"')" U(r) uff j wr; d3r, 3.2)

| 4

k', §* denoting a final electron state. Following equation (2.12) we shall break
this integral into two, since the scattering potential extends over many unit
cells. The initial k-vector is taken along the z-direction.3) The resulting scalar
product of appropriate Bloch amplitudes gives

1! 1 1
<h E’ U |k, §> =l + (b* + ¢*) cos 0] U (K" — K|) , (3.3)
<k’, _ %‘ U k,—;~> = % b (% b—c VE) sinfeie U (k' —E|), (34)

where 6 and ¢ are the polar angles of k’ in the spherical coordinate system with
E-direction taken as the polar axis. The slowly varying part is just the standard
Fourier transform of the screened Coulomb potential,

47 e

U (k' — k|) = [4 k2 sinzg + A—z]-l, (3.5)

where we have put &k = &’ (see equation (3.8)). The matrix elements with the
initial value of j, = —1/2 are just the complex conjugates of those given by

3) As demonstrated recently by Vassel et al. [19] this choice does not affect the generality
of considerations.
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equations (3.3) and (3.4). Thus the transition probability from either j, = 1/2

or j, = —1/2 state is
2naf 1 1\[2 1 1
kkr _ == s i ;T il
Wik, k') (ch,2Uk,2> -{—Kk 2Ulc,2>

; ) tetk) — etk)) =

2x({4me2\2 1 .. 0 -2 ,
== (_;0—) 79'(4 k2 sin? 7 + 1“2) d [e(k") — e(k)] X
X {1 —4a2(1 —0L2)sin4—oi—|—[2b2 (20 — —b:)2—4(1 —az)] X
2 V2
., 0 /]
X sin? Ecos2 5}, (3.6)

where the 3-function indicates that the scattering is elastic. The total scattering
probability is obtained by averaging over the initial states and summing over
all possible final states. Since, as we have already observed, the scattering prob-
ability from j, = 1/2 state is equal to that from j, = —1/2, the average over
the two initial states is equivalent to using just equation (3.6) without any
change. In order to calculate the transport scattering transition rate, which is
related to the relaxation time, the occupation factors should be introduced in
the standard way and one arrives at the following expression for the inverse
relaxation time4):

L NS W k) (1 —cos0) =L Wk, k) (1 — cos 0) K, (3.7)

k) ¥ ’ RS ’ T

where N is a number of charged ions in the volume V. We observe that

dk
3 [e(k) — s(k)] = 3 (K — k) (3.8)

which is, of course, directly related to the density of states (1.3). Hence, in the
spherical coordinate system the only nontrivial integration is over 6. The final
result is

Timp.(a) ==k, (3.9)

where N; = N/V is the concentration of charged ions. Fiyy. is given by

P& D) =l +1) =ty — @I —f LY [1 +H%—§ln(s+1>}+
1 4 6 2
+y B —n|1 -+ ghE+ ) o s

1) There is some confusion in the solid state literature concerning this point (partly
due to following the methods of nuclear physics which uses for Coulomb scattering the
concept of cross section rather than the relaxation time). The number of final electron
states is (2/8 n%) d*k’. However, in the parabolic region of energies, where no spin-flip
transitions occur, there is an additional selection rule, usually not written down explicitly,
namely the spin conservation, which reduces the number of possible final states by one half.
In our case both final spin states are taken into account by the summation of matrix
elements squared in (3.6).
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where
2

f= @k and =065 —spy+p) 3.11)

and L, f, and y are defined in equations (2.10) and (2.11). For A> ¢, f = 1.
In InSb where ¢, =~ 0.2 eV and 4 = 0.8 ¢V, f =~ 0.8. For small electron energies,
i.e. for ¢ € ¢,, L = 0 and only the first two terms are left in (3.10). This repre-
sents the well-known result for a parabolic band. In the nonparabolic region
of energies, i.e. for higher electron concentrations, £ >> 1 (in InSb at room tem-
perature it varies from £ = 20 for intrinsic samples to & ~ 30 for » =~ 10® cm~3).
Hence, to a good approximation equation (3.10) may be simplified to the fol-
lowing form:

