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Free vibration of circular plates of arbitrary thickness is investigated using the method of initial functions. 
State-space approach is used to derive the governing equations of the above method. The formulation is 
such that theories of any desired order can be obtained by deleting higher terms in the infinite-order 
differential equations. Numerical results are obtained for flexural and extensional vibration of circular 
plates. Results are also computed using Mindlin's theory and they are in agreement with the present 
analysis. 

PACS numbers: 43.40.Dx 

LIST OF SYMBOLS 

a radius of the plate 
2h thickness of the plate 
u, w displacements in r, z directions 
E modulus of elasticity 
G modulus of rigidity 
T depth radius ratio (= 2h/a) 

o/az 

mass density 
Poisson'.s ratio 

direct stresses 

shear stress 

eigenvalue of square matrix 
frequency of harmonic vibration 
frequency parameter [= wa(p/G) 112] 

INTRODUCTION 

The thin plate theory has been extensively used for 
the static and dynamic analysis of plates. Due to the 
approximations inherent in its derivation, this theory 
cannot be applied to thick plates. Mindlin • gave a rigor- 
ous theory of plates which includes the effect of shear 
deformation and rotatory inertia in addition to flexure 
and transverse inertia. Deresiewicz and Mindlin'. used 
this theory for the axially symmetric vibration of cir- 
cular disk with free edge. Deresiewicz a solved the sym- 
metric flexural vibration of clamped circular disk. 
Kane and Mindlin 4 gave a theory for the high-frequency 
extensional vibration of circular plates. Kalnins and 
Dym 'q have given a brief review of the above investiga- 
tions. Reismann 6 and Reismann and Greene ? used 
Mindiin's theory for the study of the dynamic response 
of circular and annular plates with clamped edges. 

Vlasov a proposed the method of initial functions (MIF) 
for elastostatic problems in rectangular region. By the 
application of this method, the three-dimensional prob- 
lem is reduced to a two-dimensional one and the re- 

suiting differential equation is independent of the thick- 
ness coordinate.. Iyengar and Raman s and Rao and Das xø 
extended this method for three-dimensional elastody- 
namic problems. Iyengar and Raman n used the state- 
space approach for studying the vibrations of rectangu- 

ß tar beams of arbitrary depth. In the present paper the 
same approach is used for deriving the governing equa- 
tions of the MIF in the axisymmetric vibration of cir- 
cular plates. The method is used to calculate the nat- 
ural frequencies of flexural and extensional vibration 

of circular plates. The results computed using the 
Mindiin's theory, thin-plate theory, and Kane-Mindlin 
theory are also given for comparison. 

I. FORMULATION 

For an elastic body without body forces, the eqtQ- 
librium equations and stress displacement relations in 
the axisymmetric ease are 

a•r arr• (qr - %) P a•'u 
-+ r = a-? r' 

arr, 0% r•, pO2w (1) Or +•-+•-= at" ' 

[ __•g)][ Ou /u aw\l ør= +7]J , 

Let 

2G 

+ ß (2) 

a)On leave from M. A. College of Technology, Bhopal 462007, 
India. 

Eliminating % and % between Eqs. (1) and (2) the fol- 
lowing basic equations are obtained: 
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= - [{•/(1- •)](• + 1/,,) 
o 

[•,/(1-- •)](½ - 1/, •) + ½- 

-a 0 

0 (1 - 2p)/2(1 - •) 

•2 0 

o - •/(• - •)]•, 

(4) 

Let Y denote the state vector 

[uwzxF . 

Equation (4) can be written as 

d/dz [¾] = [A] [¾]. (5) 

The integration of this differential equation yields 

[Y] = exp(z -A) Y(0), (6) 
where Y(0) correspond to Y at z = 0. The exponential 
matrix is the transfer matrix that maps the initial state 
vector into the field. The chazacteristic equation of 
the determinant associated with the matrix 

{½+7 s - [(1 - 2•)/2(1 - •)1 ½}[n"+• s - ½1--0. (7) 
The roots are 

q=*io•, -+i•, (8) 
where 

5, 

5,_ = (• - •,-), •s. (9) 
Using Cayley Hamilton theorem we can write 

exp(zA) = aoI + a 1A + a s A s + am A s ß (10) 
Equation (10) must also be satisfied by the eigenvalues 

of the matrix A. Hence 

exp(zQ ) =aO+alq • aaQ'- +a;Q • - (11) 
Substituting the roots of Eq. (8) into Eq. (11) and solv- 
ing, the following values are obtained for a0, 
and 

a o = [2(• -- •)/½1 [5• cosz•, - 5• coszS,], 

•, = [2(1 - •)/½] [5•(si•5,)/5,- 5•(si,,z51)/51], 

a s = [2(1 - p)/•*] [cosz5 s - coszS,] , 

%=[2(1 - p)/ia] [(sinzS,)/Se - (sinzS,)/5,] . (12) 

