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Relaxation times for elastic electron scattering in 111-V compounds of InSb type are 
calculated taking into account consistently the nonparabolic structure of the conduction 
band, both in the density of states and electron wave functions. The calculations are based 
on the Kane model of band structure, including explicitly mixing of p-like components 
into the total wave function of the conduction band. Electron scattering by charged 
impurities and heavy holes, optical phonons (polar interaction), acoustic phonons, and 
piezo-acoustic modes are considered. Screening by free electrons is included in the long- 
range interactions and shown to play an important role a t  higher electron concentrations. 
Both spin-conserving and spin-flip transitions are considered for all modes. It is demon- 
strated that transverse branches participate appreciably in acoustic scattering at high 
electron energies. In all cases, the presented calculations give much higher values of the 
theoretical mobilities for heavily doped samples than those obtained up to now taking into 
account only the proper density of states. 

Die Relaxationszeiten fur elastische Elektronenstreuung in 111-V-Verbindungen vom 
InSb-Typ werden unter konsistenter Beriicksichtigung der nichtparabolischen Struktur des 
Leitungsbandes sowohl in der Zustandsdichte als auch in der Wellenfunktion berechnet. 
Die Berechnungen beruhen auf dem Kaneschen Bandstrukturmodell, wobei explizit die 
Zumischung von p-artigen Komponenten in die Gesamtwellenfunktion des Leitungsbandes 
eingeschloasen wird. Elektronenstreuung durch geladene Defekte und schwere Locher, op- 
tische Phononen (polare Wechselwirkung), akustische Phononen und piezo-akustische Moden 
werden beriicksichtigt. In den langreichweitigen Wechselwirkungen wird Abschirmung 
durch freie Elektronen eingeschlossen und gezeigt, daI3 sie eine bedeutende Rolle bei hoheren 
Elektronenkonzentrationen spielen. Es werden sowohl spin-erhaltende als auch spin-flip- 
Ubergiinge fur alle Moden beriicksichtigt. Es wird gezeigt, daB transversale Zweige einen 
betriichtlichen Anteil an der akustischen Streuung bei hohen Elektronenenergien haben. 
I n  allen Fsllen ergeben die dargelegten Berechnungen vie1 hohere Werte der theoretischen 
Beweglichkeiten fur stark dotierte Proben als die bisher erhaltenen, die nur die richtige 
Zustandsdichte beriicksichtigen. 

1. Introduction 
Since the nonparabolic structure of the conduction band in InSb was derived 

by Kane [l], it has been realized that the non-parabolicity must strongly affect 
transport properties of small-gap materials. General formulas for various kinetic 
coefficients in terms of the relaxation time have been derived by various authors 
for a spherical nondegenerate energy band with arbitrary non-parabolicity [2]. 
It has been demonstrated among other things that the effective mass which 
enters the general transport theory is not the one given by the second derivative 

1) Exact address: Department of Semiconductor Technology, 37 Zielna Str., Warsaw. 
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of energy versus momentum, which had been in common use for parabolic 
bands, but one deals with the energy-dependent mass defined as 

1 1 de 
m* - h2 k dk' 
- - _ _  

It was also realized that the scattering itself is affected by the non-para- 
bolicity of the band. The relaxation time in case of elastic scattering is in general 
given by 

where e(e) is the density of states per unit energy and W ( E )  is the scattering 
probability. In early attempts to calculate the relaxation times for various 
scattering modes the nonparabolic character of the band was taken into account 
only via the appropriate change of the density of states, e ( e ) ,  which is deter- 
mined by the dispersion relation ~ ( k )  of the band in question. And so, for polar 
optical phonons it was done by Howarth and Sondheimer [3], for acoustic 
scattering by Radcliffe [4], for charged impurities and nonpolar optical modes by 
Barrie [5]. It turned out that the final results of these theories can be obtained 
from the corresponding formulas for a parabolic band by replacing the usual 
effective mass by the mass defined in equation (1.1). This property becomes 
clear if one notices that the density of states per unit .energy for a spherical 
band is 

1 dk 
n2 de @(&) = - k2 - . 

For a parabolic band, where E = A2 k2 / (2  mt),  this gives e(e)  = (l/n2) (mz/A2) E ,  
whereas for an arbitrary band using definition (1.1) we get e(e)  = (l/n2) (m*/AZ)k. 
Thus, both results look the same, with m t  for a parabolic band replaced by m* 
in the case of general spherical band. The above-mentioned results were sum- 
marized by Kolodziejczak and Sosnowski [el, whose procedure was subsequently 
widely used in interpretation of experimental results in small-gap semiconduc- 
tors. I n  particular, using this procedure it was possible to describe all transport 
coefficients for single scattering modes by generalized Fermi-Dirac integrals [7]. 
Recently this formalism was extensively quoted by Askerov [S]. 