2
Fump(6, L) = In (¢ + 1) _e_fﬁ 4L —fLY [1 ~ 2w 1)]+
1 4
+t5 L@~ (1 —?). (3.12)

In InSb at » = 10 cm~3, L = 0.4 and the last two terms resulting from the
mixing of p-like functions reduce the value of Fiy, by about 309, increasing
by the same proportion the corresponding mobility. No screening corresponds
to A - oo, i.e. &£ - co, which gives 7j,; — 0, a well-known result for the un-
screened Coulomb potential.

Defining electron mobility with the use of the effective mass (1.1), we have

finally
_ €Timp. 1 ” 1 (E 2
Uimp, = m*  2medh Ni Fimp. (dk k. (313)

The above formula can also be applied to the scattering of electrons by heavy
holes, with »x, replaced by %. In III-V compounds the two dielectric constants
differ only slightly and it is possible to describe both scattering mechanisms by
equation (3.13) with appropriate concentration of scattering centres.

4. Lattice Seattering — General

In IIT-V compounds which have two different ions in a unit cell and no
inversion symmetry, an electron can interact with lattice vibrations in a number
of different ways. Of these we shall consider three modes of main importance,
but it is useful to bear in mind the neglected interactions and simplifying as-
sumptions. First, we assume that all longitudinal and transverse modes can
be exactly decoupled, which is usually true only for propagation directions along
the main crystal axes. Secondly, for acoustic modes the transverse and longi-
tudinal sound velocities will be considered independent of the propagation
direction. In the lattice with two atoms per unit cell the lattice waves have
neither pure optical nor acoustic branches. The acoustic branch has an admix-
ture of optical displacement and vice versa. In particular in acoustic wave, due
to the small phase difference for the two ions within one cell, there appears
a non-vanishing dipole moment which in principle gives rise to the polar inter-
action with electrons. The admixing modes are of higher order in the a ¢ expan-
sion for long wavelengths (a lattice constant), and they will be neglected com-
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pared to the main modes.5) The optical lattice wave can interact with electrons
in two ways: via the polar interaction considered below and via the nonpolar
interaction, similar to that in mono-atomic crystals. We do not consider the
latter as it is believed to be much less important in polar crystals than the polar
interaction, although, to our knowledge, the detailed discussion of this problem
has not been carried out. We employ static screening by free electrons for the
long-range interactions. The limitations of this approach are discussed for
polar optical mode by Ehrenreich [20] and for piezo-acoustic mode by Hutson
and White [21].

5. Polar Optical Scattering

Again, the first thing is to establish the form of the perturbing potential. We
do not quote the derivation of the Frohlich Hamiltonian for the polar inter-
action between electrons and optical phonons, as it is rather standard (see, e.g.,
[22] and [23]). The final expression for the unscreened perturbing potential in
the continuum approximation is

4me*re h vz _ 1 . 3
r__ g " — igr __ p¥ o—iqnr
U =1 0 (2NMw) %q(bqe by e ), 5.1)
where q is the phonon wave vector, @ the frequency of longitudinal phonons,
N the number of unit cells in the volume V, M the reduced mass of the ions
(1/M = 1/m; + 1/m,), and e* is the effective ionic charge defined, according to
Callen [24], as

(e¥)2 =

. QMw2(1 1)’ (5.2)

Koo g

where %, and %, are the high-frequency and the static dielectric constants,
respectively. Only the longitudinal branch of optical phonons couples to the
electron motion in this approximation. According to Ehrenreich [20] the screen-
ing of the initial interaction (5.1) by other free carriers in the band introduces
two effects. First, there appears the following dispersion in the w(q) dependence:

Koo 1
YL
w*g) = w? 1 (5.3)
L+ g
and, secondly, screening weakens the initial interaction according to the relation
1 -1

where 4 is again the screening length, the same which appeared in the Coulomb
interaction. In ITI-V compounds we get the ratio 0.8 < x/%, <1 (see, e.g.,
[25]), so that to a good approximation w(g) = w, i.e., the effect of screening in
the phonon dispersion can be neglected. Still, we are left with the modified
screened interaction (5.4) which will be used in the following derivations.