Substituting these values in Eq. (10) the transfer ma- 
trix [L] is obtained. From Eq. (6) we get 

Z l V" ' .3, 
where Uo, W o, Zo, and X0 are all initial unknown func- 
tions in the plane z =0. The coefficients Ln• L• etc., 
of the transfer marix have the following values: 

Lu = Ll4 = (1/f i) [2• cosz51- (2•- •'-) cosz52] , 
L,2 = - (a/f •) [(2½ - •) (si•Si)/Si 

- •(•- ½) (si•)/•], 

r. = (•/½) [f(si•)/• - (•- ½) (si•5•)/•], 
La = - (z/f •) [25• si•5• - (2• - f •) (si•5•/5•], 
•= = • = - (1/• •) [(• - •) eoszS• - 2½ eoszs•], 
r• = - (1/½) [5, si• •, -•(si•5•/5•], 
L•, = (•/f•) [cos•5, - cos•5•], 
• =- [2(2• - ½)•/½] [cos•5, - cos•5•], 

- 47(? - ½) (s•)/•), 

L•, =- (•/½) [(2• - ½) (si•O,)/•, - 2(• - f•) (si•5•)/sJ, 
• = - (1/½) [4• 5, s•5, - (4• •]+ ½) (si•5•)/•], 
L• = - [2(2• - •a)a/i •] ]co•Sx - cos•5•], 
L• = - (a/•) [25x si•Sx - (2• - •2) (si•5•)/5• . (14) 

II. APPLICATION 

A. Pl•e mubi• 1o antisvmmetri•l Io•ino 

T• z =0 as the reference pl•e, became of •ti- 
sym•t• in 1oa• (Fig. 1), 

On the pl•e z =i h 

z =•p(•,t), •=o. 06) 
Using •ese con&•ons, Eq. (13) reduces to the follow- 
ing •o •uations: 

L• ],• •X0 / - 

The second •uation of (17) is satisfied by int•cing 
an a•li•y iunction F such tha 

•=L•g, x0=-•'•. (18) 
The first •uaUon of (17) le• to •e following differ- 
e•a equa•on for free vibration: 

2h o • I 
= -I 

FIG. 1. Coordinate system. 
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(1/• = ) [(4• al + f 4) 

- • •i cosh•=(sin•/•_] F = 0. (19) 
Equation (19) is the exact transcendental partial differ- 
ential equation governing the axisymmetric flexural 
bration of circular plates.. Expanding the trigonometric 
expressions and retaining a finite number of terms, so- 
lution of a desired order can be obtained. When F is 

known, the values of X 0 and W 0 can be obtained from 
Eq. (18) and the stresses can be obtained from Eq. (13). 

B. Plate •ubjected to symmetrical loading 

Taking z =0 as the reference plane, because of sym- 
metry in loading 

Wo=X o =0. (20) 

On the'plane z =+ h 

Z =-p(r, t), X=0. (21) 

Using these values of Z and X, Eqs. (13) reduce to the 
following two equations: 

By intr•uc•ng • a•liary function • •ch •at 

Uo=L•, Zo=L•)• , (23) 
the second •u•ion of (22) is identically sa•sfied and 
•e first •uation of (22) le•s to the foll•g exit 
p•i• •ereat•l •ua•on for free vibr•on symmet- 
ric with respect to the •d•e pI•e: 

(t/• •) [4• cnsh•(si•)/• 

- (2• - •)• coshSx(si•5=)/5•] • = 0 . (24) 

E•ng •e tri•nometric e•ressions and terming 
•rms up to h •, we get a fourS-order •eory. The 
stresses c• be •t•ned from the •ili• •nction 
in •e previous •isymmetric 

C. Boundary conditions 

The boundary conditions can be expressed in terms 
of the auxiliary gunction F or •p. As an illustration, the 
boundary conditions are given for a fourth-order theory 
of the antisymmetric case: 

(i) Hinged edge (w=0, 

F=O 

[a" + (•/•)a] F = 0. (25) 

(ii) Clamped edge (w=0, u =0): 

F=0, aF=0. (26) 

(ii0 Free edge (% = 0, •',f = 0). 