However, the non-parabolicity of the band structure affects the relaxation 
time not only via the density of states but also through the scattering prob- 
ability W ( E ) .  I n  order to calculate properly the electron scattering in the non- 
parabolic band one should use not only the appropriate ~ ( k )  relation but also 
t,he electron wave functions for the region of the band in question. The first 
consistent scattering theory for the nonparabolic band structure has been 
carried out by Ehrenreich [9], who considered scattering of electrons in InSb 
by heavy holes and optical phonons (polar interaction), solving the Boltzmann 
transport equation by a variational procedure. Also Haga and Kimura [lo] 
used proper wave functions when calculating the free-carrier optical absorption 
in n-InSb. A systematic calculation of relaxation times for main scattering 
modes in the nonparabolic conduction bands of InSb-type materials, as described 
by the Kane model, has been carried out by Korenblit and Sherstobitov [ll]. 
Unfortunately, this work contains numerous errors and, having in mind wide 
applications of such a theory, we decided to recalculate this problem. Still, the 

, 
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general approach follows that of reference [ll]. A similar calculation for acoustic 
and polar scattering for lead-salt band structure has been recently done by 
Ravich and Morgovskii [12], and for charged impurity scattering in HgSe- 
type materials by Broerman [13]. 

I n  the present paper, we calculate relaxation times for the main elastic scat- 
tering mechanisms in InSb-type materials taking consistently into account the 
non-parabolic structure of the conduction band. Scattering of electrons by 
ionized impurities and heavy holes as well as by opt,ical (polar), acoustic, and 
piezo-acoustic interactions with lattice vibrations are considered. Spin-flip 
scattering and free-carrier screening effects are shown to play an important 
role in the theory. It is also demonstrated that a t  higher electron energies the 
transverse acoustic modes give appreciable contribution t o  electron scattering. 
The theory presented here has been recently used by the authors t o  describe 
transport phenomena in n-InSb [14]. It has been shown that the consistent 
calculation of scattering is necessary to explain the behaviour of various transport 
effects in a wide range of temperatures and electron concentrations. Estimating 
parameters appearing in the theory we shall mostly refer to InSb as a typical 
example of 111-V compounds. 

2. Kane’s Band Model - Eigenenergies and Eigenfnnctions 
I n  this paragraph we shortly summarize Kane’s results [l] on the conduction 

band structure of some 111-V compounds. The model holds particularly well 
for InSb due to the very narrow gap in this material, but it is believed to 
describe quite well other compounds of this group, in particular InAs and GaAs. 

The initial unperturbed Hamiltonian for an electron is 

where V,(r) is the periodic potential of the lattice and the last term represents 
the spin-orbit interaction in the standard notation. The eigenvalue problem 

20 p n k j E ( r )  = p n k j z ( r )  (2 .2)  

(2.3) 

is satisfied by the Bloch wave functions, normalized over the crystal volume V : 
112 

p n k j , ( r )  = (+) % k j , ( r )  exp ( i  k * 

Here n denotes the band (being interested in the conduction band alone we shall 
leave out the band index in the following), k is the wave vector, j E  the projection 
of the total angular momentum on the z-direction ( j  is a good quantum number 
for non-vanishing spin-orbit interaction). The eigenvalue problem (2.2) is 
solved by the k . p method expanding k-dependent Bloch amplitudes in terms 
of k-independent Luttinger-Kohn amplitudes taken at  the band’s extremum, 
i.e. a t  k = 0 in our case. In  the simplified model one takes four bands (eight 
including spin) neglecting all other bands. Thus we have at k = 0 an s-like 
conduction band (i = 1/2) separated by the energy gap E from degenerate 
light- and heavy-hole valence bands ( j  = 312) and the p-lige band ( j  = 112) 
separated from the j = 312 bands by the energy of the spin-orbit interaction A .  
The k - p Hamiltonian is diagonalized exactly for this model, without the 
usual Luttinger-Kohn canonical transformation. Apart from cg and A there is 
one more parameter in the theory: P = - (i film,) (81 ps IZ), which charac- 
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terizes the interband interaction. S,  X ,  Y, Z denote the Luttinger-Kohn 
amplitudes, which transform under the tetrahedral group like s, p,, par, and pz 
atomic wave functions, respectively. For the Bloch functions in the form (2.3) 
they are normalized to  (l/Q) (XIS) = (1/Q) (Z(Z) = 1, where the integration 
is over the volume of the unit cell, Q. The value of P remains almost constant in 
different 111-V compounds [15], whereas the value of cg /A  varies widely. 

I n  the above model the energy-wave vector relation in the conduction band 
is isotropic and can be obtained from the following equation : 

(2.4) 

where E‘ = E - A2 k2/2 m, (the zero of energy is a t  the bottom of the conduction 
band). We shall consider the energy range E < cg + (2/3) A (for higher energies 
Kane’s model is probably not applicable anyway). Moreover we neglect the 
free electron term, since the effective mass in small-gap materials is just a small 
fraction of the free electron mass. Under these assumptions equation (2.4) 
gives for the conduction band (for both spin orientations) 

E’ (E‘ + eg) (E’ + eg + A )  - k2 P2 E’ + eg + 3 A = 0 , ( ” )  

where the effective mass a t  the bottom of the bend is 

- 

mt: 3 A2eg A + eg ’ 

The effective mass, as  defined in ( l . l ) ,  becomes 

I n  order to calculate the scattering transition probability .one needs to  know 
also the periodic components of the electron Bloch functions for the same range 
of energies. Under the above assumptions they are found to  be2) 

b - c 1 / 2 k +  
2 k  

b + c 1/2k-  - R + + c S Z ) t -  1 
k k ---+ 

where k, = k, f i k, and R, = ( X  f i Y)/@and the arrows 
t.he spin-up and spin-down functions, respectively. 