Next we have to calculate the matrix element between the initial and final
states. |k, j, N> and |k, j, N>, where N, is the number of phonons charac-

5) Estimates of scattering by the mixed-in components included in [11] are very rough
and cannot be used for comparison with effects due to the main modes.
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terized by ¢. There are two non-vanishing matrix elements of the potential

between phonon states:
(N, — 1] by [Np> = N1 for N;:Nq—l,} 5.5)
(Ng+ 1B} [Ny = (N, + 1)1 for N;=N,+1, '

corresponding to phonon absorption and emission, respectively. Using equation
(2.3) for the initial and final electron states, the matrix element is obtained in
the form

T . dme*e b3 172 1
K, § No| U |k, j, Npp = ¢ T(2NJIT¢0) 7 X
o 1
X [Ow,k+q Ni/* — 0w, k—q (Ng + 1)'7] fl'—fji'(Q) , (5.6)

1 + q2l2

where the integral over the crystal volume has been broken into the sum of
integrals over unit cells and the relation

1Y
w §1 exp[i (B —F 4 q)r,] = 0r, k+q (6.7)

has been used. Choosing as before k = (0, 0, k), which gives k 4+ q = (4-¢,,
+ ¢y, k + g5), one obtains

1 2
Iz, 12(9) = Efuziq,1/2 ug, 172 d¥rg = 1 — (b2 + 02)2—% (5.8)
9]
and
1 b _ 2 \1/2
Lo, —1p2(9) = Efu*kiq, —vj2 Uk, 17200 = £ b(g —c V2)%(1 —4q—kz) e,
. )
(5.9)

where, slightly anticipating (see (5.12)), we have put cos § = F¢/2 k for phonon
absorption and emission, respectively. Hence the transition probability for
the both processes is

Wi, kiq = wik, q) N, 3 [e(lk + ql) - 8(|kl) — % o]
and (5.10)

Wi k—q = wik, q) (N, + 1) [e ([k — q]) — &([k]) + 2],

' )_2n 4 71 e* e\? I3 Agq
wik, g T a\ Q0 2NMw(l+/12q2

The relaxation time may be introduced for the region of temperatures where
kT > ky 0, = 2 w. Then the electron energy is much larger than the phonon
energy, the collisions may be regarded as quasi-elastic, and the term % w may
be neglected in the argument of the 3-functions. Using the reasoning analogous
to that of equation (3.8), we get for any spherical energy band
1dk (¢
3le (e £ ) — o)) = 5.5 (o5 & <o 0), 5.12)

where

2
) (Lo, 1of* + [Tage, 1) - (B.11)
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where 0 is the angle between k- and q-vectors. Next the transport scattering
transition rate between k- and k’-states is to be found and summed over all
possible final states, which is equivalent to summation over q. This procedure
can be found in reference [23], giving in case of a spherical band the following
general result for the relaxation time:

2k
1V 14k . .
m—%—zm;fw(k,q)(zlvwnq a . (5.13)
0

For T > 6, there is 2 Ny 41 = 2 kT /(% w) and after the integration we obtain
1 OQMaw?® 1 de

Top.(€) =§t_———(e )2 kona-];, (5.14)
where
Fop.=A—%(4L—fL2)B+%(4—/)L20 (5.15)
with
4=1-— ? (5+1)+£+1
4 6 2
B=1— 3 § In(+1) — FEETD) (5.16)
3 9 l 3
C=1— ~f+§—2 (§+1)+52(§+1)

f and & are defined in (3.11). Replacing h o by k, 6, the final formula describing
electron mobility for polar optical scattering is
" _1 M.Q(Ic@l) 1 [de\? py
P 87 hde(e e(e*)2 ky T Fop. dk