Out of the two conditions for the free edge, one can 
be satisfied exactly and the remaining approximately. 
Assuming • is satisfied exactly then 

[a • + (•/r)a] F = 0. (278) 

The remaining condition is obtained approximately as 

I-i •,,d•' =0. (27b) 
D. Solution of the differential equation 

As the method of solution o[ the differential equation 
for the symmetric and the antisymmetric case are iden- 
tical, the method is explained for the antisymmetric 
case, 

Expanding the trigonometric terms in Eq. (19) and 
retaining terms up to h z, the following differential equa- 
tion is obtained: 

([2/3(1 - •)] h;y 4 - [2(2 - •)/3(1 - •)] h'•y •' •' 

+ [(7 - s•)/12(1 - •)l h • • + h•'-}F = 0. (2a) 

In the expanded form this will be 

{ [2/3 (1 - •)] h = V * - [2(2 - •) 0/3 (1 - • }•] h = V = O"/Ot • 

+ [(7 - 8•) •=/12(1 - •)C =] h • a*/ot • 

+ (ho/C) o•'/Ot •}• =0. (29) 

For free vibration, one can assume 

F6,, t), = F=(•,) cos•t. (30) 
Substituting Eq. (30) in Eq. (29) and simplifying, we 
get the following differential equation for Ft: 

[a* V • +Ba • V •' + C ] Ft = 0, (31) 
where 

•=(2-•)X = , 

c = [(7 - 8•)/s] •'- [3(• - •)/•] a = x=, 

X = o• a(p/G) • la. (32) 

The solution of Eq. (31) leads to two different cases as 
follows: 

Case 1: When (B =- 4C)Xta>B then the solution is 

Ft = Ct J•(•,r/a) + C•. Io( q•'/a) , (33) 
where 

p = {[(•= - 4c P•" +•]/2p •" , 

q = ([(•= - 4c) •" - •]/2} •" . (34) 

Case 2: When (B =- 4C)xI•'<B then the solution is 

where • is defined as in Eq. (34) and 

•= •-• lB - (B = -4C)•t=]} •/• . (36) 

The frequency parameter X is obtained by substituting 
F= in the equations for the boundary conditions. In the 
case of eighth-order theory, the solution for F= is writ- 
ten by assuming trial values of k. Substituting this so- 
lution in the expressions for the boundary conditions, 
we ge t a set og homogeneous simultaneous equations. 
For nontrivial solution the coefficient determinant 

should be zero. That value of X which satisfies this 

condition is found. From Eq. (18) as a first approxi- 
mation one obtains 
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(37) 

In Eq. (29) •f the first and last term only are retained 
one has 

'[[2/3(1 - •)] h3V4+ (oh/G) e2/3t•F =0. (38) 

Substituting Eq. (37) in Eq. (38) and simplifying we ob- 
•n the following familiar •uation of the elementary 
theory: 

{ [2E/3(1 - •;)] h s V • + 2hpa'/Ot z} • = O, 
where • is the transverse deflection of the middle sur- 
face. 

III. NUMERICAL RESULTS 

Numer/caI values of k for •e antisymmetric case, 
have been computed by the gourth a• ei•th order •F' 
•eories for plates with •nged edge and clamped edge. 
Some of •e resuRs are given in T•les I and H •or 
three •erent values of "T" the t•ckness ra•us ratio. 

The v•ues computed using the t•n plate theory and 
Mindlin's •mproved plate theory are also given for com- 
parison. The v•ues of X for the symmetric c•e have 
been compu•d using the fourth-order •eo• gor a plate 
with gree edge. The results for the first two modes are 
•ven Ln T•le • got five •ferent values of T. The 
results compu•d using K•e-M•ndlin theo• •e •so 
given for comparison. 

TABLE I. Frequency parameter X for flexural vibration of 
circular plate with hinged support, Poisson's ratio = 0, 3. 