and J. denote 

*) The form used in equation (2.8) can be obtained directly from reference [16] by setting 
the magnetic field strength equal to zero. 
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The total angular momentum j = 112 is quantized along the z-direction (in 
the following we suppress the subscript z). The coefficients a, b ,  and c are 

1 b2 = - Eg + & 

Eg + 2E - a E ’ 
a2 = ~ 

where 

and 

(2.10) 

Since a 5 1/10 for all values of EJA ratio, the term u E can be neglected in the 
above expressions. Hence, to a very good approximation 

(2.11) 1 b2 = - L P 2 ,  
3 

2 
c2 = 3 L y 2 ,  a 2 = 1 - L ,  

where L = + 2 E ) .  Normalization of the Bloch amplitudes (2.8) is equi- 
valent to the condition a2 + b2 + c2 = 1. It can be seen that both Bloch am- 
plitudes are not pure spin functions due to the non-vanishing spin-orbit inter- 
action (b + 0). It can also be observed that, due to the small forbidden gap, 
the p-like functions X ,  Y ,  and Z mix into the total electron wave function for 
energies away from the band edge. For smell energies this mixing is approxima- 
tely proportional to ( ~ / e ~ ) l / 2  in agreement with the complete Luttinger-Kohn 
theory which includes second-order k - p terms in the eigenenergies and first- 
order terms in the eigenfunctions [17]. Namely this fact has to be accounted 
for in a consistent theory of electron scattering, especially for the nonparabolic 
region of energies. Very close to the bottom of the band, i.e. for e < E ~ ,  there 
is a z 1, b z c z 0 and the conduction band wave function contains only the 
S-component. 

I n  several theories of scattering for the parabolic region of energies (see, e.g., 
[lS]) the perturbing scattering potential is subject to the canonical transfor- 
mation together with the initial Hamiltonian (2.1) in order t o  arrive a t  the 
decoupled one-band effective mass approximation. It should be emphasized 
that, using Bloch functions of equations (2.3) and (2.8) for the calculation of 
scattering, no such transformation of the scattering potential is necessary since, 
within the adopted model, the Bloch functions (2.3) are exact solutions of the 
unperturbed Hamiltonian and they were obtained without any canonical trans- 
formation. Just like in the regular Luttinger-Kohn procedure one has to worry 
about the interband matrix elements of the perturbing potential with the band 
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in question ; in our case we have to worry about interband elements between 
8-band set and all other bands, but these are clearly of no importance in scat- 
tering problems. 

When calculating matrix elements of perturbing potentials we shall deal with 
integrals over the crystal volume of slowly varying envelope functions y and 
quickly varying periodic amplitudes u. According to common procedure these 
integrals will be broken into 

/ v ( r )  U(T) d3r = - v(r)  d3r ~ ( r )  d3r0 . 
V v- V R s (2.12) 

Transition probabilities for all scattering modes are calculated in the first Born 
approximation. 

3. Charged Impurity Scattering 
We shall consider electron scattering by the screened Coulomb potential of 

a single ion: 
e2 

xo 
~ ( r )  = ~ exp (- f )  , (3.1) 

where xo is the static dielectric constant and A the screening length (see Appen- 
dix). We have to calculate the matrix elements of this potential between initial 
and final electron states. Since in the Bloch amplitudes of (2.8) the spin variables 
are mixed with the coordinate variables, the spin-flip scattering transitions are 
also possible. There are four matrix elements 

k ,  j ’  denoting a final electron state. Following equation (2.12) we shall break 
this integral into two, since the scattering potential extends over many unit 
cells. The initial k-vector is taken along the z-dire~tion.~) The resulting scalar 
product of appropriate Bloch amplitudes gives 

(W, U lk, i) = [a2 + (b2 + c2) cos 131 U (Ik’ - k J )  , (3.3) 

sin I3 eip U (lk’ - kl) , (3.4) 

where 0 and p are the polar angles of k’ in the spherical coordinate system with 
k-direction taken as the polar axis. The slowly varying part is just the standard 
Fourier transform of the screened Coulomb potential, 

U (Ik’ - kl) = [4 k2 x0 
(3.5) 

where we have put k = k (see equation (3.8)). The matrix elements with the 
initial value of j z  = -112 are just the complex conjugates of those given by 

s, As demonstrated recently by Vassel et al. [19] this choice does not affect the generality 
of considerations. 
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equations (3.3) and (3.4). Thus the transition probability from either j z  = 112 
or j z  = -1/2 state is 

W ( k ,  k’) = z2(!(k, h $I U lk, ;)[ + l(k’, - U lk, i ) l a ) 8  [s(k’) - ~ ( k ) ]  = 

+ 6 [ ~ ( k ’ )  - ~ ( k ) ]  x 

- 4 (1 - a2) x 1 
(3.6) 

where the %function indicates that the scattering is elastic. The total scattering 
probability is obtained by averaging over the initial states and summing over 
all possible final states. Since, as we have already observed, the scattering prob- 
ability from j z  = 112 state is equal to that froin j z  = -112, the average over 
the two initial states is equivalent to using just equation (3.6) without any 
change. In  order to calculate the transport scattering transition rate, which is 
related to the relaxation time, the occupation factors should be introduced in 
the standard way and one arrives at  the following expression for the inverse 
relaxation time4) : 