(5.17)

Using the previous approximations (§ > 1), F,, can be simplified to the form

2 1 4\ 1 3
Fop =1~ FIn(E+1) —§(4L—fL2)(l _?)+§(4 _f)L2(1 —?).
(5.18)

As before, the terms containing L are directly due to the mixing of p-like func-
tions into the conduction band wave function, so that for very small electron
energies only the first two terms are left. £ — oo corresponds to no screening
effects. To give some idea about the numbers involved we again consider InSb
at room temperature and n = 10'? ¢cm~3. For the previously quoted values of
L and & both screening and non-parabolicity increase the theoretical value of
mobility by the factor of 3.5, as compared to the procedure taking into account
only the proper density of states (i.e. giving F,p = 1).

6. Acoustic Secattering

We shall describe scattering of electrons by acoustic phonons on the basis of
the deformable-ion model of Bloch [26]. Using the initial Hamiltonian (2.1) the

28 physica (b) 45/2
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interaction between electrons and acoustic phonons can be written as
U =3V, + (GXVSVO) -p, (6.1)

where 37V, is the change of the per10d1c potential of the crystal due to acoustic
wave propagation. In the deformable-ion model this change is assumed to be
given by

Vo=V —-Vo=—u-V V,=

h 1/2 ) )
=2 (m,) (€ae. - V Vo) (by €¥9" + b5 e~a7),  (6.2)
where u is the displacement, e;. denotes the polarization of the wave, and
m = m, + m,. The summation is over the wave vectors ¢ and the three pos-
sible polarizations » (one longitudinal and two transverse branches). Again, we
have to calculate the matrix element of U between initial and final electron and
phonon states. Using a directional derivative e, - 7 V, = 8V,/8S, and equa-
tions (2.3) and (5.5), the matrix element is obtained in the form

G N;| Ulk,j, Ny =
/3 1/2
= —q§ (m) [On, krq NI/" + O, k—q (Ng + 1)12] Ijy(q), (6.3)
where
’ 1 ov, 7}
Iy (g) = Efu:iq, i’ [_fﬁ + 4 m? ¢ ( G X V )(P + A "):| Uk, j A%ry. (6.4)

Q

We shall now transform equation (6.4) according to the well-known procedure
(11, 23]. Using the unperturbed Hamiltonian J, of equation (2.1) the last equa-
tion can be written as

, 1 8
I]]r(q) =-qu§iq’j1( S 0—'— )’Ltk i ds To > (65)
Q

where ¥ = p + (%/4 my ¢?) (6 X V V,) and (4, B) denotes the commutator. Ob-
serving that [, 4 (2/my) B - 7] wp; = [e(k) — 72 k2/(2 m,)] us; and neglecting
the value of (k) (h2)2 my) (k* — |k + q|?) as compared to
(7]m,) (q - =), equation (6.4) is finally transformed into

A2 g
570 = ey [ @V wEsar) - ) d%, (6.6

where we have approximated the operator x by p.

Regarding periodic parts of the Bloch functions, as given by (2.8), it can be
seen that there are five different non-vanishing integrals (and their cyclic equi-
valents) in the matrix element (6.6), namely

21 0X 2| 0X\? .
&g = mggf(vs)dro,el—abf(ax)dro, &g = nlon('E:’;‘)dro,
Q

Q2

p_ M1 [8X3Y faX oY

my 2 | dx dy
I
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Values of these integrals cannot be directly calculated since the explicit form
of 8-, X-, Y-, and Z-functions is not known. These values can be estimated by
considering on one end the atomic limit, i.e. taking for 8, X, ¥, and Z the hydro-
gen functions of s- and p-states, and on the other using the empty-lattice ap-
proximation. The real values of the integrals lie somewhere in between. In the
hydrogenic approximation we have ¢,/e, = 9/20 and g,/e, = 3/20, whereas in
the empty-lattice approximation /e, =~ 1 and &,/g; = 0. Due to lack of some-
thing better we shall use in the following estimations the averages of these values,
i.e. g/e, = 29/40 and &,/e, = 3/40.

