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. 7itle of program: CLOGAM AND CDIGAM

- Computer: CDC 6600, Installation: CERN, Geneva
(perating system: CDC scope
Progremming languages used: FORTRAN IV

Js the program overlaid? No

o, of magnetic lapes required: None

Whar othier peripherals are used? Line Printer

of cards in combined program and test deck: 161

&'punching code: BCD

ature of the physical problem

The ‘gamma function I(z), its logarithm In I'(z}, and its

; atithmic derivative ¢ (2} = d In T'(z)/dz appear in a wide
ange of physical applications. We mention here only the
eziano model and its generalizations in high-energy phys-
47=7k3, and the Coulomb phase shift for complex energies.

ethod of solution

For Re z 2= 7, the asymptotic expansmns are used to com-
P“teln r'{z) and +» (Z). For other regions of the z plane,

table functional relations are used. Care is taken that Im ln
) is computed correctly, and not merely modulo 27,

Restrictions on the complexity on the problem
As the tests show, an accuracy of 12—14 significant digits
ormally obtained.
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PROGRAM SUMMARY

-~ program obtainable from: CPC Program Library, Queen’s University of Belfast, N. lreland (see application form in this issue)

zgh speed store required: 334 (CLOGAM), 232 (CDIGAM) words. No. of bits in a word: 60

eywords: General Purpose, Nuclear, Afomic, Gamma Function, Logarithm of Gamma Funciion, Psi Function, Digamma Func-
tion, Asymptotic Expansion, Coulomb, Phase Shift, Scattering, Schrodmger

~ Running time

Typical running times (in microseconds on the CDC 6600)
are given in table 1.

Table 1

1n T(2) (CLOGAM) ¥ (2) (CDIGAM)

Rez<-6 580 570
6 Rez< D 790 650
0=t Rez< 7 630 390

7< Rez- 330 300
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LONG WRITE-UP

1. Introduction

Letz = x + iy be a complex variable. The gamma
function {for notation see [1])

[‘(z)=f:z‘1e“fdr (x >0), (1
1]

its logarithm In T'(z), and the repeated derivations of
In ['(z), namely

n+

d 1
T in(z (=0,1,2,3,..)

y(z) = (2)
play an important role in several fields of mathemat-
ics, physics, and other applications. The P (z) are
often called polygamma functions. In particular, for
n=a0,

y(2) =T}l () (3)
is calied the digamma or psi function.

Several methods have been suggested for the com-
putation of these functions, for real or complex val-
ues of the variable [2—18]. Algol programs for I"(x)
with x real are given in [4, 5, 8, 10]; for In I’(x) in
[9, 10} and for ¢¥(x) in [11]. Rational Chebyshev
approximations for In T'(x) are given in [14]. For
complex values of the variable z, FORTRAN programs .
for ['(z) have been published in {18] and [19]*. Ina
recent paper, Luke [13] treated the computation of
I'(z) for complex z with the help of Padé approxima-
tions. He also announced publication of a program
for I'(z) using this technique. Wrench [16] and Spira
[17] have developed explicit numerical expressions
for the coefficients in the Stirling series of I'(z). For
the cases where only a limited accuracy is required,
Lanczos [6] gave a remarkably simple formula for
I'(z), namely '

[(z) = (z + 1F P e G0 (2n)"

X (0.999779 + 1.084635/2) , (4)

* This routine occasionally gives wrong results, a correction

has been published in Computer Phys. Commun. 3 (1972) 276.

" energies [19].
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which has a relative error not exceeding 2.4 X 104
everywherein Rez > -1,z #0.
A 12-decimal table of In I'(z) for x = 0(0.1) 10,
¥ =0(0,1)10 has been published by the National
bureau of Standards [20]. This table also contains 5
compilation of properties of I'(z) and a bibliography,
An increasing number of applications require the
computation of the functions mentioned above for - -
complex arguments. For example, the Veneziano
model and its generalizations in high-energy physics
[21-23], which make extensive use of T'(z), or the
computation of Coulomb wavefunctions for complex

Although programs for I'{(z) are available, it is
often desirable Lo have a program for In I'{z). Occa-
sionally, the derivative of the garmna function is also
needed. It is therefore useful to present programs for
computation of In T'(z) and ¥{z) =T (z)/T"(2) for
complex arguments z. ) _

K
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2. Methods of computation

2.1. CLOGAM, the program for In T'(z)

Since In ['(z) is an elementary function of I'(z),
one might ask why a separate routine is needed if one
has a program for ['(z). The answer to this question
is twotold: firstly, because the complex logarithmis
a multivalued functiorn, defined forz=x tiy =
izi exp{i(f + 2nm)] by