W ( k ,  Ic’) (1 - cos 0 )  d3k’ , (3.7) 

where N is a number of charged ions in the volume V. We observe that 

1 
- = N 2 wp, ~c’) (1 - 
t (k )  k 

e)  = - 

(3.8) 
dk 
d E  

8 [~(k’) - ~ ( k ) ]  = -8 (k’ - k) 

which is, of course, directly related to the density of states (1.3). Hence, in the 
spherical coordinate system the only nontrivial integration is over 8. The final 
result is 

(3.9) 
1 xz h 1 ds 

2 n e4 N, Fimp. dk Timp.(&) = k2 , 

where Ni = N / V  is the concentration of charged ions. Fiimp. is given by 
E 1 2 

E f l  5 

E ( E + 1 )  ’ 

Timp. ( t ,  L )  = ln (5 + 1) - ~ - (4 L - f ~ 2 )  [ 1 + - - 

] (3.10) 

4, There is some confusion in the solid state literature concerning this point (partly 
due to following the methods of nuclear physics which uses for Coulomb scattering the 
concept of cross section rather than the relaxation time). The number of final electron 
states is (2/8 nS) dsk‘. However, in the parabolic region of energies, where no spin-flip 
transitions occur, there is an additional selection rule, usually not written down explicitly, 
namely the spin conservation, which reduces the number of possible final states by one half. 
In  our case both final spin states are taken into account by the summation of mhtrix 
.elements squared in (3.6). 
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where 

5 = (2 k A ) 2  and f = B' - (16 y2 - 8 B Y  + B') (3.11) 

and L, 8, and y are defined in equations (2.10) and (2.11). For A > E ~ ,  f = 1. 
In  InSb where E~ = 0.2 eV and A x 0.8 eV, f = 0.8. For small electron energies, 
i.e. for E < .sg, L x 0 and only the first two terms are left in (3.10). This repre- 
sents the well-known result for a parabolic band. I n  the nonparabolic region 
of energies, i.e. for higher electron concentrations, l >  1 (in InSb a t  room tem- 
perature it varies from 5 = 20 for intrinsic samples to  6 x 30 for n x l O l S  ~ m - ~ ) .  
Hence, to a good approximation equation (3.10) may be simplified to  the fol- 
lowing form : 

9 

( 3 1 
+ 2 L 2 ( 4 - j )  1 - - .  (3.12) 

I n  InSb a t  n x 10le L x 0.4 and the last two terms resulting from the 
mixing of p-like functions reduce the value of Elimp. by about 30% increasing 
by the same proportion the corresponding mobility. No screening corresponds 
to  il + co, i.e. 6 --f 00, which gives t i m p .  + 0, a well-known'result for the un- 
screened Coulomb potential. 

Defining electron mobility with the use of the effective mass (l . l) ,  we have 
finally 

(3.13) 

The above formula can also be applied to  the scattering of electrons by heavy 
holes, with xo replaced by zoo. In  111-V compounds the two dielectric constants 
differ only slightly and it is possible to  describe both scattering mechanisms by 
equation (3.13) with appropriate concentration of scattering centres. 

4. Lattice Scattering - General 
In  111-V compounds which have two different ions in a unit cell and no 

inversion symmetry, an  electron can interact with lattice vibrations in a number 
of different ways. Of these we shall consider three modes of main importance, 
but it is useful to  bear in mind the neglected interactions and simplifying as- 
sumptions. First, we assume that all longitudinal and transverse modes can 
be exactly decoupled, which is usually true only for propagation directions along 
the main crystal axes. Secondly, for acoustic modes the transverse and longi- 
tudinal sound velocities will be considered independent of the propagation 
direction. In  the lattice with two atoms per unit cell the lattice waves have 
neither pure optical nor acoustic branches. The acoustic branch has an admix- 
ture of optical displacement and vice versa. I n  particular in acoustic wave, due 
to  the small phase difference for the two ions within one cell, there appears 
a non-vanishing dipole moment which in principle gives rise to  the polar inter- 
action with electrons. The admixing modes are of higher order in the a q expan- 
sion for long wavelengths (a lattice constant), and they will be neglected com- 
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pared to the main modes.6) The optical lattice wave can interact with electrons 
in two ways: via the polar interaction considered below and via the nonpolar 
interaction, similar to that in mono-atomic crystals. We do not consider the 
latter as it is believed to be much less important in polar crystals than the polar 
interaction, although, to our knowledge, the detailed discussion of this problem 
has not been carried out. We employ static screening by free electrons for the 
long-range interactions. The limitations of this approach are discussed for 
polar optical mode by Ehrenreich [20] and for piezo-acoustic mode by Hutson 
and White [21]. 

6. Polar Optical Scattering 
Again, the first thing is to establish the form of the perturbing potential. We 

do not quote the derivation of the Frohlich Hamiltonian for the polar inter- 
action between electrons and optical phonons, as it is rather standard (see, e.g., 
[22] and [23]). The final expression for the unscreened perturbing potential in 
the continuum approximation is 

where q is the phonon wave vector, w the frequency of longitudinal phonons, 
N the number of unit cells in the volume V ,  M the reduced mass of the ions 
(1/M = l/m, + l/m2), and e* is the effective ionic charge defined, according to 
Callen [24], as 

(5.2) 
QMwZ 

(e*)2 = 4 n  ($-$)* 
where xW and X, are the high-frequency and the static dielectric constants, 
respectively. Only the longitudinal branch of optical phonons couples to the 
electron motion in this approximation. According to Ehrenreich [20] the screen- 
ing of the initial interaction (5.1) by other free carriers in the band introduces 
two effects. First, there appears the following dispersion in the w(q) dependence: 

and, secondly, screening weakens the initial interaction according to the relation 

where 1 is again the screening length, the same which appeared in the Coulomb 
interaction. In 111-V compounds we get the ratio 0.8 < xw/xo < 1 (see, e.g., 
[25]), so that to a good approximation o ( q )  x w ,  i.e., the effect of screening in 
the phonon dispersion can be neglected. Still, we are left with the modified 
screened interaction (5.4) which wil l  be used in the following derivations. 