Polarizations of the three phonon branches were chosen in the following way.

We denote the directional cosines of q as e. Thus q = g(e,, e,, ¢;). Hence for

the longitudinal acoustic wave there is e,l,lc_ = (e,, €5, €;). First transverse polari-

zation is chosen to be perpendicular to both q and z-directions. This gives
ell = (€3 + e2)~1/2 (—e,, €, 0). Second transverse mode must be perpendicular

to the above two. This gives for the unit polarization vector
Cic; = (¢ + )TV (—egep, —eg e, 6 + €)) .

There are six different matrix elements of equation (6.6): spin-conserving
and spin-flip transitions for the three branches. The main contribution to
acoustic scattering is given by the longitudinal spin-conserving transition,
although the others are not negligible. After choosing, as before, the initial
E-vector in the z-direction and calculating the matrix elements (6.6) it turns out
that in five cases, namely in longitudinal spin-flip and four transverse processes
there appear terms which in the spherical coordinate system depend on the
azimuthal angle ¢. In principle this fact would prevent rigorous introduction of
the relaxation time ; fortunately, however, the troublesome terms are very small.
They are proportional to L2(g, &,/e3) and L?(¢Z/e;) and so, even for the highest
achievable energies, they do not exceed the value of 0.01, which can be simply
neglected as compared to the terms of the order of unity. Furthermore, in
order to simplify the calculations we have assumed D = ¢ and E = ¢&,, which
are good approximations since the quantities involved represent the same types
of integrals.

With the above simplifications the squares of the matrix elements for the
longitudinal mode are

1 s gl 48 8 B)
]11/2,1/2(9)[ € g {a +Eo 2 +80 (C + 2
ol o PO DL Y POPIILA | IV ol ¥ L | o
4k2[80 (c T3 +€ Sty +4k4€o )/
(6.9)
1, —ip@f = 2-Lo(1 — L )pe 2 (6.10)
172, —172\Q)|" = G132 4k ’ |

where in equation (6.9), after squaring, the terms proportional to ¢, &, and &}
are to be neglected. For the transverse modes we have

2 2 2 (b b2\12
i, 12(0) 2 = 83%(1 _qu_z) [bz _% (V—;_i_ E)] ’ (6.11)

11 L. ‘e be @ (b2 b\ _

28+
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2 4 2 b° 2
llﬁz, 12(Q)F = & 4—qk§ (1 4qk2) (62 + ) (6.13)
2 \2
152 _1(q)]2 = 82q2 (1 —éq—kz) b2 e? . (6.14)

In all the above equations we have put, anticipating slightly, e; = cos 6 =
= —q/2 k for phonon absorption (see equation (5.12)). Now the scattering prob-
ability with absorption and emission of a phonon can be calculated in analogy
to equation (5.10), where now

2
wle) =2 (5 ) 5 1@ (6.15)

For acoustic phonons of small energies ol = v, ¢ and - = v, ¢, i.e., one must
make a distinction between the velocities of longitudinal and transverse modes.
It can be readily shown by standard methods that the acoustic phonon energy
in (5.10) is negligible compared to electron energies for all temperatures above
few degrees of Kelvin, so that equations (5.12) and (5.13) may be used without
any change. For the same condition there is 2 N, 4+ 1 ~ 2 kT/(% v, q). The
integration indicated in (5.13) can now be performed to give finally for the lon-
gitudinal mode (the crystal density ¢ = m N/V)

g mheie 1 de,,

tac. - k T 80 F“ dkk b (6'16)

where, to a very good approximation,

(i 5 ¢ 2
Ho=[l-n(1+ 5o+ 2a)| (6.17)
with
82 _ B2 4 2 2

@ = _27_’9 and P2 = _7'5& (6.18)

The relaxation time 7z, for both transverse modes can also be expressed by
(6.16) with v} replaced by %, and Fll.. replaced by Fi, where