Inz=In|z|+i(0+2Znm). (3)-

The standard FORTRAN function CLOG, however,
usually computes only the principal value of In z, i.e.,
it assumes # = 0 and gives & between —m and 7. This
is not always sufficient if we wish to take the loga-
fithm of a function. For example, we find froma .
table [20] that forz = 1 + 5i, Im InI"(z) = 3.82>7,,,
so that the FORTRAN combination
CLOG(CGAMMA(Z)) would certainly not provide
the right answer, assuming that CGAMMA computes
I'(z). Unfortunately, the authors of [19] did not fake
this phenomena into account when using their routing
GAMMA as part of Their program for calculating the
Coulomb phase shift. We note here that Luke [13] has
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eloped a method for finding Im I'(z) if z and I'(z)
gre given, which can also be applied to In I'(z).

- The second reason for introducing a separate rou-
e for In T'(z) is that this function is much less af-
fected by overflow than ['(z). 1t can therefore be
used for calculating quotients of gamma functions in
cases where both numerator and denominator would
cause overflow, but not the quotient itself.

In order to compute In I'(z), we use the Stirling
gries of In ['(z) together with suitable functional
elations, Other formulae could also be used, for in-
stance the logarithmic equivalent of the relations
given by Lanczos [6], which are reproduced in [12].
In contrast-to ['(z), where the Stirling series falls off
like 1/z, this series falls off like 1/z2 in the case of
in['(z). We then have the following formulae {12] in
the different regions of the z plane:
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‘we choose K = 10 and x = 7, we find
(M 1<2.5x% 10715

that theoretically these values are suitable for single '
ision computation on a CDC 6000 computer.

ien computing the logarithm of the product in for-

ula (6), we must be careful to find the correct ima-

ary part. This can be achieved by using the relation
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(89
I
tad

n-1 n-1 n-—1

in {1 (z+v)=1n| Il (z+v)|+iz; arctan —
v=0 =0 =

x+v

(8)

The function f(z) = In sin 7z in formula (6} is
computed in the following way. We setz =x *+ iy and
assume p = 0. This is no restriction since In F(z) =
In I'(2), where Z =x — iy. We introduce a new vari-
able £ =x — [x] so that 0 < £ <{1, and obtain

f(z)=1 In (sin? n£ + sinh? mp)
+ i {arctan (cot wf tanh my) — '[x]rr} s )]

where — < arctan ¢ << 7. [n particular, on the bound-
aries of the cut along the negative real axis (y = = 0),
we have

f(x)=1n§sin 7 | 7 [x]mi = In | sin 7§ | £ |[x] lwi. (10)

Finally, in order to avoid possible 0v5'r’flow, we write
Re f(z) in the form

’ 2
Re f(z)=my +1In [e=2m'sin?ng + 1 (1 —e )7

(11)

2.2, CDIGAM, the program for Y(z}*
In order to compute Y{(z) = d In ['{z){dz we differ-
entiate (6}, giving

K

. ' B ,
_ \b{z)=inz'—ir Eﬂz‘wa}((z)

22 kel 2k
(x=xq>0),

n—1

' =1,b(z+n)—@0 (z+v) ! (0-‘£x<xd),

=y{—z)+ {fz +tncotnz (x<0), (12)
where n = [xg] — [x]. These formulas are used for
the computation of (z) in the regions indicated. We
have chosenxy =7 and K =7.

* An earliéT version of this program was written by
R. Keyser (CERN).
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3, The tests

3.1 Tests forin fz)

The program CLOGAM was checked in the follow-
ing cases.

(i) The values of In I'(z) were computed forz =

x + iy, where x = 0{0.5) 1 (10), ¥ = 0(0.1)} 10, The re-
sults were compared with the 12-decimal table [23].
Occasional discrepancies of 1 unit in the 12th deci-
mal were found.
(ii) The formula [24]

InC(22)=(22 - 1)In 2+InP() +In D(z+)—Linm,
(13)

was “‘verified” using 500 arguments of the form
zaplx—3+i0y =Y,

where x and ¥ were random numbers uniformly dis-
tributed over (0,1). The proportionality factor 4 was
taken to be p = 2, 5, 10, 30, 50. For each g, 100 values
z were taken. The two sides of (13) usually agreed to
12-148S (significant digits), occasionally to 118.

(iif) Calculation In I'(z) for z = x + iy, where y =
—3.0(0.1)3.0, y = £5, 40,01, +0.00001,0. This verifies
that the imaginary part is computed correctly.