Next we have to calculate the matrix element between the initial and final 
states Ik, j ,  N,)  and Ik, j ' ,  N i ) ,  where N, is the number of phonons charac- 

5 ,  Estimates of scattering by the mixed-in components included in [ll] are very rough 
and cannot be used for comparison with effects due to the main modes. 
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terized by q. There are two non-vanishing matrix elements of the potential 
between phonon states 1 

( N ,  - I [  b, IN,) = N;/? for N; = N , - 1 ,  
( N ,  + 11 b: IN,) = (N, + l ) ’ j 2  for Ni = N, + 1 ,  

corresponding to  phonon absorption and emission, respectively. Using equation 
(2.3) for the initial and final electron states, the matrix element is obtained in 
the form 

4 n e * e (  A - x  
(k ‘ ,  j’, Nil U Ik, j ,  N,) = i ~ ~~ - ~- SZ 2 N M u  

where the integral over the crystal volume has been broken into the sum of 
integrals over unit cells and the relation 

1 s  
- 2 exp [i (k - 12‘ -l q )  r,] = d W , k f q  N n = l  

(5.7) 

has been used. Choosing as before k = (0, 0, k), which gives k f q = (&ql, 
& q2, k & q3), one obtains 

R 

(5.9) 
where, slightly anticipat,ing (see (5.12)), we have put cos 8 = F q / 2  k for phonon 
absorption and emission, respectively. Hence the transition probability for 
the both processes is 

and 

where 

(5.10) I wk,  k +q = w ( k  4 )  N ,  8 [& (112 + 4)  - + I )  - A W I  

W k , k - q  = w(k, a) ( N q  + l )  6 [& ( I k  - ql) - E ( l k l )  f w1 3 

The relaxation time may be introduced for the region of temperatures where 
koT > k, = A w. Then the electron energy is much larger than the phonon 
energy, the collisions may be regarded as quasi-elastic, and the term A w may 
be neglected in the argument of the %functions. Using the reasoning analogous 
to  that of equation (3.8), we get for any spherical energy band 

6 [E  (Ik f ql) - ~ ( ( k l ) ]  = (5.12) 
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where 0 is the angle between k- and q-vectors. Next the transport scattering 
transition rate between k- and k’-states is to be found and summed over all 
possible final states, which is equivalent to summation over q. This procedure 
can be found in reference [23], giving in case of a spherical band the following 
general result for the relaxation time : 

(5.13) 

0 

For T > O1 there is 2 N, + 1 x 2 lcoT/(h w )  and after the integration we obtain 
1 f 2 M h w 2  1 ds 

zop.(s) = (e e*)z koT a’ (5.14) 

where 
1 1 F , . = A  - - ( 4 L - / L ’ ) B +  - ( 4 - / ) L ’ C  

2 3 (5.15) 

with 

I 4 6  2 
E E2 I E ( E + l ) ’  

B = 1 - - + - In (5 + 1) - (5.16) 

I 3 9 12 3 
E E2 t3 t2 ( E  + 1) ’ J C = 1 -- + - --In (t + 1) + 

f and 6 are defined in (3.11). Replacing h w by k, O1 the final formula describing 
electron mobility for polar optical scattering is 

(5.17) 

Using the previous approximations (6 > I ) ,  Fop. can be simplified to the form 

2 1 
F o p . = 1 - - l n ( ~ + l ) - - ( 4 L - ~ f ~ )  5 2 

(5.18) 
As before, the terms containing L are directly due to the mixing of p-like func- 
tions into the conduction band wave function, so that for very small electron 
energies only the first two terms are left. 6 .+ co corresponds to no screening 
effects. To give some idea about the numbers involved we again consider InSb 
a t  room temperature and n = l O l Q  cm-3. For the previously quoted values of 
L and E both screening and non-parabolicity increase the theoretical value of 
mobility by the factor of 3.5, as compared to the procedure taking into account 
only the proper density of states (i.e. giving Fop. = 1). 

6. Acoustic Scattering 
We shall describe scattering of electrons by acoustic phonons on the basis of 

the deformable-ion model of Bloch [26]. Using the initial Hamiltonian (2.1) the 
28 physica (b) 45/2 
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interaction between electrons and acoustic phonons can be written as 

where SV, is the change of the periodic potential of the crystal due to acoustic 
wave propagation. I n  the deformable-ion model this change is assumed to be 
given by 
sv, = v - v, = -?C * v V, = 

where ti is the displacement, elc. denotes the polarization of the wave, and 
n z  = m1 + m,. The summation is over the wave vectors y and the three pos- 
sible polarizakons v (one longitudinal and two transverse branches). Again, we 
have to  calculate the matrix element of U between initial and final electron and 
phonon states. Using a directional derivative e&. . v Vo = aV0/aS, and equa- 
tions (2.3) and (5.5),  the matrix element is obtained in the form 
(li’, j’, Nil U Ik, j, NP) = 