17 (&
‘L == — —1 2
Fi 75 (80) L2 g, (6.19)
with
3B+ 32822 + 169"

Pp= g (6.20)

For A > ¢, there is ¢, = g, =~ p; = 1. The mobility due to all the three modes
of acoustic scattering can be defined as

Upe, = ’”’ﬂi ! (ds) k-3 (6.21)

with
v
Fue = Fil + " Fis. . (6.22)
vy
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In InSb ofj/v’, = 2.2 and at highest achievable energies the transverse modes-
contribute more than 209, to the total acoustic scattering. At these energies,
equations (6.21) and (6.22) give the theoretical values of mobility of about 3.7
times higher than those obtained by taking into account only the proper density
of states (which gives F,e, = 1).

The constant ¢, both by its definition (6.8) and its place in the formula for
mobility (6.21), plays the role of the deformation potential constant. It should
be emphasized, however, that the deformation potential method is not directly
applicable to the case considered above, since it can be used only for the electron
states describable by the decoupled band scheme of the one-band effective
mass approximation.

Another approach to acoustic scattering is usually made be means of the
rigid-ion model of Nordheim [27]. For long phonon wavelengths this model
differs from the Bloch model by a term which is of the first order in ¢. For small
electron energies, i.e. for electron states which can be described by Luttinger-
Kohn amplitudes, both procedures do not differ significantly leading only to
somewhat different definitions of the deformation potential (cf. the paper of
Pikus [28]). In our case, however, the two models lead not only to different
definitions of &,, but also to different values of other integrals in (6.7) and (6.8),
thus giving different energy dependences of the relaxation time for acoustic
scattering.

7. Piezo-Acoustie Scattering

In ITIT-V compounds this.mode is possible due to lack of inversion symmetry
and it becomes of importance at low temperatures where in pure samples it
competes with the regular acoustic scattering. It has been shown by Harrison
[29] that the two modes can be considered independently. Calculating piezo-
acoustic scattering we shall follow in general the approach of Hutson [30].

First, we have to determine the scattering potential due to piezo-effect asso-
ciated with acoustic wave deformation. In an ideal dielectric (no movable
charge) the electric induction is zero, i.e.

4neS +xE=0, (7.1)

where e is the piezo-electric tensor of the third order, § the deformation tensor
Sy = (1/2) (Ouy/0x; + Ouy/cx;), and u, as before, denotes the displacement con-
nected with the acoustic wave. Using equation (6.2) we have

) h vz Y ) .
8y = ?q,zv: (m) (€he.i @5 1 €ac.j 40) (by °9" — b e~ P97) . (7.2)
In cubic crystals of InSb type there is one non-vanishing component of the
piezo-electric tensor: ej,; = €5, = €5 = €413 = €5, = €35, = P[/2. Hence, using
equations (7.1) and (7.2) to obtain components of the electric field and next
employing the Poisson equation, we get for the unscreened perturbing potential
energy

4w Pe /2 1/2 . )
U = — K, (b, etar — b¥ e—iar .
%o .,%(2wa§) v (bge bg e ) (7:3)
with
K, = €1 ezea+e;c.2e133+e;c.sele2’ (74)

where, as before, €;., is the unit polarization vector of the acoustic wave and e
the unit vector along its propagation direction. It can be seen that U’ is strongly
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anisotropic. For instance, it vanishes for e = (1, 0, 0) for both longitudinal
and transverse modes, and for e = (1, 1, 0) for the longitudinal mode. If there
are movable carriers in the band one does not deal with a perfect dielectric and
the screening effects come into play in this long-range interaction. According
to Hutson {30] the screened piezo-acoustic interaction takes the form

’ 1 _1

In other words, the effect of screening is the same as for polar optical interaction.
The matrix element between initial and final states is

4nPe /) 1/2X
%, \2Nmaoy

Ky, Ng| U |k, §, Ny = —

X [Ow,k+q N}? — On,k—q (N, + 1)'2] K, 1 Liyq), (7.6)