Thin 

plate 
T = 2h/a Mode theory Mindlin MIF IV MIF VIII 

i 0.1204 0.1125 0.1114 0.1125 

2 0.7251 0.7125 0.7051 0.7110 

3 1.8092 1.7500 1.7264 1.7406 

4 3.3746 3.1812 3.0362 3.1157 

0.05 5 5.4215 4.6124 4.5325 4.6234 

6 7.9499 7.0312 6.9831 7.1006 

7 10.9599 9.3156 9.1653 9.3017 

8 14.4514 11.4562 11.2246 11.4115 

9 18.4246 14.4250 14.1007 14.3823 

10 22.8792 17.1749 16.6923 17.0511 

i 0.2408 0.2375 0.2371 0.2375 

2 1.4502 1.4125 1.3841 1.3972 

3 3.6184 3.0562 3.0009 3.0514 

4 6.7492 5.1562 5.1468 5.1625 

0.1 5 10.8430 7.9562 7.9433 7.9641 

6 15.8999 10.7661 10.7632 10.8183 

7 21.9198 14.0249 13.6919 13.9861 

8 28.9029 17.1122 !6.7314 17.1003 
9 36.8491 20.0113 19.6097 20.0027 

10 45.7585 23.3120 22.6089 23.1386 

1 0.4816 0.2562 0.2557 0.2562 
2 2.9004 2.3561 2.3143 2.3471 

3 7.2369 5.1515 5.0046 5.1194 

4 11.4985 7.8781 7.7351 7.8815 

0.2 5 21.6859 10.6780 10.4863 10.6853 

.6 31.7997 14.7181 13.9104 14.1812 

7 43.8396 16.5749 16.3147 16.5483 
8 57.8057 17.4874 17.0385 17.4651 
9 73.6982 19.0046 18.6059 18.9745 

10 91.5171 20.5811 19.8140 20.2900 

TABLE II. Frequency parameter X for flexural vibration of 
clamped circular plate, Poisson's ratio = 0.3. 

Thin 

plate 
T = 2h/a Mode theory Mindlin MIF IV MIF VIII 

1 0.2492 0.2437 0.2402 0.2429 

2 0.9703 0.9125 0.8635 0.9109 

3 2.1739 2.0999 1.9017 2.0853 

4 3.8593 3.6297 3.3829 3.6174 

0.05 5 6.0263 5.1781 5.0702 5.1369 

6 8.6750 7.6226 7.4923 7.5942 

7 11.8052 9.9750 9.7724 9.9571 

8 15.417! 12.4124 12.2751 12.3914 
9 19.5106 15.1687 14.9349 15.1199 

10 24.0856 17.7556 17.5811 17.7386 

I 0.4985 0.4875 0.4789 0.4811 

2 1.9406 1.8312 1.8057 1.8248 

3 4.3478 3.8359 3.7941 3.8254 

4 7.7186 6.2781 6.1932 6.2478 

0.1 5 12.0527 9.0039 8.9105 8.8914 

6 17.3500 11.8390 11.7959 11.8186 

7 23.6105 14.8289 14.6459 14.7951 

8 30.8343 17.8381 17.6184 17.8067 

9 39.0212 20.9221 20.6815 20.8945 

10 48.1713 23.9499 23.7261 23.9137 

• i 0.9970 0.9437 0.9406 0.9435 

2 3.8813 3.1812 3.1588 3.1807 

3 8.6957 5.9797 5.9420 5.9789 

4 15.4372 8.9508 8.9133 8.9520 

0.2 5 24.1053 ß 11.9335 11.8074 11.9411 

6 34.7002 14.7194 14.2779 14.5927 
7 47.2211 17.0183 17.0013 17.3362 

8 61.6686 17.3749 17.1124 17.4115 

9 78.0424 20.3684 19.9876 20.3886 

10 96.3427 20.8874 20.5431 20.9137 

IV. DISCUSSION 

In the case of flexural vibration, the.frequency values 
calculated using the thin plate theory are always higher 
than those by MIF theory and Mindlin's theory. Though 
the values given by the MIF theory increase with the 
order of the theory, the difference between the values 
by the fourth order and eighth order is small. Hence 

TABLE Ill. Frequency parameter X for 
extensional vibration of a circular plate 
with free edge, Poisson's ratio = 0.3. 

Sane 

and 

T = 2h/a Mode MIF IV MAudlin 

I 3.4065 3.4285 
0.5 

2 8.6943 8.7058 

I 3.2972 3.3362 
1.0 

2 6.7293 6.7511 

i 2.7855 2.8172 
1.5 

2 4.4903 4.5225 

1 2.1684 2.1951 
2.0 

2 4.1148 4.1416 

1 1.8953 1.9136 
2.5 

2 4.0089 4.0110 
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the fourth-order theory is accurate enough for all prac- 
tical purposes. The results obtained by Mindlin's theo- 
ry are slightly higher than those by the present theory. 
In the case of extensional vibration the values of k cal- 

culated using Kane-Mindlin theory are slightly higher 
than those obtained by the fourth-order MIF theory. 
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