where 

Wc shall now transform equation (6.4) according to the well-known procedure 
[ll, 231. Using the unperturbed Hamiltonian X, of equation (2.1) the last equa- 
tion can be written as 

where =t = p + (h/4 m, c2) (a x v V,) and ( A ,  B)  denotes the commutator. Ob- 
serving that [X, + (h/mO) k - 323 u k j  = [~(k) - it2 k2/(2 m,)] u k j  and neglecting 
the value of ~ ( k )  - ~ ( l k  + yl) - (h2/2 m,) (k2 - Ik + y12) as compared to  
(h/nt,) (y - x ) ,  equation (6.4) is finally transformed into 

where we have approximated the operator z by p .  
Regarding periodic parts of the Bloch functions, as  given by (2.8), it can be 

seen that there are five different non-vanishing integrals (and their cyclic equi- 
valents) in the matrix element (6.6), namely 

16.7) 
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Values of these integrals cannot be directly calculated since the explicit form 
of S-, X - ,  Y - ,  and Z-functions is not known. These values can be estimated by 
considering on one end the atomic limit, i.e. taking for S ,  X ,  Y ,  and Z the hydro- 
gen functions of s- and p-states, and on the other using the empty-lattice ap- 
proximation. The real values of the integrals lie somewhere in between. In the 
hydrogenic approximation we have El/eo = 9/20 and E2/E,, = 3/20, whereas in 
the empty-lattice approximation q / E o  = 1 and e2/E0 = 0. Due to lack of some- 
thing better we shall use in the following estimations the averages of these values, 
i.e. El/Eo = 29/40 and E2/E0 = 3/40. 

Polarizations of the three phonon branches were chosen in the following way. 
We denote the directional cosines of q as e. Thus q = q(el ,  e2,  %). Hence for 
the longitudinal acoustic wave there is eA\. = (s, e2, e3). First transverse polari- 
zation is chosen to be perpendicular to both q and z-directions. This gives 
eh: = (e: + ei)-1/2 ( -e2,.%, 0). Second transverse mode must be perpendicular 
to  the above two. This gives for the unit polarization vector 

ek2 = (e; + ei)-1/2 (-e3 el ,  -e3 e2, e: + e:) . 
There are six different matrix elements of equation (6.6) : spin-conserving 

and spin-flip transitions for the three branches. The main contribution to  
acoustic scattering is given by the longitudinal spin-conserving transition, 
although the others are not negligible. After choosing, as before, the initial 
k-vector in the z-direction and calculating the matrix elements (6.6) it turns out 
that in five cases, namely in longitudinal spin-flip and four transverse processes 
there appear terms which in the spherical coordinate system depend on the 
azimuthal angle q. I n  principle this fact would prevent rigorous introduction of 
the relaxation time ; fortunately, however, the troublesome terms are very small. 
They are proportional to L2(&, E2/.$) and L 2 ( ~ i / ~ i )  and so, even for the highest 
achievable energies, they do not exceed the value of 0.01, which can be simply 
neglected as compared to the terms of the order of unity. Furthermore, in 
order to simplify the calculations we have assumed D = E~ and E = E ~ ,  which 
are good approximations since the quantities involved represent the same types 
of integrals. 

With the above simplifications the squares of the matrix elements for the 
longitudinal mode are 

(6.9) 
(6.10) 

where in equation (6.9), after squaring, the terms proportional to el 
are to be neglected. For the transverse modes we have 

and 

(6.11) 
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(6.13) 

(6.14) 

In  all the above equations we have put, anticipating slightly, e3 = cos 0 = 
= -q/2 k for phonon absorption (see equation (5.12)). Now the scattering prob- 
ability with absorption and emission of a phonon can be calculated in analogy 
to  equation (5.10), where now 

(6.15) 

For acoustic phonons of small energies w j  = v!l q and = v 1  q, i.e., one must 
make a distinction between the velocities of longitudinal and transverse modes. 
It can be readily shown by standard methods that the acoustic phonon energy 
in (5.10) is negligible compared to  electron energies for all temperatures above 
few degrees of Kelvin, so that equations (5.12) and (5.13) may be used without 
any change. For the same condition there is 2 N ,  + 1 x 2 k,T/(h v, q).  The 
integration indicated in (5.13) can now be performed to  give finally for the lon- 
gitudinal mode (the crystal density e = m N I V )  

where, to a very good approximation, 

with 
8 y2 - p2 4 y2 + B2 

5 .  ‘p1= 7 and y2 = 

(6.16) 

(6.17) 

(6.18) 

The relaxation time & for both transverse modes can also be expressed by 
(6.16) with wi replaced by wi, and F!L. replaced by FL,,  where 

with 
3 p4 + 32 B2 y2 + 16 y4 

~ 

51 P3 = 

(6.19) 

(6.20) 

For d > eg there is rpl = tp2 x rp? x 1. The mobility due t o  all the three modes 
of acoustic scattering can be defined as 

(6.21) 

(6.22) 
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I n  InSb v ( /v i  z 2.2 and at  highest achievable energies the transverse modes 
contribute more than 20% to the total acoustic scattering. At these energies, 
equations (6.21) and (6.22) give the theoretical values of mobility of about 3.7 
times higher than those obtained by taking into account only the proper density 
of states (which gives Fat. = 1) .  