P

where I; (q) are defined in (5.8) and (5.9). In principle, due to the strong aniso-
tropy of the scattering, the usual relaxation time cannot be introduced in
a rigorous way. However, following the common procedure, we shall introduce
the relaxation time averaging over the angles. Making use of w; = ¢ v,, where
v, is the sound velocity depending on the direction of propagation and the mode
in question, »} = cfp with ¢ representing an appropriate combination of elastic
constants. Following equation (5.13) and performing the integration as in the
case of polar optical scattering, the final formula for the relaxation time is
obtained in the form

1+

2 o2
1 P2g ko_T(&) dk .7)

- 3. fpa.
€ /Jov. de

Tp.a. r "g h
where Fp,, = Fop. of equation (5.18). We do not elaborate on the averaging
procedure, since it has been done by Meijer and Polder [31], Hutson [30], and
Zook [32]. In order to avoid all misunderstanding we note that equation (7.7)
was obtained by simply taking out (X,/c) in front of the integral sign, as if it
did not depend on q- or e, -directions. The electron mobility can now be defined

to give
1 ol 1 (K,\' 1 (de\? |
Yoa =g Pie A kT ( c )av‘ Fpa. (EIE) L (7-8)
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Appendix

We shall derive now an expression for the screening length 4 due to screening
by free electrons in an arbitrary spherical energy band. This quantity appears
in the long-range interactions considered above. It is not accidental that in all
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three cases (see equations (3.5), (5.4), and (7.5)) the screening in the Fourier
transforms is represented by the term [1 -+ (1/¢g% A2)]-! since this is a general
result, whose derivation requires only a slow variation of the initial potential
(see, e.g., [33]).

The Poisson equation for the self-consistent statically screened potential is

d7e
#y

Vip=

(n" — n), (A1)

where 7 is the equilibrium electron concentration and »’ is the concentration in
the presence of the potential ¢. 7’ can be calculated by adding to the electron
energy (k) the potential energy —e ¢, which is equivalent to replacing the Fermi
level £ in the distribution function f, by { + e ¢. The equilibrium concentration
in a spherical energy band is (cf. Kolodziejezak [2])

2 1
n=8—n,,ffod%=m<1>, (A2)

where, in general,
4> =f—g—£’A k3(z) dz (A 3)
0

with z = ¢/k,T. A is in general an operator (cf. Zawadzki [2]). n’ can be cal-
culated using (A 2) but replacing = {/(k,T') by n + u, where u = e ¢/(k,T).
For e ¢ < one can expand »’ in a Taylor series around n. Restricting ourselves
to the linear approximation in % and observing (upon integrating by parts) that
&1>/8n = <d/dz) one obtains equation (A 1) in the form

1
Vig=59, (A 4)
where
1 4 e /d
= (), A
A2 By kT <dz> (A5)
A being the screening length. For the nondegenerate electron gas {(d/dz) = (1)
and the well-known result (1/A2) = 4 & €2 n/(%, k,T') is obtained. For the strongly
degenerate gas n = (1/3 @%) k3(n), and upon using equation (1.1) we get
1 [3n\'34m* e
2 \n "o 12
which is again the well-known result, except that in our case the effective mass
m* depends on the Fermi level and, hence, on electron concentration.
The general result (A 5) can be specialized for the energy band described by
(2.5). The electron concentration (A 2) becomes (Kolodziejezak [34])
1 (2 m§ k,T\32
n= m(—%) °L3(n, f) (A7)

(A6)

and the screening length is now

1 2 e (2m§ kTN
= 2
T w IcoT( ” ) LE . B) (48)
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where
(o)

L, B) =f —fo F+ ) (l+282) (A9)

0

are the generalized Fermi integrals (8 = kT /s;). Their properties have been
discussed in [7]. A similar expression in terms of a series of the usual Fermiinte-
grals has been derived by Ehrenreich [9]. In InSb, at room temperature for
n = 1018 cm~3 the screening length is about 70 A and for r = 4/10 the condition
e @ <K is well satisfied.
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