(iv) Computation of In ["'(z) for

2= [(~1Y xp +i(-1Y 3, ] X107,

where k=1,2,3;7=2,3;/=2,3;m=1,2,x; =
{0.1,0.1, 135 3,-= {1, 1,0.2}. The computed values
were checked against the values found by direct eva-
luaticn of the Stirling series. In particular, for

Re z < 0, this check is important as an assurance that
the sign of the imaginary part of In I'(z) is correct.

3.2. Tests for Yz}
We have tested the following cases using the pro-
gram CDIGAM,
(i) The formula

V2= 5[ E) + vz +1)] +In2

was checked for the same values of z as formula (13).
The two sides agree to 13—148.,

(i1) The relations
Im y{(iv) = 1/2y + tm coth my,
Im (1 +)=—1/2y + }m coth ny

were checked for ¥ =0.1(0.1)1(1)100. There was
agreement to 13148,
(iii) Direct evatuation of [24]

(o]

Y{)=lnz —1/2z — f
0

rdt
Gy Y (Rez>0)
for 50 values of z with 0<CRe z < 10, 0<Imz £ 10,
The upper limit of the integral was replaced by T'=
(10 In 10)/n =~ 7.33. There was agreement to 13148,
We note here that relative accuracy is necessarily
lost near a zero of (). These zeros are all negative
real, except xy = 1.46163... . For arguments z with
large negative real part Re z = —10”", about (14—r)
significant digits are correct.

4. Error exits

4.1. CLOGAM

If the function subprogram CLOGAM is called
with an argument z = —n £i0, (=0, 1,2, ...) an error
message

CLOGAM... ARGUMENT IS NON-POSITIVE INTEGER

=(n)

is printed on Logical Unit 2, where (n) denotes the
argument. The value of CLOGAM is set to zero in this
case,

4.2. CDIGAM

The function subprogram CDIGAM, when called.
with an argumentz =—n £i0(r =0, 1,2, ...), prinis
an error message

CDIGAM ... ARGUMENT IS NON-POSITIVE INTEGER | .

=(n) -
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The results of the test run are self-explanatory.
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TEST VALUES FOR

Y

240
0.0

ARGUMENT

TEST VALUES FOR

-

—
NOPENS D= SN

& & 4 4 0 v s s
(=== - N -~ ]

i
A%
.
o

=040
=leD
-8,0
-0,0
=2..0
=%,0
~16.0
-0,0
=540

TEST RUN OUTPUT

LN GAMMA(Z) (Z = X + [%Y)

RE LN GAMMA(Z)

~26,84992384]156715
=-12.79589533355426
~2.953%0829229571
~12.68715285199448
+69314718055986
1.25083561935671
S+41808697187290
~.27799290829569
12.80182748008133
24434577701569333
-26.84992384156715
~12.79589533355426
=2.95350829229571
=12.687152R5199448
«69314718055986
1.25083561935671
S.41888697187290
-, 27799290829569
12.80182748008133
24.345777015693233

IS NON-POSITIVE INTEGER

PST(Z} = DIGAMMALZ)

RE PSI{(Z)

2.61375885861489
2.30380103429782
1.29465032062246
2.08074567491178

9227433509845
1.39536074614320
2.032695652239019
2.89681672499673
2.2517525R506671

" 2.T30463B2968629

2.613758B5861489
2.30380103429782
1+29465032062246
2.08074567491178

+92278433509845
1.39536074614320
2.03269565223019
2.89681672499673
2.25175258906671
2.73046382968629

COICGAN ..., ARGUMENT IS NON-FPOSITIVE INTEGER
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IM LN GAMMA{Z)

~37.19840614844497
=31.415926535897494
~9,.72641828123693
1.83971205351668
0.00000080000000
2.61019580104885
7.71810136520472
39.55316531442281
0,00000000000000
13.46736924371726
37,15840614844497
31.41592653589794
9,72641828123693
-7.83971205351668
-0.00000000000000
-2.61019580104885
~7.71810136520472
=39,.55316531442281
=-0.00000000000000
=13.46736924371726

-1.00

IM PSI(Z)

2.99460095564282
€.00000000000000
2,876674047466858
1.63329632679488
0.00000000000000
«S51€96112879607
+55101815665321
1.08235712929482
0.00000000000060
«33195042663378
—2.99460095564282
$.00000000000000
-2.87667404746855
=1.633296326794A8
9.00000000G00000
=-.51696112879607
-+.55101815665321
=1.08235712929482
0.00000000000000

-,.33195042663378

=-1.00
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