The constant go, both by its definition (6.8) and its place in the formula for 
mobility (6.21), plays the role of the deformation potential constant. It should 
be emphasized, however, that the deformation potential method is not directly 
applicable to the case considered above, since it can be used only for the electron 
states describable by the decoupled band scheme of the one-band effective 
mass approximation. 

Another approach to acoustic scattering is usually made be means of the 
rigid-ion model of Nordheim [27]. For long phonon wavelengths this model 
differs from the Bloch model by a term which is of the first order in q. For small 
electron energies, i.e. for electron states which can be described by Luttinger- 
Kohn amplitudes, both procedures do not differ significantly leading only to 
somewhat different definitions of the deformation potential (cf. the paper of 
Pikus [28]). I n  our case, however, the two models lead not only to  different 
definitions of E ~ ,  but also to different values of other integrals in (6.7) and ( 6 4 ,  
thus giving different energy dependences of the relaxation time for acoustic 
scattering. 

7. Piezo-Acoustic Scattering 
I n  111-V compounds this.mode is possible due to lack of inversion symmetry 

and it becomes of importance at low temperatures where in pure samples it 
competes with the regular acoustic scattering. It has been shown by Harrison 
[29] that the two modes can be considered independently. Calculating piezo- 
acoustic scattering we shall follow in general the approach of Hutson [30]. 

First, we have to determine the scattering potential due to piezo-effect asso- 
ciated with acoustic wave deformation. I n  an ideal dielectric (no movable 
charge) the electric induction is zero, i.e. 

4 n e S + x o E = 0 ,  (7.1) 
where e is the piezo-electric tensor of the third order, S the deformation tensor 
St, = (112) (aut/8x, + au,/i?x,), and u, as before, denotes the displacement con- 
nected with the acoustic wave. Using equation (6.2) we have 

I n  cubic crystals of InSb type there is one non-vanishing component of the 
piezo-electric tensor: = e13, = eml = e,,, = g,, = g,, = P/2. Hence, using 
equations (7.1) and (7.2) to obtain components of the electric field and next 
employing the Poisson equation, we get for the unscreened perturbing potential 
energv 

with 

where, as before, e:c. is the unit polarization vector of the acoustic wave and e 
the unit vector along its propagation direction. It can be seen that U' is strongly 

K" = eLc. 1 e2 g + eL. 2 e, g + eLc. 3 e, e2 9 (7.4) 
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anisotropic. For instance, it vanishes for e = (1, 0, 0) for both longitudinal 
and transverse modes, and for e = (1, 1 , O )  for the longitudinal mode. If there 
are movable carriers in the band one does not deal with a perfect dielectric and 
the screening effects come into play in this long-range interaction. According 
to Hutson [30] the screened piezo-acoustic interaction takes the form 

U = U l + -  ( ,ql . (7.5) 

In  otherwords, the effect of screening is the same as for polar optical interaction. 
The matrix element between initial and final states is 

where Ijr(q) are defined in (5.8) and (5.9). I n  principle, due to the strong aniso- 
tropy of the scattering, the usual relaxation time cannot be introduced in 
a rigorous way. However, following the common procedure, we shall introduce 
the relaxation time averaging over the angles. Making use of o; = q v,, where 
v, is the sound velocity depending on the direction of propagation and the mode 
in question, v; = c/e with c representing an appropriate combination of elastic 
constants. Following equation (5.13) and performing the integration as in the 
case of polar optical scattering, the final formula for the relaxation time is 
obtained in the form 

(7.7) 

where Fp.a. = Fop. of equation (5.18). We do not elaborate on the averaging 
procedure, since it has been done by Meijer and Polder 1311, Hutson [30], and 
Zook [32]. I n  order to avoid all misunderstanding we note that equation (7.7) 
was obtained by simply taking out (K, /c)  in front of the integral sign, as if it 
did not depend on q- or e:,.-directions. The electron mobility can now be defined 
to give 
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Appendix 
We shall derive now an expression for the screening length il due to screening 

by free electrons in an arbitrary spherical energy band. This quantity appears 
in the long-range interactions considered above. It is not accidental that in all 
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three cases (see equations (3.5), (5.4), and (7.5)) the screening in the Fourier 
transforms is represented by the term [l + (l/q2i12)]-l since this is a general 
result, whose derivation requires only a slow variation of the initial potential 
(see, e.g., [33]). 

The Poisson equation for the self-consistent statically screened potential is 

where n is the equilibrium electron concentration and n' is the concentration in 
the presence of the potential q. n' can be calculated by adding to the electron 
energy E(k) the potential energy -e pl, which is equivalent to  replacing the Fermi 
level 5 in the distribution function fo by 5 + e q. The equilibrium concentration 
in a spherical energy band is (cf. Kolodziejczak [2]) 

where, in general, 

1 
fo d3k = - <I> Y 

2 
n=- /' 

8 n3 3 n 2  
J 

m .. 

( A )  = 1 - 2. P ( z )  dz 

0 

with z = E/kOT. A is in general an operator (cf. Zawadzki [2]). n' can be cal- 
culated using (A 2) but replacing 7 = 5/(koT) by 7 + u, where u = e q/ (koT) .  
For e q < 5 one can expand n' in a Taylor series around n. Restricting ourselves 
to the linear approximation in u and observing (upon integrating by parts) that 
a<l)/aq = (d/dz) one obtains equation (A 1) in the form 

where 

il being the screening length. For the nondegenerate electron gas (dldz) = (1) 
and the well-known result (l/AZ) = 4 n e2 n/(xo koT) is obtained. For the strongly 
degenerate gas n = (1/3 n2) k3(7), and upon usmg equation (1.1) we get 

1 3 n l /34m* e2 s=(x) TQF 
which is again the well-known result, except that in our case the effective mass 
m* depends on the Fermi level and, hence, on electron concentration. 

The general result (A 5 )  can be specialized for the energy band described by 
(2.5). The electron concentration (A 2) becomes (Kolodziejczak [34]) 

and the screening length is now 
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where 

(A 9) 8fo 'LkA(q, j3) = - F; z (Z + /3 z2 ) !  (1 + 2 j3 z)" dz 
0 i 

are the generalized Fermi integrals (/3 = k,,T/eg). Their properties have been 
discussed in [7]. A similar expression in terms of a series of the usual Fermiinte- 
grals has been derived by Ehrenreich [9]. I n  InSb, a t  room temperature for 
n = 10ls ~ m - ~  the screening length is about 70 A and for r 2 2/10 the condition 
e qj < 5 is well satisfied. 

References 

[l] E. 0. KANE, J. Phys. Chem. Solids 1, 249 (1957). 
[2] R. BARRIE and J. T. EDMOND, J. Electronics 1, 161 (1955). 

J. KOL~DZIEJCZAK, Acta phys. Polon. 20, 379 (1961); 21, 637 (1962). 
W. ZAWADZKI, phys. stat. sol. 2, 385 (1962); 3, 1006 (1963). 

[3] D. J. HOWARTH and E. H. SONDHEIMER, Proc. Roy. SOC. A219, 53 (1953). 
[4] J. M. RADCLIFFE, Proc. Phys. SOC. A68, 675 (1955). 
[5] R. BARRIE, Proc. Phys. SOC. B69, 553 (1956). 
[6] J. KOL~DZIEJCZAK and L. SOSNOWSKI, Acta phys. Polon. 21, 399 (1962). 
[7] W. ZAWADZKI, R. KOWALCZYK, and J. KOZDDZIEJCZAK, phys. stat. sol. 10,513 (1965). 
[8] B. M. ASKEROV, Kinetic Effects in Semiconductors, Izd. Nauka, Leningrad 1970 (in 

[9] H. EHRENREICH, J. Phys. Cem. Solids 2, 131 (1957). 
Russian). 

[lo] E. HAUA and H. KIMURA, J. Phys. SOC. Japan 18,777 (1963). 
[ll] L. L. KORENBLIT and V. E. SIIERSTOBITOV, Fiz. Tekh. Poluprov. 2, 675 (1968). 
[12] Yn. I. RAVICH and L. YA. MORQOVSKII, Fiz. Tekh. Poluprov. 3, 1528 (1969). 
[13] J. G. BROERMAN, Phys. Rev. 183, 754 (1969). 
[14] W. ZAWADZKI and W. SZYMA~SKA,  J. Phys. Chem. Solids (in the press). 
[15] H. EERENREICH, J. appl. Phys. Suppl. 32, 2155 (1961). 
[16] R. BOWERS and Y. YAFET, Phys. Rev. 115, 1165 (1959). 
[17] J. M. LUTTINQER and W. KOHN, Phys. Rev. 97,869 (1955). 
[18] G. L. BIR and G. E. PIKUS, Fiz. tverd. Tela 3, 3050 (1961). 

[19] M. 0. VASSEL, A. K. GANUULY, and E. M. CONWELL, Phys. Rev. B 2, 948 (1970). 
[20] H. EERENREICH, J. Phys. Chem. Solids 9, 129 (1959). 
[21] A. R. HUTSON and D. L. WHITE, J. appl. Phys. %3,40 (1962). 
[22] J. M. ZIMAN, Electrons and Phonons, Clarendon Press, Oxford 1960. 
[23] A. I. ANSELM, Introduction to the Theory of Semiconductors, GIFML, Moscow 1962 

[241 H. B. CALLEN, Phys. Rev. 76,1394 (1949). 
[25] 0. MADELUNG, Physics of 111-V Compounds, Wiley, New York 1964. 
[26] F. BLOCH, Z. Phys. 62, 655 (1928). 
[27] L. NORDHEIM, Ann. Phys. (Germany) (5) 9, 607 (1931). 
[ZS] G. E. Pmns, Zh. tekh. Fiz. 28, 2390 (1958). 
[29] W. A. HARRISON, Phys. Rev. 101,903 (1956). 
[30] A. R. HUTSON, J. appl. Phys. Suppl. 32, 2287 (1961). 
1311 H. J. G. MEIJER and D. POLDER, Physica (Utrecht) 19, 255 (1953). 
[32] J. ZOOK, Phys. Rev. 136, A869 (1964). 
[33] J. M. ZIMAN, Principles of the Theory of Solids, Cambridge University Press, 1964. 
[34] J. KOLODZIEJCZAK, Acta phys. Polon. 20, 289 (1961). 

S. T. PAVLOV and Yn. A. Fmsov, Fiz. tverd. Tela 7, 2634 (1967). 

(in Russian). 

(Received January 28, 19Yl) 


